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Given a symmetric nonnegative matrix A, symmetric nonnegative matrix factorization (symNMF) is the problem of finding a
nonnegative matrix H , usually with much fewer columns than A, such that A ≈ HHT . SymNMF can be used for data analysis
and in particular for various clustering tasks. Unlike standard NMF, which is traditionally solved by a series of quadratic (convex)
subproblems, we propose to solve SymNMF by directly solving the non-convex problem, namely, minimize ‖A−HHT ‖2, which is
a fourth-order non-convex problem. In this paper, we propose simple and very efficient coordinate descent schemes, which solve a
series of fourth-order univariate subproblems exactly. We also derive convergence guarantees for our methods, and show that they
perform favorably compared to recent state-of-the-art methods on synthetic and real-world datasets, especially on large and sparse
input matrices.

Index Terms—symmetric nonnegative matrix factorization, coordinate descent, completely positive matrices.

I. INTRODUCTION

NONNEGATIVE matrix factorization (NMF) has become
a standard technique in data mining by providing low-

rank decompositions of nonnegative matrices: given a non-
negative matrix X ∈ Rm×n+ and an integer r < min(m,n),
the problem is to find W ∈ Rm×r+ and H ∈ Rn×r+ such
that X ≈ WHT . In many applications, the nonnegativity
constraints lead to a sparse and part-based representation, and
a better interpretability of the factors, e.g., when analyzing
images or documents [1].

In this paper, we work on a special case of NMF where the
input matrix is a symmetric matrix A. Usually, the matrix A
will be a similarity matrix where the (i, j)th entry is a measure
of the similarity between the ith and the jth data points. This
is a rather general framework, and the user can decide how
to generate the matrix A from his data set by selecting an
appropriate metric to compare two data points. As opposed to
NMF, we are interested in a symmetric approximation HHT

with the factor H being nonnegative–hence symNMF is an
NMF variant with W = H . If the data points are grouped
into clusters, each rank-one factor H(:, j)H(:, j)T will ideally
correspond to a cluster present in the data set. In fact, symNMF
has been used successfully in many different settings and was
proved to compete with standard clustering techniques such
as normalized cut, spectral clustering, k-means and spherical
k-means; see [2], [3], [4], [5], [6], [7], [8] and the references
therein.

SymNMF also has tight connections with completely pos-
itive matrices [9], [10], that is, matrices of the form A =
HHT , H ≥ 0, which play an important role in combinatorial
optimization [11]. Note that the smallest r such that such a
factorization exists is called the cp-rank of A. The focus of
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this paper is to provide efficient methods to compute good
symmetric and nonnegative low-rank approximations HHT

with H ≥ 0 of a given nonnegative symmetric matrix A.
Let us describe our problem more formally. Given a n-by-n

symmetric nonnegative matrix A and a factorization rank r,
symNMF looks for an n-by-r nonnegative matrix H such that
A ≈ HHT . The error between A and its approximation HHT

can be measured in different ways but we focus in this paper
on the Frobenius norm:

min
H≥0

F (H) ≡ 1

4

∥∥A−HHT
∥∥2

F
, (1)

which is arguably the most widely used in practice. Applying
standard non-linear optimization schemes to (1), one can only
hope to obtain stationary points, since the objective function
of (1) is highly non-convex, and the problem is NP-hard [12].
For example, two such methods to find approximate solutions
to (1) were proposed in [7]:

1) The first method is a Newton-like algorithm which
exploits some second-order information without the pro-
hibitive cost of the full Newton method. Each iteration of
the algorithm has a computational complexity of O(n3r)
operations.

2) The second algorithm is an adaptation of the alter-
nating nonnegative least squares (ANLS) method for
NMF [13], [14] where the term ||W −H||2F penalizing
the difference between the two factors in NMF is added
to the objective function. That same idea was used
in [15] where the author developed two methods to
solve this penalized problem but without any available
implementation or comparison.

In this paper, we analyze coordinate descent (CD) schemes
for (1). Our motivation is that the most efficient methods
for NMF are CD methods; see [16], [17], [18], [19] and
the references therein. The reason behind the success of
CD methods for NMF is twofold: (i) the updates can be
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written in closed-form and are very cheap to compute, and
(ii) the interaction between the variables is low because many
variables are expected to be equal to zero at a stationary
point [20].

The paper is organized as follows. In section II, we focus
on the rank-one problem and present the general framework
to implement an exact CD method for symNMF. The main
proposed algorithm is described in section III. Section IV
discusses initialization and convergence issues. Section V
presents extensive numerical experiments on synthetic and real
data sets, which shows that our CD methods perform compet-
itively with recent state-of-the-art techniques for symNMF.

II. EXACT COORDINATE DESCENT METHODS FOR
SYMNMF

Exact coordinate descent (CD) techniques are among the
most intuitive methods to solve optimization problems. At
each iteration, all variables are fixed but one, and that variable
is updated to its optimal value. The update of one variable at
a time is often computationally cheap and easy to implement.
However little interest was given to these methods until
recently when CD approaches were shown competitive for
certain classes of problems; see [21] for a recent survey. In
fact, more and more applications are using CD approaches,
especially in machine learning when dealing with large-scale
problems.

Let us derive the exact cyclic CD method for symNMF. The
approximation HHT of the input matrix A can be written as
the sum of r rank-one symmetric matrices:

A ≈
r∑

k=1

H:,kH
T
:,k, (2)

where H:,k is the kth column of H . If we assume that all
columns of H are known except for the jth, the problem comes
down to approximate a residual symmetric matrix R(j) with
a rank-one nonnegative symmetric matrix H:,jH

T
:,j :

min
H:,j≥0

∥∥∥R(j) −H:,jH
T
:,j

∥∥∥2

F
, (3)

where

R(j) = A−
r∑

k=1,k 6=j

H:,kH
T
:,k . (4)

For this reason and to simplify the presentation, we only con-
sider the rank-one subproblem in the following section II-A,
before presenting on the overall procedure in section II-B.

A. Rank-one Symmetric NMF

Given a n-by-n symmetric matrix P ∈ Rn×n, let us
consider the rank-one symNMF problem

min
h≥0

f(h) ≡ 1

4

∥∥P − hhT∥∥2

F
, (5)

where h ∈ Rn+. If all entries of P are nonnegative, the
problem can be solved for example with the truncated singular
value decomposition; this follows from the Perron-Frobenius

and Eckart-Young theorems. In our case, the residuals R(j)

will in general have negative entries–see (4)–which makes the
problem NP-hard in general [22]. The optimality conditions
for (5) are given by

h ≥ 0,∇f(h) ≥ 0, and hi∇f(h)i = 0 for all i, (6)

where ∇f(h)i the ith component of the gradient ∇f(h). For
any 1 ≤ i ≤ n, the exact CD method consists in alternatively
updating the variables in a cyclic way:

for i = 1, 2, . . . , n : hi ← h+
i ,

where h+
i is the optimal value of hi in (5) when all other

variables are fixed. Let us show how to compute h+
i . We have:

∇f(h)i = h3
i +

 n∑
l=1,l 6=i

h2
l − Pii


︸ ︷︷ ︸

ai

hi−
∑

l=1,l 6=i

hlPli︸ ︷︷ ︸
bi

, (7)

where

ai =

n∑
l=1,l 6=i

h2
l − Pii = ‖h‖2 − h2

i − Pii , and (8)

bi = −
∑

l=1,l 6=i

hlPli = hiPii − hTP:,i . (9)

If all the variables but hi are fixed, by the complementary
slackness condition (6), the optimal solution h+

i will be either
0 or a solution of the equation ∇f(h)i = 0, that is, a root of
x3 +aix+bi. Since the roots of a third-degree polynomial can
be computed in closed form, it suffices to first compute these
roots and then evaluate f(h) at these roots in order to identify
the optimal solution h+

i . The algorithm based on Cardano’s
method (see for example [23]) is described as Algorithm 1
and runs in O(1) time. Therefore, given that ai and bi are
known, h+

i can be computed in O(1) operations.
The only inputs of Algorithm 1 are the quantities (8) and (9).

However, the variables in (5) are not independent. When hi is
updated to h+

i , the partial derivative of the other variables, that
is, the entries of∇f(h), must be updated. For l ∈ {i+1, ..., n},
we update:

al ← al+(h+
i )2−h2

i and bl ← bl+Pli(h
+
i −hi). (10)

This means that updating one variable will cost O(n) op-
erations due to the necessary run over the coordinates of h
for updating the gradient. (Note that we could also simply
evaluate the ith entry of the gradient when updating hi, which
also requires O(n) operations; see section III.) Algorithm 2
describes one iteration of CD applied on problem (5). In other
words, if one wants to find a stationary point of problem (5),
Algorithm 2 should be called until convergence, and this
would correspond to applying a cyclic coordinate descent
method to (5). In lines 2-2, the quantities ai’s and bi’s are
precomputed. Because of the product hTP:,i needed for every
bi, it takes O(n2) time. Then, from line 2 to line 2, Algorithm
1 is called for every variable and is followed by the updates
described by (10). Finally, Algorithm 2 has a computational
cost of O(n2) operations. Note that we cannot expect a
lower computational cost since computing the gradient (and
in particular the product Ph) requires O(n2) operations.
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Algorithm 1: x = BestPolynomialRoot(a, b)
1: INPUT: a ∈ R, b ∈ R
2: OUTPUT: arg minx

x4

4 + ax2

2 + bx such that x ≥ 0.
3: ∆ = 4a3 + 27b2

4: d = 1
2

(
−b+

√
∆
27

)
5: if ∆ ≤ 0 then
6: r = 2 3

√
|d|

7: θ = phaseangle(d)
3

8: z∗ = 0, y∗ = 0
9: for k = 0 : 2 do

10: z = r cos
(
θ + 2kπ

3

)
11: if z ≥ 0 and z4

4 + a z
2

2 + bz < y∗ then
12: z∗ = z
13: y∗ = z4

4 + a z
2

2 + bz
14: end if
15: end for
16: x = z∗

17: else
18: z = 3

√
d+ 3

√
1
2

(
−b−

√
∆
27

)
19: if z ≥ 0 and z4

4 + a z
2

2 + bz < 0 then
20: x = z
21: else
22: x = 0
23: end if
24: end if

Algorithm 2: h = rankoneCDSymNMF (P, h0)
1: INPUT: P ∈ Rn×n, h0 ∈ Rn
2: OUTPUT: h ∈ Rn+
3: h = h0

4: for i = 1 : n do
5: ai = ‖h‖22 − h2

i − Pii
6: bi = hiPii − hTP:,i

7: end for
8: for i = 1 : n do
9: h+

i = BestPolynomialRoot(ai, bi)
10: for l > i do
11: al ← al + (h+

i )2 − h2
i

12: bl ← bl + Pli(h
+
i − hi)

13: end for
14: hi = h+

i

15: end for

B. First exact coordinate descent method for SymNMF

To tackle SymNMF (1), we apply Algorithm 2 on every
column of H successively, that is, we apply Algorithm 2 with
h = H(:, j) and P = R(j) for j = 1, . . . , r. The procedure
is simple to describe, see Algorithm 3 which implements the
exact cyclic CD method applied to SymNMF. One can easily
check that Algorithm 3 requires O(n2r) operations to update
the nr entries of H once:

• In step 3, the full residual matrix R = A − HHT is
precomputed where the product HHT requires O(rn2)
operations.

• In step 3, the residual matrix R(j) can be computed using
the fact that R(j) = R+H:,jH

T
:,j , which requires O(n2)

Algorithm 3: H = generalCDSymNMF (A,H0)
1: INPUT: A ∈ Rn×n, H0 ∈ Rn×r
2: OUTPUT: H ∈ Rn×r+

3: H = H0

4: R = A−HHT

5: while stopping criterion not satisfied do
6: for j = 1 : r do
7: R(j) ← R+H:,jH

T
:,j

8: H:,j ← rankoneCDSymNMF (R(j), H:,j)
9: R← R(j) −H:,jH

T
:,j

10: end for
11: end while

operations.
• In step 3, Algorithm 2 is called, and requires O(n2)

operations.
• In step 3, the full residual matrix R = R(j)−H:,jH

T
:,j is

updated, which requires O(n2) operations.
Algorithm 3 has some drawbacks. In particular, the heavy

computation of the residual matrix R is unpractical for large
sparse matrices (see below). In the next sections, we show
how to tackle these issues and propose a more efficient CD
method for symNMF, applicable to large sparse matrices.

III. IMPROVED IMPLEMENTATION OF ALGORITHM 3

The algorithm for symNMF developed in the previous
section (Algorithm 3) is unpractical when the input matrix
A is large and sparse; in the sense that although A can be
stored in memory, Algorithm 3 will run out of memory for n
large. In fact, the residual matrix R with n2 entries computed
in step 3 of Algorithm 3 is in general dense (for example if
the entries of H are initialized to some positive entries–see
section IV), even if A is sparse. Sparse matrices usually have
O(n) non-zero entries and, when n is large, it is unpractical to
store O(n2) entries (this is for example typical for document
data sets where n is of the order of millions).

In this section we re-implement Algorithm 3 in order to
avoid the explicit computation of the residual matrix R; see
Algorithm 4. While Algorithm 3 runs in O(rn2) operations
per iteration and requires O(n2) space in memory (whether
or not A is sparse), Algorithm 4 runs in O(rmax(K,nr))
operations per iteration and requires O(max(K,nr)) space in
memory, where K is the number of non-zero entries of A.
Hence,
• When A is dense, K = O(n2) and Algorithm 4 will

have the same asymptotic computational cost of O(rn2)
operations per iteration as Algorithm 3. However, it
performs better in practice because the exact number of
operations is smaller.

