
Journal of Machine Learning Research 18 (2018) 1-33 Submitted 5/15; Revised 1/17; Published 4/18

Cost-Sensitive Learning with Noisy Labels

Nagarajan Natarajan nagarajn@microsoft.com∗

Microsoft Research,
Bangalore 560001, INDIA

Inderjit S. Dhillon inderjit@cs.utexas.edu
Dept. of Computer Science
University of Texas at Austin
Austin, TX 78701

Pradeep Ravikumar pradeepr@cs.cmu.edu
Machine Learning Dept.
Carnegie Mellon University
Pittsburgh, PA 15213

Ambuj Tewari tewaria@umich.edu

Dept. of Statistics, and

Dept. of Electrical Engineering and Computer Science

University of Michigan

Ann Arbor, MI 48109

Editor: Guy Lebanon

Abstract

We study binary classification in the presence of class-conditional random noise, where the
learner gets to see labels that are flipped independently with some probability, and where
the flip probability depends on the class. Our goal is to devise learning algorithms that
are efficient and statistically consistent with respect to commonly used utility measures.
In particular, we look at a family of measures motivated by their application in domains
where cost-sensitive learning is necessary (for example, when there is class imbalance). In
contrast to most of the existing literature on consistent classification that are limited to
the classical 0-1 loss, our analysis includes more general utility measures such as the AM
measure (arithmetic mean of True Positive Rate and True Negative Rate). For this problem
of cost-sensitive learning under class-conditional random noise, we develop two approaches
that are based on suitably modifying surrogate losses. First, we provide a simple unbiased
estimator of any loss, and obtain performance bounds for empirical utility maximization in
the presence of i.i.d. data with noisy labels. If the loss function satisfies a simple symmetry
condition, we show that using unbiased estimator leads to an efficient algorithm for empiri-
cal maximization. Second, by leveraging a reduction of risk minimization under noisy labels
to classification with weighted 0-1 loss, we suggest the use of a simple weighted surrogate
loss, for which we are able to obtain strong utility bounds. This approach implies that
methods already used in practice, such as biased SVM and weighted logistic regression,
are provably noise-tolerant. For two practically important measures in our family, we show
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that the proposed methods are competitive with respect to recently proposed methods for
dealing with label noise in several benchmark data sets.

Keywords: class-conditional label noise, statistical consistency, cost-sensitive learning

1. Introduction

Learning from noisy training data is a problem of theoretical as well as practical interest in
machine learning. In many applications such as learning to classify images, it is often the
case that the labels are noisy. Even human labelers are susceptible to errors in labeling; for
instance, certain image categories may be hard to discern. Designing learning algorithms
that help maximize a desired performance measure in such noisy settings, and understanding
their statistical consistency properties are the objectives of our current work.

One of the earliest known attempts at learning in the presence of label noise was by
Bylander (1994) that concerned learnability of linear threshold functions (LTFs) in the
Probably Approximately Correct (PAC) model. In particular, he showed that if the noise
rate is uniform and if there is a sufficient margin under the clean distribution, then it is pos-
sible to PAC-learn LTFs. He also extended the result to a more realistic noise model called
monotonic noise (Bylander, 1998), where the noise rate is allowed to vary per example, but
is assumed to be a monotonic function of the distance of the example from the true hyper-
plane. Blum and Mitchell (1998), and later Cohen (1997) improved the PAC-learnability
results of Bylander (1994) showing that linear threshold functions are efficiently learnable
without the margin requirement in the uniform label noise model. A Bayesian approach
to the problem of noisy labels is taken by Graepel and Herbrich (2000) and Lawrence and
Schölkopf (2001). Cesa-Bianchi et al. (2011) focus on online learning algorithms where only
unbiased estimates of the gradient of the loss are needed to provide guarantees for learning
with noisy data. However, they consider a much harder noise model where instances as well
as labels are noisy. Because of the harder noise model, they necessarily require multiple
noisy copies per clean example and the unbiased estimation schemes also become fairly
complicated, particularly for non-smooth classification losses such as the hinge loss.

