Notes are taken from Tibshirani’s lecture notes: https://www.stat.cmu.edu/~ryantibs/convexopt-
F13/scribes/

8.1.2 Projected Subgradient Method

Suppose we wanted to solve the following convex minimization problem
min f(z) subject to z € C
T

This problem can be solved by pushing C into the objective function using the indicator function, and then
using subgradient descent.

min f(z) + Io(z)

If we try to apply the subgradient method to this objective function, we have to take the subgradient of the
indicator function. The subgradient of dI¢(x) = Nc(z) the normal cone of C at z, which is generally pretty
difficult to compute.

Instead, we can use projected subgradient descent. It has the same update as the subgradient method,
except we project onto C instead of calculating the subgradient at each step
z® = Pc(z(kfl) — trg®*D)

If this projection can be done, the projected subgradient method achieves the same convergence guarantees
as subgradient descent.

8.2 Proximal Gradient Descent

Instead of trying to improve rate of convergence for all types of problems, we instead focus on minimizing
composite functions of the form

f(@) = g(z) + h(z)

where g is convex and differentiable, and h is simple and convex but nonsmooth. This relaxes the class of
functions we can minimize compared to gradient descent, but for many problems we can still achieve the
O(2) rate of convergence from gradient descent.

Since h is not differentiable, we cannot directly take the gradient of f and apply the gradient descent
update:

zt =2 -tVf(z)
Instead, we can try another method motivated by the same principles as gradient descent. Recall that the

gradient descent method is motivated by minimizing a quadratic approximation to f around z, replaying
the Hessian with %I . Instead of trying to minimize the quadratic around all of f, which we can’t do because

h is not differentiable, we can minimize just the quadratic approximation to g and leave h alone. Make the
update:

+

zt = argmin, g;(z) + h(z)

. 1

= argmin, g(z) + Vg(@)7 (s — 2) + .||z — all3 + h(2)
L1

= argmin, -||2 — (o ~ t99(@)| 3 + h(2)

The first term ||z — (z — tVg(z))||3 forces us to stay close to the gradient update for g and the second terms
forces us to make h(z) small. This is the principle behind proximal mapping.

8.2.1 Proximal Mapping

Proximal mapping is given by
prox,, ,(z) = argmin ||z — z||3 + h(z)
2

In prozimal gradient descent we choose an initial z(®) and iteratively update

2®) = prox, , (2%~ - 4, V(1))
We can rewrite in the same form as a gradient step by defining
x — prox,, ,(z — tVg(z
I e Wt/ )
t
then rewriting the update as:

z® = g*=D _ .Gy, (D)

The advantage of the proximal mapping is that prox; ,(z) has a closed-form solution for many important
functions h, which may not be differentiable but are simple. Making the proximal mapping only depends
on g, and because g is smooth we can compute its gradients even though it may be very complicated. The

computational cost of making the mapping, however, depends on the function and can be either expensive
or cheap.



8.2.2 Example: ISTA
Given y € R™, X € R"*P, the lasso criterion is given by

1
f(B)=3lly = XBII3 + AllBllx
=9(8) + h(B)
Then the proximal mapping for h(8) = A||8||1 is
1
prox, ,(f) = arg min ||z — 2|3+ Allzlh
2

= Sx(B)
where S¢(f) is the soft thresholding operator.

Bi—X Bi>A
[S:(B)li=q0 —A<Bi<A
Bi+A Bi<-A

8.2.3 Backtracking Line Search

Backtracking works the same as it does for gradient descent, but because we require the derivative we use
backtracking only on g, not f. Choose a parameter 0 < 8 < 1. At each iteration start at ¢ = tini and while

g9l = 1G(2)) > g(2) = tVg(2)"Gu(z) + %HQ(J)H%

shrink the step size ¢ = 4¢. Otherwise perform the proximal gradient update.

Accelerated proximal gradient method

Our problem, as before:

min g(z) + h(z)

where g convex, differentiable, and h convex. Accelerated proximal
gradient method: choose an initial point £(® = z(-1) € R”, repeat
for k=1,2,3,...

k-2
kE+1
k) = prox,, (v — t,Vg(v))

v=gk1D ¢ (z*=D — k=2

2(

o First step k = 1 is just usual proximal gradient update

o After that, v = z(*~1) 4 %(z(k’n — 2*=2)) carries some
“momentum” from previous iterations

o h =0 gives accelerated gradient method

Backtracking line search
A few ways to do this with acceleration ... here's a simple method

(more complicated strategies exist): fix 8 < 1, ¢y = 1. At iteration
k, start with t = t;_1, and while

9(e") > 9(0) + Vo) (& — 0) + o1z — ol

shrink ¢ = Bt, and let T = prox,(v — tVg(v)). Else keep z*+

Under same assumptions, we get the same rate

Theorem: Accelerated proximal gradient method with back-
tracking line search satisfies

