Feb 7 Notes (Session 1)
Gaussian Distribution: (some plots for different values of \mu and \sigma)
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Joint Distribution:
Two coins might be both fair, but probability of them both being 1 at the same time can be 1/8
(as opposed to %). That is “joint” distribution.

Bivariate Gaussian Distribution: (define what \mu, \sigma and \rho are)
E[(X — pux)(Y — py)]

XYy = (Eq.2)
oxoy -
encodes the correlation between X and Y
f(z,y) = . opf -t |Eom)  om) 20— wx)(y - py)
, 2roxoy+/1—p? 2(1-p?) o% ol oxoy

Special case where \rho = 0 (they become independent)
Demonstrate the impacts of each variable on the distribution plot using:
https://demonstrations.wolfram.com/TheBivariateNormalDistribution/

If we define
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Then,

exp(—5(x — )= (x — p))
(2m)* |2

fx(azl,...,xk) =

Which is Multivariate Gaussian Distribution
with k~-dimensional mean vector

p = E[X] = (E[X1),E[Xz], ..., E[X]),
and k X k covariance matrix

Zij = E[(Xi — pi)(Xj — p5)] = Cov[X;, Xj]

Theorem: \Sigma is Positive Semi-Definite.
Proof: Covariance matrix C is calculated by the formula,
CAE{(x—x)(x—X)T)}
For an arbitrary real vector u, we can write,
urCu=urE{(x—x")(x—x)1}u=E{urx—x")(x—x)m}=E{z2} >= 0.



Maximum Likelihood Estimation: given some data, how do we estimate \mu and \Sigma?
Generally, given some observations D, how do we estimate parameter \Theta?

X1, Xs, X3,... X, have joint density denoted
fo(z1,Za,...,zs) = f(z1,Z2, .. .,2,]0)
Given observed values X; = x1, X2 = o, ..., X, = x,, the likelihood of @ is the function
lik(0) = f(z1,22,...,2,]|0)

considered as a function of 6.
If the distribution is discrete, f will be the frequency distribution function.
In words: ’ lik(9)=probability of observing the given data as a function of 6. ‘
Definition:
The maximum likelihood estimate (mle) of € is that value of 6 that maximises lik(f): it is
the value that makes the observed data the “most probable”.
If the X; are iid, then the likelihood simplifies to

1ik(0) = H f@lo)

Rather than maximising this product which can be quite tedious, we often use the fact

that the logarithm is an increasing function so it will be equivalent to maximise the log
likelihood:

1(0) = Zlog (z]9))

Normal example

If X1, Xo,...,X, are iid N'(u,0?) random variables their density is written:
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Regarded as a function of the two parameters, u and o this is the likelihood:
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so setting these to zero gives X as the mle for y, and 62 as the usual.

MLE is NOT always unbiased, e.g. \sigma”2 needs to be divided by “n-1".
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Remember the expected value of x_i? mentioned at the start? By expanding
~p, we have



Feb 7 Notes (Session 2)

Regression Fit/Overfit: https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/05/prml-slides-1.pdf

Linear Models:
Polynomial curve fitting:

M
y(x,w) = wo +wix + wox? + ... +wyrM = ija:j
j=0

Basis Functions:
M-—1
y(x,w) = > wjd;(x) =w' P(x)
j=0

Typically first basis function is just bias term.
Identity basis functions
Polynomial basis functions

¢j(z) = 2l
Gaussian basis functions
(z — pj)?
¢;(x) = exp {— 53
Sigmoid basis functions

¢j(x) =0 <%)

where

o(a) !

" T+exp(—a)

Generalized Linear Models: y = f(w"T \phi(x))



MLE & MSE relationship

Maximum Likelihood and Least Squares (2)

Maximum Likelihood and Least Squares (1)

Taking the logarithm, we get
Assume observations from a deterministic function

N
with added Gaussian noise: Inp(tiw,8) = > N (ta|lw p(xn), 47
n=1
F—ylow)te  where  plelB) = N(elo, 5 v

= —Ing- N In(27) — BEp(wW)
. . . 2 2
which is the same as saying,

p(tlx,w, 8) = N(tly(x, w), 571).

where
1 N " )
Ep(w) == tn, — W (X,
Given observed inputs, X = {x;,...,xx}, and targets, pw) 2 n;{ ()}
t=[t1,...,tn]", we obtain the likelihood function

N

p(tX,w,8) = [T Ntalw" b(xn), 7).

n=1

is the sum-of-squares error.

Maximum Likelihood and Least Squares (3) ~ Geometry of Least Squares

Computing the gradient and setting it to zero yields Consider

N
=& =[p1y---» y .
Vo lnp(tiw, §) = 8 {1~ W 9(:)} 9lx0)" = 0. Y= B = ool
n=1 yeSCT teT

N-dimensional
‘M-dimensional

The Moore-Penrose
pseudo-inverse, &

Solving for w, we get ~

WML = (‘I)Tq’) @'t Sisspanned by ¢y,..., 0.
where Wy, minimizes the distance
Po(x1)  o1(x1) - Par-1(x1) between t and its orthogonal
do(xz)  d1(x2) - du-i(x) projectionon S, i.e. y.
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Regularization

Regularized Least Squares (2)

Regularized Least Squares (1)

With a more general regularizer, we have
Consider the error function: L N M
T 2 -
Ep(w) + AEw (w) 5 2 At —wiolxn)} + 5 Zl ;|
iz

Data term + Regularization term n=1

With the sum-of-squares error function and a
quadratic regularizer, we get
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regularization 1

,
which is minimized by it 1=05 q q=2
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w = </\I + tI>T<I>) Tt. Lasso Quadratic




Regularized Least Squares (3)

Lasso tends to generate sparser solutions than a

quadratic
regularizer.
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Multiple Outpu

Multiple Outp

t (Multi-task Learning)

uts (1)

Multiple Outputs (2)

Analogously to the

p(tlx, W,

Given observed inp
T = [t1,...,tn]", we

Inp(TIX,W.5) =

single output case we have:

B) = N(tly(W,x),57'T)
= N(t/W's(x),7'I).

uts, X = {x,...,xy}, and targets,
obtain the log likelihood function

N

i: In N (t,[WT(x,),37'1)

n=1

K. (B B 2
- In (2—_> =5 2 lltn = W)

n=1

Maximizing with respect to W, we obtain
W = (<I>Tn1>)_1 3TT.
If we consider a single target variable, ;, we see that
Wy, = (<I>T<I>)71 3T, = d'ty

where t;, = [tir,-- -, tni]T, which is identical with the
single output case.