In order to more clearly understand the impact of label noise, it is useful to consider
a more natural and simpler formalism for label noise, where a random noise process cor-
rupts the labels (Biggio et al., 2011), which otherwise arise from some “clean” distribution.
There has been a long line of work in the theoretical machine learning community on such
formalisms. Soon after the introduction of the noise-free PAC model, Angluin and Laird
(1988) proposed the random classification noise (RCN) model where each label is flipped
independently with some probability ρ ∈ [0, 1/2). It is known (Aslam and Decatur, 1996;
Cesa-Bianchi et al., 1999) that finiteness of the VC dimension characterizes learnability in
the RCN model. Similarly, in the online mistake bound model, the parameter that charac-
terizes learnability without noise — the Littlestone dimension — continues to characterize
learnability even in the presence of random label noise (Ben-David et al., 2009). These
results are for the so-called 0-1 loss: if the true label is y ∈ {−1,+1} and the prediction
is t, the 0-1 loss defined as `0-1(y, t) = 1{yt≤0} (where 1{P} denotes the indicator function
that takes value 1 if the predicate P is true or 0 otherwise), is a non-convex function of
the prediction t. On the other hand, learning with convex losses has been addressed only
under limiting assumptions like separability or uniform noise rates (Manwani and Sastry,
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2013). A great deal of practical work has also been done on the problem; see, for instance,
the survey article by Nettleton et al. (2010).

In this paper, we consider the class-conditional random label noise (abbreviated CCN)
setting. Here, the data consists of iid samples drawn from a noisy version Dρ of an under-
lying “clean” distribution D, and where the noise rates depend on the class label. To the
best of our knowledge, general results in this setting have not been obtained before. We
note that developing guarantees in the presence of CCN label noise also has implications
in varied partially-supervised settings such as learning from only positive and unlabeled
data (Elkan and Noto, 2008), which can be cast under this setting. For the theoretical
results presented in this work, we assume that the true noise rates (that characterize Dρ)
are known. In practice, one may use the domain knowledge to provide an estimate for noise
rates (see Section 6.3), or use a plug-in estimator for noise rates such as the one prescribed
by Scott (2015).

A key facet of the classification problem is the evaluation metric which captures discrep-
ancy between the predicted label and the true label, and which we would want to minimize
(or correspondingly, an evaluation utility measure which we would want to maximize).
While classification accuracy is a popular utility measure, many other performance mea-
sures have also been considered in practice. One important family of measures constitutes
cost-sensitive learning, and is motivated by applications and domains where misclassifica-
tion cost could depend on the category of the example. For example, in disease diagnosis,
false positives and false negatives often have very different associated impacts. Most, if not
all, of the existing theoretical work on classification focuses on obtaining consistent learning
algorithms for the 0-1 loss or its surrogates. In this paper, we consider a general class of util-
ity measures that can be expressed as a linear combination of the entries of the “confusion
matrix,” namely, true positives, true negatives, false positives and false negatives.

Towards this problem of learning classifiers with respect to general utility measures
and class conditional label noise, we develop two methods for suitably modifying any given
surrogate loss function `, and show that minimizing the sample average of the modified
proxy loss function ˜̀ leads to provable utility bounds where the utility is calculated on the
clean distribution.

In our first approach, the modified or proxy loss is an unbiased estimate of the loss func-
tion associated with the utility measure of interest. The idea of using unbiased estimators is
well-known in stochastic optimization (Nemirovski et al., 2009). Nonetheless, we bring out
some important aspects of using unbiased estimators of loss functions for empirical utility
maximization under CCN. In particular, we give a simple symmetry condition on the loss
(enjoyed, for instance, by the Huber, logistic, and squared losses) to ensure that the proxy
loss is also convex. Hinge loss does not satisfy the symmetry condition, and thus leads
to a non-convex problem. We nonetheless provide a convex surrogate, leveraging the fact
that the non-convex hinge problem is “close” to a convex problem (Theorem 12). This is
strikingly different from the online learning setting (examined in Section 4) that requires
only the expected loss to be convex.

