
Feb 7 Notes (Session 1) 
Gaussian Distribution: (some plots for different values of \mu and \sigma) 

 
 
Joint Distribution: 
Two coins might be both fair, but probability of them both being 1 at the same time can be 1/8 
(as opposed to ¼). That is “joint” distribution.  
 
Bivariate Gaussian Distribution: (define what \mu, \sigma and \rho are) 

 encodes the correlation between X and Y 

 
 
Special case where \rho = 0 (they become independent) 
Demonstrate the impacts of each variable on the distribution plot using: 
https://demonstrations.wolfram.com/TheBivariateNormalDistribution/ 
 
If we define 

 
Then,  

 
Which is Multivariate Gaussian Distribution 

 
 
Theorem: \Sigma is Positive Semi-Definite. 
Proof: Covariance matrix C is calculated by the formula, 

𝐂≜𝐸{(𝐱−𝐱¯)(𝐱−𝐱¯)𝑇} 
For an arbitrary real vector u, we can write, 

𝐮𝑇𝐂𝐮=𝐮𝑇𝐸{(𝐱−𝐱¯)(𝐱−𝐱¯)𝑇}𝐮=𝐸{𝐮𝑇(𝐱−𝐱¯)(𝐱−𝐱¯)𝑇𝐮}=𝐸{z2} >= 0. 



Maximum Likelihood Estimation: given some data, how do we estimate \mu and \Sigma? 
Generally, given some observations D, how do we estimate parameter \Theta? 
 

 
 
Normal example 

 
 
MLE is NOT always unbiased, e.g. \sigma^2 needs to be divided by “n-1”. 

  



Feb 7 Notes (Session 2) 
 
Regression Fit/Overfit: https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/05/prml-slides-1.pdf 
 
Linear Models: 
Polynomial curve fitting:  

 
 
Basis Functions: 

 
Typically first basis function is just bias term. 
Identity basis functions 
Polynomial basis functions 

 
Gaussian basis functions 

 
Sigmoid basis functions 

 
 
Generalized Linear Models:   y = f(w^T \phi(x)) 
 
 
 
 
 
 
 
 
 
 



MLE & MSE relationship 

 

  
 
 
 
 
 
 
Regularization 

  



 
 
 
Multiple Output (Multi-task Learning) 
 

      