• When A is sparse, K = O(n) and Algorithm 4 runs
in O(r2n) operations per iteration, which is significantly
smaller than Algorithm 3 in O(rn2), so that it will
be applicable to very large sparse matrices. In fact, in
practice, n can be of the order of millions while r is
usually smaller than a hundred. This will be illustrated in
section V for some numerical experiments on text data
sets.
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In the following, we first assume that A is dense when
accounting for the computational cost of Algorithm 4. Then,
we show that the computational cost is significantly reduced
when A is sparse. Since we want to avoid the computation of
the residual (4), reducing the problem into rank-one subprob-
lems solved one after the other is not desirable. To evaluate
the gradient of the objective function in (1) for the (i, j)th
entry of H , we need to modify the expressions (8) and (9) by
substituting R(j) with A−

∑r
k=1,k 6=j H:,kH

T
:,k. We have

∇Hij
F (H) = ∇Hij

(
1

4
||A−HHT ||2F

)
= H3

ij+aijHij+bij ,

where

aij = ‖Hi,:‖2 + ‖H:,j‖2 − 2H2
ij −Aii, and (11)

bij = Hi,:(H
TH):,j −HT

:,jA:,i −H3
ij −Hijaij . (12)

The quantities aij and bij will no longer be updated during
the iterations as in Algorithm 3, but rather computed on the
fly before each entry of H is updated. The reason is twofold:
• it avoids storing two n-by-r matrices, and
• the updates of the bij’s, as done in (10), cannot be

performed in O(n) operations without the matrix R(j).
However, in order to minimize the computational cost, the
following quantities will be precomputed and updated during
the course of the iterations:
• ‖Hi,:‖2 for all i and ‖H:,j‖2 for all j: if the values of
‖Hi,:‖2 and ‖H:,j‖2 are available, aij can be computed
in O(1); see (11). Moreover, when Hij is updated to its
optimal value H+

ij , we only need to update ‖Hi,:‖2 and
‖H:,j‖2 which can also be done in O(1):

‖Hi,:‖2 ← ‖Hi,:‖2 + (H+
ij )

2 −H2
ij , (13)

‖H:,j‖2 ← ‖H:,j‖2 + (H+
ij )

2 −H2
ij . (14)

Therefore, pre-computing the ‖Hi,:‖2’s and ‖H:,j‖2’s,
which require O(rn) operations, allows us to compute
the aij’s in O(1).

• The r-by-r matrix HTH: by maintaining HTH , comput-
ing Hi,:(H

TH):,j requires O(r) operations. Moreover,
when the (i, j)th entry of H is updated to H+

ij , updating
HTH requires O(r) operations:

(HTH)jk ← (HTH)jk −Hik(H+
ij −Hij),

k = 1, ..., r. (15)

To compute bij , we also need to perform the product HT
:,jA:,i;

see (12). This requires O(n) operations, which cannot be
avoided and is the most expensive part of the algorithm.

In summary, by precomputing the quantities ‖Hi,:‖2,
‖H:,j‖2 and HTH , it is possible to apply one iteration of CD
over the nr variables in O(n2r) operations. The computational
cost is the same as in Algorithm 3, in the dense case, but no
residual matrix is computed; see Algorithm 4.

From line 4 to line 4, the precomputations are performed in
O(nr2) time where computing HTH is the most expensive
part. Then the two loops iterate over all the entries to update
each variable once. Computing bij (in line 4) is the bottleneck

Algorithm 4: H = cyclicCDSymNMF (A,H0)
1: INPUT: A ∈ Rn×n, H0 ∈ Rn×r
2: OUTPUT: H ∈ Rn×r
3: H = H0

4: for j = 1 : r do
5: Cj = ‖H:,j‖2
6: end for
7: for i = 1 : n do
8: Li = ‖Hi,:‖2
9: end for

10: D = HTH
11: while stopping criterion not satisfied do
12: for j = 1 : r do
13: for i = 1 : n do
14: aij ← Cj + Li − 2H2

ij −Aii
15: bij ← HT

i,:(D)j,: −HT
:,jA:,i −H3

ij −Hijaij
16: H+

ij ← BestPolynomialRoot(aij , bij)

17: Cj ← Cj + (H+
ij )

2 −H2
ij

18: Li ← Li + (H+
ij )

2 −H2
ij

19: Dj,: ← Dj,: −Hi,:(H
+
ij −Hij)

20: D:,j ← Dj,:

21: end for
22: end for
23: end while

of the CD scheme as it is the only part in the two loops which
requires O(n) time. However, when the matrix A is sparse, the
cost of computing HT

:,jA:,i for all i, that is computing HT
:,jA,

drops to O(K) where K is the number of nonzero entries
in A. Taking into account the term Hi,:(H

TH)j,: to compute
bij that requires O(r) operations, we have that Algorithm 4
requires O(rmax(K,nr)) operations per iteration.

IV. INITIALIZATION AND CONVERGENCE

In this section, we discuss initialization and convergence
of Algorithm 4. We also provide a small modification for
Algorithm 4 to perform better (especially when random ini-
tialization is used).

a) Initialization: In most previous works, the matrix H
is initialized randomly, using the uniform distribution in the
interval [0,1] for each entry of H [7]. Note that, in practice,
to obtain an unbiased initial point, the matrix H should be
multiplied by a constant β∗ such that

β∗ = arg min
β≥0
||A− (βH0)(βH0)T ||F

=

√
〈A,H0HT

0 〉
〈H0HT

0 , H0HT
0 〉

=

√
〈AH0, H0〉
||HT

0 H0||2F
. (16)

This allows the initial approximation H0H
T
0 to be well scaled

compared to A. When using such an initialization, we observed
that using random shuffling of the columns of H before each
iteration (that is, optimizing the columns of H in a different
order each time we run Algorithm 4) performs in general much
better; see section V.

Remark 1 (Other heuristics to accelerate coordinate descent
methods). During the course of our research, we have tried
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several heuristics to accelerate Algorithm 4, including three
of the most popular strategies:

• Gauss-Southwell strategies. We have updated the vari-
ables by ordering them according to some criterion
(namely, the decrease of the objective function, and the
magnitude of the corresponding entry of the gradient).

• Variable selection. Instead of optimizing all variables at
each step, we carefully selected a subset of the variables
to optimize at each iteration (again using a criterion
based on the decrease of the objective function or the
magnitude of the corresponding entry of the gradient).

• Random shuffling. We have shuffled randomly the order
in which the variables are updated in each column. This
strategy was shown to be superior in several context,
although a theoretical understanding of this phenomenon
remains elusive [21].

However, these heuristics (and combinations of them) would
not improve significantly the effectiveness of Algorithm 4 hence
we do not present them here.

Random initialization might not seem very reasonable,
especially for our CD scheme. In fact, at the first step of
our CD method, the optimal values of the entries of the first
column H:,1 of H are computed sequentially, trying to solve

min
H:,1≥0

||R(1)−H:,1H
T
:,1||2F with R(1) = A−

r∑
k=2

H:,kH
T
:,k.

Hence we are trying to approximate a matrix R(1) which is
the difference between A and a randomly generated matrix∑r
k=2H:,kH

T
:,k: this does not really make sense. In fact, we

are trying to approximate a matrix which is highly perturbed
with a randomly generated matrix.