Our second approach is based on the fundamental observation that the minimizer of the
risk (i.e. probability of misclassification) under the noisy distribution differs from that of
the clean distribution only in where it thresholds η(x) = P (Y = 1|x) to decide the label. In
order to correct for the threshold, we then propose a simple weighted loss function, where
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the weights are label-dependent, as the proxy loss function. Our analysis builds on the
notion of consistency of weighted loss functions studied by Scott (2012). This approach
leads to a remarkable result that appropriately weighted losses like biased SVMs studied by
Liu et al. (2003) are robust to CCN.

The key contributions of the paper are summarized below:

1. We develop methods for learning, that are provably consistent, (a) in the presence of
asymmetric label noise, and (b) with respect to general cost-sensitive utility measures
beyond the classical 0-1 loss.

2. To the best of our knowledge, we are the first to provide guarantees for cost-sensitive
learning under random label noise in the general setting of convex surrogates, without
any assumptions on the true distribution.

3. As one consequence of our results, we resolve an elusive theoretical gap in the under-
standing of practical methods like biased SVM and weighted logistic regression: as
we show, they are provably noise-tolerant (Theorem 18). We obtain the result as a
consequence of being able to linearly relate the risk w.r.t. a weighted 0-1 loss under
the noisy distribution to that w.r.t. the 0-1 loss under the clean distribution (Theorem
16).

4. Our proxy losses are easy to compute: the proposed approaches yield efficient algo-
rithms.

5. Experiments on benchmark data sets show that the methods are robust even at high
noise rates, for maximizing different performance measures from our family.

In a preliminary version of the paper (Natarajan et al., 2013), we provided guarantees
for risk minimization (using the 0-1 loss) in the presence of class-conditional label noise. In
this paper, we provide a more general and detailed treatment of the theory, by character-
izing the optimal classifiers under more general performance measures used in practice (in
Sections 4 and 5). We extend our earlier approach (Natarajan et al., 2013) to cost-sensitive
learning (Section 3.2). Our results in this paper also serve to generalize some of the known
consistency results for performance measures such as the AM measure, even in the noise-free
setting.

We now expand on the organization of the paper. We begin by discussing some closely
related work in Section 2. We introduce and set the problem up formally in Section 3. The
class-conditional noise model is specified by two parameters ρ+1 and ρ−1 which correspond
to the rates at which positive and negative labels are flipped (independently) respectively.
To build the theory, we assume that the rates are known to the learner. We do not make any
assumptions on the underlying distribution. We introduce the family of measures U that
constitute cost-sensitive learning in Section 3. It is well-known that the classical 0-1 loss
is optimized by thresholding P (Y = 1|x) at 1/2. Cost-sensitive measures are of particular
interest to our work in this paper because their optimal decision function exhibits a simple
form — thresholding the conditional probability P (Y = 1|x) at a certain value (stated in
Lemma 2). Study of consistent learning algorithms, for many performance measures other
than classification accuracy, is limited even in the noise-free case. Menon et al. (2013)
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showed consistency of certain empirical estimation algorithms for the AM measure (defined
in Proposition 1). An important result that connects the excess risk of a decision function
(in terms of the 0-1 loss), R(f)−minf R(f), and its “utility deficit”, maxf U(f)−U(f), is
established in Lemma 3. As a consequence of this result, we are able to use the surrogates
for 0-1 loss for empirical estimation, in order to maximize cost-sensitive measures.

We describe our first approach of using unbiased surrogate loss functions in Section 4.
Here, the idea is to construct an unbiased estimator of a given loss function (a surrogate of
the 0-1 loss). The unbiased estimator involves the noise rates ρ+1 and ρ−1. For optimizing
a given utility measure U , we propose an empirical risk minimization procedure based on
the unbiased surrogate thus obtained. We establish utility deficit bounds for the resulting
empirical estimator in Theorem 9. Here, we also look at the online learning setting, where
examples arrive sequentially (with noisy labels), and obtain similar consistency guarantees.
Our second approach is detailed in Section 5. The key observation is that the optimal
decision function for utility U in our family with respect to the noisy distribution is simply
given by thresholding P (Y = 1|x) with respect to the clean distribution, at a certain value
that depends only on the distribution and the measure U itself. This enables us to use a
weighted surrogate of the 0-1 loss, where the weights depend on the measure U and noise
rates ρ+1 and ρ−1. We provide rigorous guarantees for consistency of the resulting empirical
estimator in Theorem 18.

