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1 Introduction

Multiple Instance learning (MIL) considers a particular form of weak supervision
in which the learner is given a set of positive bags and negative bags. Positive
bags are sets of instances containing atleast one positive example and negative
bags are sets of instances all of which are negative. A number of binary SVM
based solutions have been proposed to this problem like the Normalized Set
Kernel of Gartner et. al, 2002 ([1]) which represents the bag as the sum of
all its instances normalized by its 1 or 2-norm and the sparse MIL (sMIL)
technique of Razvan and Mooney, 2007 ([2]) which improves upon NSK by
considering a weaker balancing constraint. In this project I plan to look at
equivalent formulations for a one-class SVM and empirically evaluate if ignoring
the negative bags in the formulation is detrimental to the solution found.

2 Related Work

A number of 2-class SVM based formulations have been looked at in the litera-
ture. The following are a few relevant MIL SVM formulations

e Normalized Set Kernel (NSK)

In the Normalized Set Kernel of Gartner et. al, 2002 ([1]) a bag is rep-
resented as the sum of all its instances, normalized by its 1 or 2-norm.
The resulting representation is then trained using a standard SVM. The
formulation for NSK is as follows

e sparse MIL (sMIL)

The sparse MIL formulation of Razvan and Mooney, 2007 ([2]) considers
the equation for the positive bags in the formulation of NSK as a bal-
ancing constraint. The balancing constraint of NSK is too strong since it
assumes that all the instances in a positive bag are positive. Since this is



problematic when the positive bag is particularly sparse in positive exam-
ples they consider the constraint that expresses that at least one instance
from the bag is positive. The formulation for the same is as follows

e MI-SVM

minimize: Hwl||® + ﬁzme/@l &z + ITC;lZXEXp §x (1)
subject to:  mazgex y(wo(xr) +b) >1—Ex,VX € X, X,
(2)

This is the maximum bag margin formulation of Andrews et. al (2003)
[3]. The associated heuristic algorithm starts by training a standard SVM.
This is followed by relabeling of instances in positive bags using the deci-
sion hyperplane. If a positive bag contains no instances that are positive
according to this hyperplane then the instance with the maximum value
of the decision function is relabeled as positive and the SVM is retrained
on this relabeled data. This is continued till there are no more labels to
be changed.

e A regularization framework for Multiple-Instance learning In the method
proposed by Cheung and Kwok (2006) [4] a loss function is introduced
between the label of a bag and the label of the most positive instance
in the bag and SVM is formulated by including this loss function in the
objective. This is based on relaxing the idea of mi-SVM that the label of
a positive bag is equal to the label of its most positive instance. But the
objective function is no longer convex because of the max function used
for the loss and therefore they directly formulate the dual problem instead
of the primal and solve it using CCCP([5]).

Positive bags are easily constructed in all of the above cases. For example,
in image retrieval each returned set of images can be considered as a positive
bag, segmentation where each image is a positive bag containing atleast one
valid segmentation. On the other hand it is not clear on how to choose negative
bags in these cases and they are typically constructed from examples that are
known to be non-positive.

Ray and Craven (2005) ([6]) observe that the nature of the negative instances
in the positive bags may be different from the nature of the negative instances in
the negative bags. If this is the case then one would be dealing with 3 different
distributions which might or might not be separable using the single hyperplane
found by all of these methods. And so it appears that most of these methods
work well only when the negatives in the positive bags are similarly distributed
to the negatives in the negative bags ([2]).

Therefore even though we’ve the freedom of constructing the negative bags
from any set of instances that is not positive the most gains are obtained when
these are sampled from a distribution similar to that of the negatives in the



positive bags. This might not be possible in some cases like image retrieval
where no information is known about the distribution of the noisy images in
each retrieved set.

In such situations completely ignoring the negative bags in the formulation
and considering only the positive bags and using clustering techniques or a one-
class SVM might be fruitful. In the following work we will formulate a one-class
SVM for the MI problem and compare it with the standard one-class SVM on
an image dataset. We will also compare the one-class SVM solutions with the
2-class methods outlined above to study the effect of ignoring the negative bags.

3 A one-class SVM approach to MIL

A one-class SVM is a function f that takes the value +1 in a “small” region
capturing most of the data points and -1 elsewhere. One-class SVMs are typi-
cally used for novelty detection where the task is to say whether a new example
is unlike any one of training examples. One-class SVMs have also been applied
to the task of unsupervised learning for character regognition ([7]).

The MI problem could be solved using the one-class SVM by simply con-
sidering all instances in positive bags as unlabeled data and then estimating a
function that returns +1 in a “small” region that should correspond to the true
positives. The function is found by mapping the data into feature space corre-
sponding to a kernel and then separating them from the origin with maximum
margin. This corresponds to the following quadratic problem

minimize: HwlP+ 536 —0p (3)
subject to:  (w.¢(x)) > p—&,& > 0.
(4)

But the above formulation does not respect the MI constraint which states
that positive bags should contain atleast one positive instance. From Ray and
Craven (2005) [6] it is clear that even though ignoring the bag constraint and
solving the standard supervised problem produces results comparable to MI
methods in most datasets, when the bags are very sparse MI methods invariably
perform better.