It would arguably make more sense to initialize H at zero,
so that, when optimizing over the entries of H:,1 at the first
step, we only try to approximate the matrix A itself. It turns
out that this simple strategy allows to obtain a faster initial
convergence than the random initialization strategy. However,
we observe the following: this solution tends to have a very
particular structure where the first factor is dense and the
next ones are sparser. The explanation is that the first factor
is given more importance since it is optimized first hence
it will be close to the best rank-one approximation of A,
which is in general positive (if A is irreducible, by Perron-
Frobenius and Eckart-Young theorems). Hence initializing H
at zero tends to produce unbalanced factors. However, this
might be desirable in some cases as the next factors are in
general significantly sparser than with random initialization.
To illustrate this, let us perform the following numerical
experiment: we use the CBCL face data set (see section V)
that contains 2429 facial images, 19 by 19 pixels each. Let
us construct the nonnegative matrix X ∈ R361×2429 where
each column is a vectorized image. Then, we construct the
matrix A = XXT ∈ R361×361 that contains the similarities
between the pixel intensities among the facial images. Hence
symNMF of A will provide us with a matrix H where each
column of H corresponds to a ‘cluster’ of pixels sharing some
similarities. Figure 1 shows the columns of H obtained (after

reshaping them as images) with zero initialization (left) and
random initialization (right) with r = 49 as in [1]. We observe
that the solutions are very different, although the relative
approximation error ||A−HHT ||F /||A||F are similar (6.2%
for zero initialization vs. 7.5% for random initialization, after
2000 iterations). Depending on the application at hand, one of
the two solutions might be more desirable: for example, for
the CBCL data set, it seems that the solution obtained with
zero initialization is more easily interpretable as facial features,
while with the random initialization it can be interpreted as
average/mean faces.

This example also illustrates the sensitivity of Algorithm 4
to initialization: different initializations can lead to very differ-
ent solutions. This is an unavoidable feature for any algorithm
trying to find a good solution to an NP-hard problem at a
relatively low computational cost.

Finally, we would like to point out that the ability to
initialize our algorithm at zero is a very nice feature. In
fact, since H = 0 is a (first-order) stationary point of (1),
this shows that our coordinate descent method can escape
some first-order stationary points, because it uses higher-order
information. For example, any gradient-based method cannot
be initialized at zero (the gradient is 0), also the ANLS-based
algorithm from [7] cannot escape from zero.

b) Convergence: By construction, the objective function
is nonincreasing under the updates of Algorithm 4 while it is
bounded from below. Moreover, since our initial estimate H0

is initially scaled (16), we have ||A−H0H
T
0 ||F ≤ ||A||F and

therefore any iterate H of Algorithm 4 satisfies

||HHT ||F−||A||F ≤ ||A−HHT ||F ≤ ||A−H0H
T
0 ||F ≤ ||A||F .

Since H ≥ 0, we have for all k

||H:kH
T
:k||F ≤ ||

r∑
k=1

H:kH
T
:k||F = ||HHT ||F ,

which implies that ||H:k||2 ≤
√

2||A||F for all k hence all
iterates of Algorithm 4 belong in a compact set. Therefore,
Algorithm 4 generates a converging subsequence (Bolzano-
Weierstrass theorem). (Note that, even if the initial iterate
is not scaled, all iterates belong to a compact set, replacing
2||A||F by ||A||F + ||A−H0H

T
0 ||F .)

Unfortunately, in its current form, it is difficult to prove
convergence of our algorithm to a stationary point. In fact,
to guarantee the convergence of an exact cyclic coordinate
method to a stationary point, three sufficient conditions are
(i) the objective function is continuously differentiable over
the feasible set, (ii) the sets over which the blocks of variables
are updated are compact as well as convex1, and (iii) the
minimum computed at each iteration for a given block of
variables is uniquely attained ; see Prop. 2.7.1 in [25], [24].
Conditions (i-ii) are met for Algorithm 4. Unfortunately, it
is not necessarily the case that the minimizer of a fourth
order polynomial is unique. (Note however that for a randomly
generated polynomial, this happens with probability 0. We

1An alternative assumption to the condition (ii) under which the same result
holds is when the function is monotonically nonincreasing in the interval from
one iterate to the next [24].
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Fig. 1. Comparison of the basis elements obtained with symNMF on the CBCL data set (r = 49) with (left) zero initialization and (right) random initialization.

have observed numerically that this in fact never happens
in our numerical experiments, although there are counter
examples.)

A possible way to obtain convergence is to apply the
maximum block improvement (MBI) method, that is, at each
iteration, only update the variable that leads to the largest
decrease of the objective function [26]. Although this is theo-
retically appealing, this makes the algorithm computationally
much more expensive hence much slower in practice. (A
possible fix is to use MBI not for every iteration, but every
T th iteration for some fixed T .)

Although the solution of symNMF might not be unique
and stationary points might not be isolated, we have always
observed in our numerical experiments that the sequence of
iterates generated by Algorithm 4 converged to a unique limit
point. In that case, we can prove that this limit point is a
stationary point.

Proposition 1. Let (H(0), H(1), . . . ) be a sequence of iterates
generated by Algorithm 4. If that sequence converges to a
unique accumulation point, it is a stationary point of sym-
NMF (1).

Proof. This proof follows similar arguments as the proof of
convergence of exact cyclic CD for NMF [19]. Let H̄ be the
accumulation point of the sequence (H(0), H(1), . . . ), that is,

lim
k→∞

H(k) = H̄.

Note that, by construction,

F (H(1)) ≥ F (H(2)) ≥ · · · ≥ F (H̄).

Note also that we consider that only one variable has been
updated between H(k+1) and H(k).

Assume H̄ is not a stationary point of (1): therefore, there
exists (i, j) such that
• H̄i,j = 0 and ∇F (H̄)i,j < 0, or
• H̄i,j > 0 and ∇F (H̄)i,j 6= 0.

In both cases, since F is smooth, there exists p 6= 0 such that

F (H̄ + pEij) = F (H̄)− ε < F (H̄),

for some ε > 0, where Eij is the matrix of all zeros except at
the (i, j)th entry where it is equal to one and H̄ + pEij ≥ 0.

Let us define (H(n0), H(n1), . . . ) a subsequence of
(H(0), H(1), . . . ) as follows: H(nk) is the iterate for which
the (i, j)th entry is updated to obtain H(nk+1). Since Algo-
rithm 4 updates the entries of H column by column, we have
nk = (j − 1)n+ i− 1 + nrk for k = 0, 1, . . . .

By continuity of F and the convergence of the sequence
H(nk), there exists K sufficiently large so that for all k > K:

F (H(nk) + pEij) ≤ F (H̄)− ε

2
. (17)

In fact, the continuity of F implies that for all ξ > 0, there
exists δ > 0 sufficiently small such that ||H̄−H(nk)||2 < δ ⇒
|F (H̄)− F (H(nk))| < ξ. It suffices to choose nk sufficiently
large so that δ is sufficiently small (since H(nk) converges to
H̄) for the value ξ = ε/2.