We present detailed experimental results that support our theory in Section 6. We per-
form experiments on synthetic and benchmark data sets, on both the proposed approaches.
We compare to state-of-the-art algorithms for learning with noisy data on different data sets
and different noise settings. We use two performance measures in experiments: classifica-
tion accuracy and the AM measure, as representatives of the family of measures considered
in the paper.

2. Related Work

Stempfel and Ralaivola (2009) propose minimizing an unbiased proxy for the case of the
hinge loss. However the hinge loss leads to a non-convex problem. Therefore, they propose
heuristic minimization approaches for which no theoretical guarantees are provided. We
address the issue in Section 4.1. As Adaboost is very sensitive to label noise, random label
noise has also been considered in the context of boosting. Freund (2009) proposes a boosting
algorithm based on a non-convex potential that is empirically seen to be robust against
random label noise. Long and Servedio (2010) prove that any method based on a convex
potential is inherently ill-suited to random label noise. Biggio et al. (2011) consider robust
SVM formulation in the presence of random and adversarial label noise. However, they do
not provide any theoretical justification. Practitioners have developed several noise tolerant
versions of the perceptron algorithm, although many are heuristic and are not known to
be provably robust. This includes the passive-aggressive family of algorithms (Crammer
et al., 2006), confidence weighted learning (Dredze et al., 2008), AROW (Crammer et al.,
2009) and the NHERD algorithm (Crammer and Lee, 2010). The survey article by Khardon
and Wachman (2007) provides an overview of some of this literature. To the best of our
knowledge, there are no known mistake-bounded perceptron algorithms under asymmetric
label noise.
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Manwani and Sastry (2013) consider whether empirical risk minimization of the loss
itself on the noisy data is a good idea when the goal is to obtain small risk under the clean
distribution. But the answer is affirmative only for 0-1 and squared losses. Therefore, if
empirical risk minimization over noisy samples has to work, we necessarily have to change
the loss used to calculate the empirical risk. More recently, Ghosh et al. (2014) prove that
a loss function ` satisfying the symmetry condition `(f(x), 1) + `(f(x),−1) = C,∀x, ∀f for
some constant C are noise-tolerant, under the assumption that the classes are separable un-
der the clean distribution (here, ` is said to be noise-tolerant if E(X,Y )∼D

[
`0-1(f

∗
` (X), Y )

]
=

E(X,Y )∼D
[
`0-1(f̃

∗
` (X), Y )

]
, where f∗` and f̃∗` denote the minimizers of `-risk under clean and

noisy distribution respectively). Furthermore, they show that by choosing a sufficiently
large value of a parameter in the loss functions such as sigmoid loss, ramp loss and probit
loss, the losses can be made tolerant to non-uniform label noise (i.e. noise rate is allowed
to depend on the example) as well. Unfortunately, the aforementioned loss functions are all
non-convex, and convex losses used in practice do not satisfy the sufficiency conditions. It
remains an open question if the symmetry condition is indeed necessary for noise tolerance,
at least under the separability assumption.

van Rooyen and Williamson (2015) extend the idea behind the method of unbiased
estimators to more general learning settings beyond binary classification. For example, they
consider semi-supervised learning, classification with more than two classes, and learning
with partial labels (a partial label is a set of labels containing the true label).