J@®) =1 <
where tpi, = min{1, 3/L}

2|2 —2*|3
tmin(k + 1)2

Using the fact that Vg(3)

The proximal update is then given by
B* = prox, (8 — tVg(B))
= —XT(y— XpB) and the definition of Sy,

= Sx(B+tXT(y - XB))

Theorem 8.2 Proximal gradient descent with step size t < }—A satisfies

©) _ |2
k)Y _ p* < ||z z*(|3
f@®) - <

and the same result holds for backtracking, with t replaced by %

Convergence analysis

As usual, we are minimizing f(z) = g(z) + h(z), assuming:

e g is convex, differentiable, dom(f) = R"™, and Vg is Lipschitz
continuous with constant L > 0

e h is convex, prox function can be evaluated

Theorem: Accelerated proximal gradient method with fixed step
size t < 1/L satisfies
2|2 —z*|3
(k)Y _ px < 2L 7 7 2 ll2
F@) - 1< tk+ 1)

Achieves the optimal rate O(1/k?) for first-order methods! l.e., a

rate of O(1/+/€)

Is acceleration always useful?

Acceleration can be a very effective speedup tool ... but should it
always be used?

In practice the speedup of using acceleration is diminished in the
presence of warm starts. l.e., suppose want to solve lasso problem
for tuning parameters values

AL> > >\
e When solving for )1, initialize (%) = 0, record solution (A1)

e When solving for );, initialize (® = &()\;_;), the recorded
solution for \;_;

Over a fine enough grid of X values, proximal gradient descent can
often perform just as well without acceleration



23.1 Stochastic gradient descent

Consider minimizing the average of a bunch of functions:

min - 3" fi(z)
=1

Recall that gradient descent goes as follows:

1 n
(k) — p(k=1) _ ¢ . = (k1)
z z tr n E_ Vfi(z )

The stochastic gradient descent replaces the averaged gradient with the gradient of a randomly chosen
function:

2®) = k=1 _¢, . Vfi. (=1

where iy, is randomly drawn from {1,...,n}.

Note that:

E[V fi, (z*~D)] Zw (1)

So the gradient used is an unbiased, albeit higher variance estimate of the gradient used for GD.

To reduce the variance, mini-batch stochastic gradient descent can be used, in which we sample I € [n]
with |I;| = b functions and use the average of their gradients:

E[V f;. (*7)] ZVf (+=1)

zEIlc

Note that this is again an unbiased estimate of the gradient, b times more expensive than SGD but having
1/bth the variance.

Condition GD Rate | SGD Rate

Convex o(1/Vk) | 0(1/Vk)

+ Lipschitz Gradient | O(1/k) | O(1/Vk)

+ Strongly Convex O(+F) O(1/k)




Theorem 1. If f is conver and G-bounded then after T steps of stochastic gradient descent
with n = R(%G) we have, E[% ST f(xy) — f(z9)] < % where 0% = max,[||V f(z) —
V(@)I[*] and R = ||lzo — 2|
Proof. By convexity, f(z*) > f(z¢) + Vf(z¢)(z* — z¢). This implies
f(@e) = f(*) < V(@) (@ — 2*) = V() (@ — %) + (V (@) = V f(z2)) (@ — z¥)
1 A
= 5(% — z1)(ze — 27) + (Vf (@) — V(@) (20 — 27)

Using the fact that (a —b) - (a — ¢) = [||a — |2 + ||a — ¢|[* — ||b — ||?] we get that

fl@e) — f(2") < %[Ilwt — &P + (o — 2o = [|@er1 — 2*|*] + (VF (20) = V() (@ — )

1 1 a
= %[Ilwt — 2| = |lzes1 — 2*[P] + o 1%t~ we|® + (VF(ze) = V(@) (@ — 2¥)

Since 411 = 2 — nV f(z;) we get that
fl@e) = f(z") < %[Ilzt —*|* — [Jeesr — P + gllﬁf(ﬂft)ll2 +(V () = V() (s — z*)
Now take expectation on both sides. The last term will have an expected value of 0.
E[f(z) — f(=%)] < %[Ilwt —a*|* = [|ze1 — 2" + gE[IWf(wt)II2] +0
Using E[y?] = E[y]* + o2,
Elf(e) - (@) < g lloe = "I = llovss = °|F) + (0 + G?)
Summing up from ¢t =0 to 7' — 1 we get

B S fa) - fary) < Llm = ma oo
T &0 S T 2

R? N, 2 2
< = 1
_27)T+2(0 + G*)

, we get that the RHS is at most

< R(oc +G)
T VT



Theorem 2 If f is convex and B- Lz'pschztz then after T steps of stochastic gradient descent
withn = e ‘/— we have, E[ 1" f(z)— f(z*)] < ﬁT +\/—, where 0% = max,[||V f(z)—

Vi(@)|[?] and R = a0 — 2*].