Let us flip the sign of (17) and add F (H(nk)) on both sides
to obtain

F (H(nk))− F (H(nk) + pEij) ≥ F (H(nk))− F (H̄) +
ε

2
.

By construction of the subsequence, the (i, j)th entry of H(nk)

is updated first (the other entries are updated afterward) to
obtain H(nk+1) which implies that

F (H(nk+1)) ≤ F (H(nk+1)) ≤ F (H(nk) + pEij)

hence

F (H(nk))− F (H(nk+1)) ≥ F (H(nk))− F (H(nk) + pEij)

≥ F (H(nk))− F (H̄) +
ε

2

≥ ε

2
,

since F (H̄) ≤ F (H(nk)). We therefore have that for all k >
K,

F (H(nk+1)) ≤ F (H(nk))−
ε

2
,

a contradiction since F is bounded below.

Note that Proposition 1 is useful in practice since it can
easily be checked whether Algorithm 4 converges to a unique
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accumulation point, plotting for example the norm between
the different iterates.

V. NUMERICAL RESULTS

This section shows the effectiveness of Algorithm 4 on
several data sets compared to the state-of-the-art techniques.
It is organized as follows. In section V-A, we describe the real
data sets and, in section V-B, the tested symNMF algorithms.
In section V-C, we describe the settings we use to compare the
symNMF algorithms. In section V-D, we provide and discuss
the experimental results.

A. Data sets

We will use exactly the same data sets as in [18]. Because of
space limitation, we only give the results for one value of the
factorization rank r, more numerical experiments are available
on the arXiv version of this paper [27]. In [18], authors use
four dense data sets and six sparse data sets to compare
several NMF algorithms. In this section, we use these data
sets to generate similarity matrices A on which we compare
the different symNMF algorithms. Given a nonnegative data
set X ∈ Rm×n+ , we construct the symmetric similarity matrix
A = XTX ∈ Rn×n+ , so that the entries of A are equal to
the inner products between data points. Table I summarizes
the dense data sets, corresponding to widely used facial
images in the data mining community. Table II summarizes the
characteristics of the different sparse data sets, corresponding
to document datasets and described in details in [28].

TABLE I
IMAGE DATASETS.

Data # pixels m n

ORL1 112× 92 10304 400
Umist2 112× 92 10304 575
CBCL3 19× 19 361 2429
Frey2 28× 20 560 1965

1 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
2 http://www.cs.toronto.edu/∼roweis/data.html
3 http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html

TABLE II
TEXT MINING DATA SETS (SPARSITY IS GIVEN AS THE PERCENTAGE OF

ZEROS).

Data m n #nonzero sparsity X sparsity XTX

classic 7094 41681 223839 99.92 99.50
sports 8580 14870 1091723 99.14 84.51

reviews 4069 18483 758635 98.99 84.24
hitech 2301 10080 331373 98.57 80.32
ohscal 11162 11465 674365 99.47 91.58

la1 3204 31472 484024 99.52 95.72

B. Tested symNMF algorithms

We compare the following algorithms
1) (Newton) This is the Newton-like method from [7].

2) (ANLS) This is the method based on the ANLS method
for NMF adding the penalty ||W−H||2F in the objective
function (see Introduction) from [7]. Note that ANLS
has the drawback to depend on a parameter that is
nontrivial to tune, namely, the penalty parameter for the
term ||W −H||2F in the objective function (we used the
default tuning strategy recommended by the authors).

3) (tSVD) This method, recently introduced in [29], first
computes the rank-r truncated SVD of A ≈ Ar =
UrΣrU

T
r where Ur contains the first r singular vectors

of A and Σr is the r-by-r diagonal matrix containing the
first r singular values of A on its diagonal. Then, instead
of solving (1), the authors solve a ‘closeby’ optimization
problem replacing A with Ar

min
H≥0
||Ar −HHT ||F .

Once the truncated SVD is computed, each iteration of
this method is extremely cheap as the main computa-
tional cost is in a matrix-matrix product BrQ, where
Br = UrΣ

1/2
r and Q is an r-by-r rotation matrix, which

can be computed in O(nr2) operations. Note also that
they use the initialization H0 = max(0, Br) –we flipped
the signs of the columns of Ur to maximize the `2 norm
of the nonnegative part [30].

4) (BetaSNMF) This algorithm is presented in [31, Algo-
rithm 4], and is based on multiplicative updates (simi-
larly as for the original NMF algorithm proposed by Lee
and Seung [32]). Note that we have also implemented
the multiplicative update rules from [33] (and already
derived in [3]). However, we do not report the numerical
results here because it was outperformed by BetaSNMF
in all our numerical experiments, an observation already
made in [31].

5) (CD-X-Y) This is Algorithm 4. X is either ‘Cyclic’
or ‘Shuffle’ and indicates whether the columns of H
are optimized in a cyclic way or if they are shuffled
randomly before each iteration. Y is for the initialization:
Y is ‘rand’ for random initialization and is ‘0’ for zero
initialization; see section IV for more details. Hence, we
will compare four variants of Algorithm 4: CD-Cyclic-0,
CD-Shuffle-0, CD-Cyclic-Rand and CD-Shuffle-Rand.
Because Algorithm 4 requires to perform many loops
(nr at each step), Matlab is not a well-suited language.
Therefore, we have developed a C implementation, that
can be called from Matlab (using Mex files). Note that
the algorithms above are better suited for Matlab since
the main computational cost resides in matrix-matrix
products, and in solving linear systems of equations (for
ANLS and Newton).

Newton and ANLS are both available from http://math.
ucla.edu/∼dakuang/, while we have implemented tSVD and
BetaSNMF ourselves.

For all algorithms using random initializations for the matrix
H , we used the same initial matrices. Note however that, in all
the figures presented in this section, we will display the error
after the first iteration, which is the reason why the curves do
not start at the same value.
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C. Experimental setup

In order to compare for the average performance of the dif-
ferent algorithms, we denote emin the smallest error obtained
by all algorithms over all initializations, and define

E(t) =
e(t)− emin

||A||F − emin
, (18)

where e(t) is the error ||A−HHT ||F achieved by an algorithm
for a given initialization within t seconds (and hence e(0) =
||A−H0H

T
0 ||F where H0 is the initialization). The quantity

E(t) is therefore a normalized measure of the evolution of the
objective function of a given algorithm on a given data set.

The advantage of this measure is that it separates better
the different algorithms, when using a log scale, since it goes
to zero for the best algorithm (except for algorithms that
are initialized randomly as we will report the average value
of E(t) over several random initializations; see below). We
would like to stress out that the measure E(t) from (18) has
to be interpreted with care. In fact, an algorithm for which
E(t) converges to zero simply means that it is the algorithm
able to find the best solution among all algorithms (in other
words, to identify a region with a better local minima). In fact,
the different algorithms are initialized with different initial
points: in particular, tSVD uses an SVD-based initialization.
It does not necessarily mean that it converges the fastest: to
compare (initial) convergence, one has to look at the values
E(t) for t small. However, the measure E(t) allows to better
visualize the different algorithms. For example, displaying the
relative error ||A−HHT ||/||A||F allows to compare the initial
convergence, but then the errors for all algorithms tend to
converge at similar values and it is difficult to identify visually
which one converges to the best solution.