As seen in Section 2 the MI constraint can be captured in a number of ways.
Of these the idea of Andrews et. al [3] is closest to capturing the MI constraint
since it states that the maximum value of y within a bag should be greater
than +1 if the bag is positive. But even though the max function is convex
it is not smooth and so the standard quadratic optimization techniques cannot
be applied. Therefore we will apply the technique used in [4]. The one-class
MI-svm formulation is given in Figure 1

Here [ denotes the total number of instances within all bags while n denotes
the total number of bags. The penalty for bags and instances have been seper-
ated out because the bag constraint is a stronger constraint as we want atleast



minimize: 3l + 4 36+ & E - p (5)
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Figure 1: one-class MI-svm formulation

one instance to be positive in each bag. On the other hand individual instances
might not be all positive and therefore the penalty should be lower.
Using multipliers «;, 8; > 0, we introduce a Lagrangian

Lw,& 2 pa.8) = FllwlP+53&+ 55,5 -
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Now, because of the presence of the maz function the lagragian is not dif-
ferential. But by using the sub-gradient of the maz function and setting the
derivatives to zero we can obtain the dual of the above problem. For the point-
wise maximum function h(x) = mazi<i<phi(z) its subdifferential at zo is the
convex hull of the union of subgradients of “active” functions at xy. Function h;
is said to be active if h; = maxi<;<ph;(z). Introducing variables a;; to denote
whether (w.¢(x;)) is active or not in the max function yields the solution

w = Zai(b(xi) + Z%(Z aijo(x;))
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Similar to [4] we initialize agg) = 1/n; for all bags, where n; denotes the
number of instances in the bag and the a;;s are updated as a;; = 0,7 fz; is not

active in the max function and a;; = 1/n, if it is. Here n, denotes the number
of active instances.



Category AUROC - training AUROC - test
one-class | one-class MI-svm | one-class | one-class MI-svm

ajaxorange 64.22 65.40 63.72 64.14
apple 50.64 50.96 49.70 49.62
banana 63.16 64.82 61.24 63.20
bluescrunge 49.00 52.44 47.86 50.50
candlewithholder 76.14 76.62 77.22 77.20
cardboardbox 77.62 78.84 75.80 77.00
checkeredscarf 78.32 78.06 78.62 78.42
cokecan 76.78 74.32 76.00 72.98
dataminingbook 81.36 80.84 77.16 76.34
dirtyrunningshoe 76.54 77.70 71.86 72.60
dirtyworkgloves 74.82 75.90 77.78 78.74
fabricsoftenerbox 83.62 83.76 82.42 82.24
feltflowerrug 60.56 57.00 56.66 52.18
glazedwoodpot 48.52 48.84 44.08 44.06
goldmedal 49.66 55.78 49.86 55.24
greenteabox 64.36 64.92 63.76 64.28
juliespot 50.86 52.00 47.68 48.58
largespoon 69.94 72.86 75.74 AP
rapbook 69.62 71.32 72.22 73.50
smileyfacedoll 56.50 56.20 59.80 59.98
spritecan 68.92 69.04 67.82 67.22
stripednotebook 86.06 87.84 82.72 84.36
translucentbowl 43.06 44.18 44.48 46.24
wd40can 69.78 66.02 65.68 60.64
woodrollingpin 78.62 79.20 76.94 76.50
Average 66.75 67.39 65.87 66.14

Table 1: Area under the ROC curve for different categories in the SIVAL dataset
on both training and test data averaged over 5 random trials. Numbers high-
lighted in bold area cases where adding the MI constraint improves the area
under the ROC. We can clearly see that there is an improvement for majority
of the categories even though overall average is only slightly larger.




4 Experiments and Results

The one-class MI-svm formulation was tested on the image segmentation domain
using the SIVAL dataset. The dataset contains segmented images of various
objects in different scenes. A positive instance is a segment containing the
object, while all others are negative. An image (bag) is labeled positive if it
contains the object.

The classification task is to say whether a given segment is positive or not.
Since we do not use the labels on positive instances in either the standard one-
class SVM or the one-class MI-svim both the results on the training data and
the test data are equally relevant here. The dataset was randomly split into 5
runs each containing a training set of 20 images (QO*SO segments) and a test set
of 40 images. All results are averaged over the 5 runs.

Kernel and other parameters were optimized separately and the same value
was used for both the standard SVM and the MI-svm since only the comparison
on the same set of parameters would be relevant. All results are for a quadratic
kernel with a coefficient of 5% 1076 and v = 0.9.

Table 1 shows the Area under the ROC curve for the classification task of
predicting whether a segment is positive or not. The first two columns are on
the training data while the last two are on the test data. Numbers highlighted in
bold refer to cases where the MI method did better than the standard one-class
method. The MI method performs better than the standard one-class method
in a majority of the categories with a maximum improvement of 3.44 in the case
of bluescrunge on the training set. But the overall averges differ by less than
1 point and it cannot be considered as definitive that the MI method is better
than the one-class. Figure 2 shows a whisker and box plot of the difference in
the area under the ROC for the two methods. We see that there are a number of
negative outliers which could be responsible for the low average improvement.

5 Conclusion

A one-class SVM was formulated for the MI problem and it was compared with
a standard one-class SVM for an image dataset. Preliminary results suggest
that the MI method might be slightly better than the standard one-class SVM
but this needs to be tested on more datasets to come to a strong conclusion.
Also the above methods need to be compared with existing 2-class SVMs for
MIL to analyse if ignoring negative bags can help simplify the problem.
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Box and whisker plot of the change in area under the ROC on training and test data
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Figure 2: A box and whisker plot of the difference in the area under ROC for
the two methods. The mean and lower quartile are above zero for both test and
training data implying that the MI constraint does improve the area under the
ROC for most categories
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