Proof. We will use the property of Lipschitz functions that f(y) < f(z) + Vf(z)(y — z) +
ng — y||?. We have

Flaesn) < f(@) + V@) @es — )+ 5z — @l
Also by convexity, f(z*) > f(z¢) + Vf(z¢)(z* — 2¢). From this we get that

f(oisr) = $a*) S VI @)@~ a) + V@) @ —20) + 5loss -zl

Writing this in terms of the noisy gradient:
* * = :3 e
f@er) = £(@*) < V(@) (@ —2*) =V F @) V(@) + -1V £

- * . 2 13_772 v
< V(@) (e —27) =0l V f(@)l]" + =V f(z)]

HV (@) = V(@) (@ — &%) = n(V (@) = V(@) V()

Note that we had the first three terms above when there was no noise. The last two terms
above are new in the noisy case. When you take the expectation, the new noisy case terms
are 0 and 702, respectively. Lets rewrite the above equation with this in mind. We get

* - * - /3 2 2
f@en) = £(@*) < V(@) (o —2*) =l VA @I + -V F (o)
1 1
2 - X2 _ %]]2

0% + 5o = 27| = ol = 2|
<~ Mlw— 2t — g9 s @I = TS @) + ZN f @) + no® + [z — 2|
- 27 2 2 2n

1

ol =21 = lleesa = 2] + o®

Since 2 > %ﬁ, then 7 < % and we get that

T-1 2
Bl 3 f(@) = f@)] < 5 o + o’
t=0

!
-

20R
\/T

1

Bl Y faen) — fat) < 205

t

Il
=}



Variance Reduction
23.2.1 Stochastic average gradient
e Maintain a table, containing gradient g; of f;, fori =1,....,n
o Initialize 2(®) and g(o) Vfi(x®), fori=1,..,n
o At steps k =1,2,3... pick random 3, € {1,...,n} and set:
9 =V fi (z*71)
while setting g(k) (k_l) for i # i.

e Update

2®) = gD Zgac)

SAG gradient estimates are no longer unbiased, but they have greatly reduced variance.

For the update step, at each iteration, it only requires an O(1) addition for the aggregate gradient from the
previous step to be modified to become the aggregate gradient for the current step:

(k) (k—1)

(k) _ .(k—1) _ 9. gzk (k-1)
x z ty - (n + - Z )

The above update can be seen as a moving average over a sliding window which is a constant time calculation.

Suppose for each f;, Vf; is Lipschitz with constant L. Write z(*) = %E;:Ol z® | then we have the below
theorem for convergence rate:

Theorem 23.1 cite: SAG, with a fized step size t = ﬁ, and initialization g = Vfi(z©®) = Vf(z®)
fori=1,...,n is such that:

E[/@®)] - 1* < ) — ) + e ® — o

This gives O(1/k) convergence rate which matches that for GD. The only difference is that the constant
factor for GD is O(L) where it is O(n + L) for SAG. Notice that the initialization g( ) centers the gradients
around zero by removing the average from every element of the gradient; in other words, the average of g(o)

is 0. Moreover, the first term in the above convergence bound depends on n; the authors of the work have
suggested mitigating this by warm starting with the result of n SGD steps.

Furthermore, under the even stronger assumption of strong convexity where each f; is strongly convex with
parameter m:

Theorem 23.2 cite: SAG, with a fized step size t = 16L, and initialization g = Vfi(z®) = V(@)
fori=1,...,n is such that:

E[®) -/ < (1 - min{ 1, S5 (C1EO) - 1)+ D41 — o)

16L’ 8n}

This gives O(y*) convergence rate and again matches that for GD. The convergence analysis proofs for SAG
is extremely complicated because of the biased estimator in SAG update rule.



23.2.2 SAGA
e Maintain a table, containing gradient g; of f;, fori =1,....,n
e Initialize z(®) and g(o) Vi), fori=1,...,n
o At steps k = 1,2,3... pick random i; € {1,...,n} and set:

g =V fi, (®V)

while setting gfk) = gfk_l) for i # ix.

e Update

K (k-1 ® k-1, L~ k-1
2 =gt —ty (g — g,V >0 Y)

Notice that the only difference between SAG and SAGA is the heavier weight on the updated gradient at
step k. We have:

k k-1 k-1
[gz(k) fk ) Z (k=1)
instead of

o® guc 1) o)
e Jig
[~ n E 9;

Interestingly, the SAGA gradient is unbiased. This is because

g =1 Z (k-1)

and
]E[gz(f)] E[Vfi, (z(k—l))] — % ; Vfi(.'t(k_l))

AdaGrad (Adam)

One popular adaptive step size method is called AdaGrad. Let g*) = V f;, (%)), for j = 1,...,p do:

g
m;_k) _ I;_Ic—l) a k; l
\V 21:1(.‘1; ))2

The advantage of the above update rule is that, we do not need to tune our learning rate anymore as «
is now a fixed hyperparameter. It is noted that in sparse problems, AdaGrad performs much better than
standard SGD. Several extensions of AdaGrad exists, viz., Adam, RMSProp etc.