For the algorithms using random initialization (namely,
Newton, ANLS, CD-Cyclic-Rand and CD-Shuffle-Rand), we
will run the algorithms 10 times and report the average value
of E(t). For all data sets, we will run each algorithm for 100
seconds, or for longer to allow the CD-based approaches to
perform at least 100 iterations.

All tests are performed using Matlab on a PC Intel
CORE i5-4570 CPU @3.2GHz × 4, with 7.7G RAM. The
codes are available online from https://sites.google.com/site/
nicolasgillis/.

Remark 2 (Computation of the error). Note that to compute
||A − HHT ||F , one should not compute HHT explicitly
(especially if A is sparse) and use instead

||A−HHT ||2F = ||A||2F − 2〈A,HHT 〉+ ||HHT ||2F
= ||A||2F − 2〈AH,H〉+ ||HTH||2F .

D. Comparison

We now compare the different symNMF algorithms listed
in section V-B according to the measure given in (18) on the
data sets described in section V-B, and on synthetic data sets.

1) Real data sets
We start with the real data sets.

a) Dense image data sets: Figure 2 displays the results
for the dense real data sets. Table III gives the number of
iterations performed by each algorithm within the 500 seconds,
and Table IV the final relative error ||A − HHT ||/||A||F in
percent.

We observe the following:

• In all cases, tSVD performs best and is able to generate
the solution with the smallest objective function value
among all algorithms. This might be a bit surprising
since it works only with an approximation of the original
data: it appears that for these real dense data sets, this
approximation can be computed efficiently and allows
tSVD to converge extremely fast to a very good solution.
One of the reasons tSVD is so effective is because each
iteration is n times cheaper (once the truncated SVD is
computed) hence it can perform many more iterations;
see Table III. Another crucial reason is that image data
sets can be very well approximated by low-rank matrices
(see section V-D2 for a confirmation of this behavior).
Therefore, for images, tSVD is the best method to use as
it provides a very good solution extremely fast.

• When it comes to initial convergence, CD-Cyclic-0 and
CD-Shuffle-0 perform best: they are able to generate very
fast a good solution. In all cases, they are the fastest
to generate a solution at a relative error of 1% of the
final solution of tSVD. Moreover, the fact that tSVD does
not generate any solution as long as the truncated SVD
is not computed could be critical for larger data sets.
For example, for CBCL with n = 2429 and r = 60,
the truncated SVD takes about 6 seconds to compute
while, in the mean time, CD-Cyclic-0 and CD-Shuffle-
0 generate a solution with relative error of 0.3% from
the final solution obtained by tSVD after 500 seconds.

• For these data sets, CD-Cyclic-0 and CD-Shuffle-0 per-
form exactly the same: for the zero initialization, it seems
that shuffling the columns of H does not play a crucial
role.

• When initialized randomly, we observe that the CD
method performs significantly better with random shuf-
fling. Moreover, CD-Shuffle-Rand converges initially
slower than CD-Shuffle-0 but is often able to converge to
a better solution; in particular for the ORL and Umistim
data sets.

• Newton converges slowly, the main reason being that each
iteration is very costly, namely O(n3r) operations.

• ANLS performs relatively well: it never converges ini-
tially faster than CD-based approaches but is able to
generate a better final solution for the Frey data set.

• BetaSNMF does not perform well on these data sets
compared to tSVD and CD methods, although performing
better than Newton and 2 out of 4 times better than
ANLS.

• For algorithms based on random initializations, the stan-
dard deviation between several runs is rather small, illus-
trating the fact that these algorithms converge to solutions
with similar final errors.

Conclusion: for image data sets, tSVD performs the best.
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TABLE III
AVERAGE NUMBER OF ITERATIONS PERFORMED BY EACH ALGORITHM WITHIN 500 SECONDS FOR THE DENSE REAL DATA SETS.

r = 60 ANLS Newton tSVD BetaSNMF CD-Cyc.-0 CD-Shuf.-0 CD-Cyc.-Rand CD-Shuf.-Rand
ORL 56995 14377 204960 234400 17738 15741 16235 16062
Umist 33555 8993 225968 132830 9193 8756 8951 8955
CBCL 3965 21 93252 10254 726 722 775 784
Frey 5692 456 173030 15465 1303 1290 1213 1216

TABLE IV
AVERAGE RELATIVE ERROR IN PERCENT (100 ∗ ||A−HHT ||F /||A||F ) OF THE FINAL SOLUTION OBTAINED BY EACH ALGORITHM WITHIN 500

SECONDS FOR THE DENSE REAL DATA SETS. FOR ALGORITHMS BASED ON RANDOM INITIALIZATIONS, THE STANDARD DEVIATION IS GIVEN.

r = 60 ANLS Newton tSVD BetaSNMF CD-Cyc.-0 CD-Shuf.-0 CD-Cyc.-Rand CD-Shuf.-Rand
ORL 0.144 ± 4e-4 0.168 0.14 0.141 ± 4e-5 0.141 0.141 0.143 ± 4e-4 0.14 ± 4e-6
Umist 0.165 ± 6e-3 0.098 0.04 0.041 ± 8e-5 0.041 0.041 0.045 ± 3e-4 0.041 ± 3e-5
CBCL 0.059 ± 4e-4 4.34 0.046 0.138 ± 1e-3 0.097 0.102 0.112 ± 7e-3 0.051 ± 6e-4
Frey 0.057 ± 6e-5 0.66 0.056 0.103 ± 5e-4 0.067 0.069 0.148 ± 2e-3 0.058 ± 2e-4

However, CD-Cyclic-0 allows a very fast initial convergence
and can be used to obtain very quickly a good solution.

b) Sparse document data sets: Figure 3 displays the re-
sults for the real sparse data sets. Table V gives the number of
iterations performed by each algorithm within the 500 seconds,
and Table VI the final relative error ||A − HHT ||/||A||F in
percent.

It is interesting to note that, for some data sets (namely,
la1 and reviews), computing the truncated SVD of A is not
possible with Matlab within 60 seconds hence tSVD is not
able to return any solution before that time; see Remark 3 for
a discussion. Moreover, Newton is not displayed because it is
not designed for sparse matrices and runs out of memory [7].

We observe the following:

• tSVD performs very poorly. The reason is twofold:
(1) the truncated SVD is very expensive to compute and
(2) sparse matrices are usually not close to being low-
rank hence tSVD converges to a very poor solution (see
section V-D2 for a confirmation of this behavior).

• ANLS performs very poorly and is not able to generate
a good solution. In fact, it has difficulties to decrease the
objective function (on the figures, it seems it does not
decrease, but it actually decreases very slowly).

• BetaSNMF performs better than ANLS but does not
compete with CD methods. (Note that, for the classic
and la1 data sets, BetaSNMF was stopped prematurely
because there was a division by zero which could have
been avoided but we have strictly used the description of
Algorithm 4 in [31]).

• All CD-based approaches are very effective and perform
similarly. It seems that, in these cases, nor the initializa-
tion nor the order in which the columns of H are updated
plays a significant role.
In fact, for algorithms initialized randomly, Figure 3
reports the average over 10 runs but, on average, random
initialization performs similarly as the initialization with
zero.
In one case (classic data set), CD-Cyclic-0 is able to
generate a better final solution.

Conclusion: for sparse document data sets, CD-based ap-

proaches outperform significantly the other tested methods.

Remark 3 (SVD computation in tSVD). It has to be noted
that, in our numerical experiments, the matrix A is constructed
using the formula A = XTX , where the columns of the matrix
X are the data points. In other words, we use the simple
similarity measure yT z between two data points y and z. In
that case, the SVD of A can be obtained from the SVD of
X , hence can be made (i) more efficient (when X has more
columns than rows, that is, m� n), and (ii) numerically more
accurate (because the condition number of XTX is equal to
the square of that of X); see, e.g., [34, Lecture 31]. Moreover,
in case of sparse data, this avoids the fill-in, as observed in
Table II where XTX is denser than X . Therefore, in this
particular situation when A = XTX and X is sparse and/or
m � n, it is much better to compute the SVD of A based
on the SVD of X . Table VII gives the computational time in
both cases. In this particular scenario, it would make sense

TABLE VII
COMPUTATIONAL TIME REQUIRED TO COMPUTE THE RANK-30

TRUNCATED SVD OF X AND XTX USING MATLAB.

svds(.,30) classic hitech la1 ohscal reviews sports
X’*X 17.14 18.54 63.33 15 67.32 31.77
X 5.55 0.82 3.08 2.87 1.39 2.98

to use tSVD as an initialization procedure for CD methods
to obtain rapidly a good initial iterate. However, looking at
Figure 3 and Table VI indicates that this would not necessarily
be advantageous for the CD-based methods in all cases. For
example, for the classic data set, tSVD would achieve a relative
error of 39.8% within about 6 seconds while CD methods
obtain a similar relative error within that computing time. For
the hitech data set however, this would be rather helpful since
tSVD would only take about 1 second to obtain a relative error
of 33.3% while CD methods require about 9 seconds to do so.

However, the goal of this paper is to provide an efficient
algorithm for the general symNMF problem, without assuming
any particular structure on the matrix A (in practice the
similarity measure between data points is usually not simply
their inner product). . Therefore, we have not assumed that
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Fig. 2. Evolution of the measure (18) of the different symNMF algorithms on the dense real data sets for r = 60.

TABLE V
AVERAGE NUMBER OF ITERATIONS PERFORMED BY EACH ALGORITHM WITHIN 500 SECONDS FOR THE SPARSE REAL DATA SETS.

r = 30 ANLS tSVD BetaSNMF CD-Cyc.-0 CD-Shuf.-0 CD-Cyc.-Rand CD-Shuf.-Rand
classic 550 21345 163 389 390 386 386
sports 254 57358 540 170 171 163 163

reviews 162 41519 353 114 114 114 114
hitech 458 81975 898 281 282 284 284
ohscal 680 75935 1462 495 494 494 494

la1 154 24667 163 126 126 127 127

the matrix A had this particular structure and only provide
numerical comparison in that case.

Remark 4 (Low-rank models for full-rank matrices). Al-
though sparse data sets are usually not low rank, it still
makes sense to try to find a low-rank structure that is close
to a given data set, as this often allows to extract some
pertinent information. In particular, in document classification
and clustering, low-rank models have proven to be extremely
useful; see the discussion in the Introduction and the refer-
ences therein. Another important application where low-rank
models have proven extremely useful although the data sets
are usually not low-rank is recommender systems [35] and

community detection (see, e.g., [36]). We also refer the reader
to the recent survey on low-rank models [37].

2) Synthetic data sets: low-rank vs. full rank matrices
In this section, we perform some numerical experiments

on synthetic data sets. Our main motivation is to confirm the
(expected) behavior observed on real data: tSVD performs
extremely well for low-rank matrices and poorly on full-rank
matrices.

a) Low-rank input matrices: The most natural way to
generate nonnegative symmetric matrices of given cp-rank is
to generate H∗ randomly and then compute A = H∗H

T
∗ . In

this section, we use the Matlab function H∗ = rand(n, r)
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Fig. 3. Evolution of the measure (18) of the different symNMF algorithms on real sparse data sets for r = 30.



12

TABLE VI
AVERAGE RELATIVE ERROR IN PERCENT (100 ∗ ||A−HHT ||F /||A||F ) OF THE FINAL SOLUTION OBTAINED BY EACH ALGORITHM WITHIN 500

SECONDS FOR THE SPARSE REAL DATA SETS. FOR ALGORITHMS BASED ON RANDOM INITIALIZATIONS, THE STANDARD DEVIATION IS GIVEN.

r = 30 ANLS tSVD BetaSNMF CD-Cyc.-0 CD-Shuf.-0 CD-Cyc.-Rand CD-Shuf.-Rand
classic 99.9 ± 6e-4 39.8 38 ± 0.14 37.3 37.4 37.4 ± 0.03 37.4 ± 0.04
sports 99.9 ± 1e-3 19.2 17.3 ± 0.11 16.9 16.9 16.9 ± 0.04 16.9 ± 0.04

reviews 99.9 ± 1e-3 17.1 16.5 ± 0.16 15.5 15.7 15.5 ± 0.05 15.5 ± 0.03
hitech 99.5 ± 3e-3 33.3 30.3 ± 0.1 30 30 30.1 ± 0.03 30.1 ± 0.03
ohscal 99.95 ± 6e-4 22.2 20.9 ± 0.06 20.7 20.8 20.7 ± 0.04 20.7 ± 0.03

la1 99.9 ± 8e-4 34 31.9 ± 0.2 31.2 31.1 31.2 ± 0.07 31.2 ± 0.05
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Fig. 4. Evolution of the measure (18) of the different symNMF algorithms on dense and low-rank synthetic data sets for r = 30 (left) and r = 60 (right).

with n = 500 and r = 30, 60, that is, each entry of H∗
is generated uniformly at random in the interval [0,1]. We
have generated 10 such matrices for each rank, and Figure 4
displays the average value for the measure (18) but we use
here emin = 0 since it is the known optimal value.

We observe that, in all cases, tSVD outperforms all methods.
Moreover, it seems that the SVD-based initialization is very
effective. The reason is that A has exactly rank r and hence
its best rank-r approximation is exact. Moreover, tSVD only
works in the correct subspace in which H∗ belongs hence
converges much faster than the other methods.

Except for Newton, the other algorithms perform similarly.
It is worth noting that the same behavior we observed for
real dense data sets is present here: CD-Shuffle-Rand performs
better than CD-Cyclic-Rand, while shuffling the columns of H
before each iteration does not play a crucial role with the zero
initialization.

b) Full-rank input matrices: A simple way to generate
nonnegative symmetric matrices of full rank is to generate
a matrix B randomly and then compute A = B + BT . In
this section, we use the Matlab function B = rand(n) with
n = 500. We have generated 10 such matrices for each rank,
and Figure 5 displays the average value for the measure E(t)
from (18). Figure 5 displays the results.

We observe that, in all cases, tSVD performs extremely
poorly while all other methods (except for Newton and Be-
taSNMF) perform similarly. The reason is that tSVD works
only with the best rank-r approximation of A, which is poor

when A has full rank.
3) Summary of results

Clearly, tSVD and CD-based approaches are the most
effective, although ANLS sometimes performs competitively
for the dense data sets. However, tSVD performs extremely
well only when the input matrix is low rank (cf. low-rank
synthetic data sets) or close to being low rank (cf. image data
sets). There are three cases when it performs very poorly:

• It cannot perform a symNMF when the factorization rank
r is larger than the rank of A, that is, when r > rank(A),
which may be necessary for matrices with high cp-
rank (in fact, the cp-rank can be much higher than the
rank [9]).

• If the truncated SVD is a poor approximation of A,
the algorithm will perform poorly since it does not use
any other information; see the results for the full rank
synthetic data sets and the sparse real data sets.

• The algorithm returns no solution as long as the SVD is
not computed. In some cases, the cost of computing the
truncated SVD is high and tSVD could terminate before
any solution to symNMF is produced; see the sparse real
data sets.

To conclude, CD-based approaches are overall the most
reliable and most effective methods to solve symNMF (1).
For dense data sets, initialization at zero allows a faster initial
convergence, while CD-Shuffle-Rand generates in average the
best solution and CD-Cyclic-Rand does not perform well and
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Fig. 5. Evolution of the measure (18) of the different symNMF algorithms on dense full-rank synthetic data sets for r = 30 (left) and r = 60 (right).

is not recommended. For sparse data sets, all CD variants
perform similarly and outperform the other tested algorithms.

VI. CONCLUSION AND FURTHER RESEARCH

In this paper, we have proposed very efficient exact co-
ordinate descent methods for symNMF (1) that performs
competitively with state-of-the-art methods.

Some interesting directions for further research are the
following:
• The study of sparse symNMF, where one is looking for

a sparser matrix H . A natural model would for example
use the sparsity-inducing `1 norm and try to solve

min
H≥0

1

4
||A−HHT ||2F +

r∑
j=1

Λj ||H:,j ||1 , (19)

for some penalty parameter Λ ∈ Rr+. Algorithm 4 can
be easily adapted to handle (19), by replacing the bij’s
with bij + Λj . In fact, the derivative of the penalty term
only influences the constant part in the gradient; see (12).
However, it seems the solutions of (19) are very sensitive
to the parameter Λ which are therefore difficult to tune.
Note that another way to identify sparser factors is simply
to increase the factorization rank r, or to sparsify the input
matrix A (only keeping the important edges in the graph
induced by A; see [38] and the references therein) –in
fact, a sparser matrix A induces sparser factors since

Aij = 0⇒ Hi,:H
T
j,: ≈ 0⇒ Hik ≈ 0 or Hjk ≈ 0 ∀k.

This is an interesting observation: Aij = 0 implies a
(soft) orthogonality constraints on the rows of H . This
is rather natural: if item i does not share any similarity
with item j (Aij = 0), then they should be assigned to
different clusters (Hik ≈ 0 or Hjk ≈ 0 for all k).

• The design of more efficient algorithms for symNMF. For
example, a promising direction would be to combine the
idea from [29] that use a compressed version of A with
very cheap per-iteration cost with our more reliable CD
method, to combine the best of both worlds.

VII. ACKNOWLEDGMENT

We would like to thank the reviewers for their insightful
feedback that helped us improve the paper significantly.

REFERENCES

[1] D. Lee and H. Seung, “Learning the Parts of Objects by Nonnegative
Matrix Factorization,” Nature, vol. 401, pp. 788–791, 1999.

[2] R. Zass and A. Shashua, “A unifying approach to hard and probabilistic
clustering,” in Computer Vision, 2005. ICCV 2005. Tenth IEEE Interna-
tional Conference on, vol. 1. IEEE, 2005, pp. 294–301.

[3] B. Long, Z. M. Zhang, X. Wu, and P. S. Yu, “Relational clustering
by symmetric convex coding,” in Proceedings of the 24th international
conference on Machine learning. ACM, 2007, pp. 569–576.

[4] Y. Chen, M. Rege, M. Dong, and J. Hua, “Non-negative matrix factor-
ization for semi-supervised data clustering,” Knowledge and Information
Systems, vol. 17, no. 3, pp. 355–379, 2008.

[5] Z. Yang, T. Hao, O. Dikmen, X. Chen, and E. Oja, “Clustering by
nonnegative matrix factorization using graph random walk,” in Advances
in Neural Information Processing Systems, 2012, pp. 1079–1087.

[6] D. Kuang, H. Park, and C. Ding, “Symmetric nonnegative matrix
factorization for graph clustering.” in SIAM Conf. on Data Mining
(SDM), vol. 12, 2012, pp. 106–117.

[7] D. Kuang, S. Yun, and H. Park, “SymNMF: nonnegative low-rank
approximation of a similarity matrix for graph clustering,” Journal of
Global Optimization, vol. 62, no. 3, pp. 545–574, 2014.

[8] X. Yan, J. Guo, S. Liu, X. Cheng, and Y. Wang, “Learning topics in short
texts by non-negative matrix factorization on term correlation matrix,”
in Proc. of the SIAM Int. Conf. on Data Mining. SIAM, 2013, pp.
749–757.

[9] A. Berman and N. Shaked-Monderer, Completely Positive Matrices.
World Scientific Publishing, 2003.

[10] V. Kalofolias and E. Gallopoulos, “Computing symmetric nonnegative
rank factorizations,” Linear Algebra and its Applications, vol. 436, no. 2,
pp. 421–435, 2012.

[11] S. Burer, “On the copositive representation of binary and continuous
nonconvex quadratic programs,” Math. Prog., vol. 120, no. 2, pp. 479–
495, 2009.

[12] P. Dickinson and L. Gijben, “On the computational complexity of
membership problems for the completely positive cone and its dual,”
Computational Optimization and Applications, vol. 57, no. 2, pp. 403–
415, 2014.

[13] J. Kim and H. Park, “Toward faster nonnegative matrix factorization:
A new algorithm and comparisons,” in Data Mining, 2008. ICDM’08.
Eighth IEEE International Conference on. IEEE, 2008, pp. 353–362.

[14] ——, “Fast nonnegative matrix factorization: An active-set-like method
and comparisons,” SIAM J. on Scientific Computing, vol. 33, no. 6, pp.
3261–3281, 2011.



14

[15] N.-D. Ho, “Nonnegative matrix factorization: Algorithms and applica-
tions,” Ph.D. dissertation, Université catholique de Louvain, 2008.
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