Scott et al. (2013) also study the problem of learning classifiers under the class-conditional
noise model. However, they approach the problem from a different set of assumptions — the
noise rates are not known, and the true distribution satisfies a certain “mutual irreducibil-
ity” property. They model the observed noisy instances as arising from “contaminated”
mixtures of positive and negative classes and show that the mixture proportions can be con-
sistently estimated by maximal denoising of the noisy distributions. Blanchard and Scott
(2014) establish similar results for the multi-class classification problem. Scott (2015) pro-
vides a consistent estimator with convergence rates for the cost parameter α in our weighted
surrogate loss (Equation 2). In this paper, however, we select α by cross-validation and also
examine the sensitivity of selecting α (in Section 6.3).

3. Preliminaries

Let D be the underlying true distribution generating (X,Y ) ∈ X × {±1} pairs from which
n iid samples (X1, Y1), . . . , (Xn, Yn) are drawn. Let η(X) = P (Y = 1|X) under D.

3.1 Class-conditional Noise

After injecting random classification noise (independently for each i) into these samples,
corrupted samples (X1, Ỹ1), . . . , (Xn, Ỹn) are obtained. The class-conditional random noise
model (CCN, for short) is given by:

P (Ỹ = −1|Y = +1) = ρ+1,

P (Ỹ = +1|Y = −1) = ρ−1, and

ρ+1 + ρ−1 < 1.
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The corrupted samples are what the learning algorithm sees. We will assume that the noise
rates ρ+1 and ρ−1 are known to the learner. Let the distribution of (X, Ỹ ) be Dρ. Noisy
labels are denoted by ỹ. Let η̃(X) = P (Ỹ = 1|X) under Dρ.

3.2 Cost-sensitive Classification

Let f : X → R denote a real-valued decision function. The goal in classification is to learn
f from a training sample, such that some cost or loss measure is minimized. The most
common measure is the probability of misclassification, also called the risk, which is simply
the expected 0-1 loss defined as

R(f) := RD(f) := E(X,Y )∼D
[
1{sign(f(X)) 6=Y }

]
.

Minimizing the 0-1 loss on a training sample, over some class of decision functions, is often
intractable. In practice, it is common to minimize a surrogate loss function that is chosen for
its computational advantages such as convexity. Minimizing risk (or equivalently, maximiz-
ing the accuracy) of a classifier is however not always appropriate, and in fact practitioners
have devised many alternative performance metrics to address specific needs of a target
domain. Class imbalance is an important scenario where accuracy of classifier is not a good
metric to optimize: a trivial classifier that assigns all the examples to the majority class will
have a high accuracy. However, little is known about optimal classification or consistent
algorithms for binary classification w.r.t. general performance measures, even when the
observations are noise-free. An important family of performance measures that is preferred
in many scenarios including heavy class imbalance and asymmetry in real-world costs asso-
ciated with specific classes constitutes cost-sensitive learning. Cost-sensitive performance
measures are given by a weighted combination of the four fundamental population quan-
tities associated with the “confusion matrix” - true positives, false positives (also known
as type-I error), false negatives (also known as type-II error) and true negatives as defined
below:

TP (f ;D) = E(X,Y )∼D[1{f(X)=1,Y=1}], TN(f ;D) = E(X,Y )∼D[1{f(X)=−1,Y=−1}]

FP (f ;D) = E(X,Y )∼D[1{f(X)=1,Y=−1}], FN(f ;D) = E(X,Y )∼D[1{f(X)=−1,Y=1}].

We consider the family of measures U defined by:

U(f ;D) = a11TP (f ;D) + a10FP (f ;D) + a01FN(f ;D) + a00TN(f ;D), (1)

given constants a0, a11, a10, a01, a00 (that could depend on D). In the remainder of the
paper, U refers to a measure in this family, unless specified otherwise. We will use the
terms performance measure and utility measure interchangeably in this paper.

Next, we state two important, commonly-used measures in this family.

Proposition 1 1. The Accuracy measure UAcc(f ;D) belongs in the family (1) with a11 =
a00 = 1 and a10 = a01 = 0.

2. The AM (Arithmetic Mean of TPR and TNR) measure defined as

UAM (f ;D) :=
1

2

(
TPR(f ;D) + TNR(f ;D)

)
,
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where TPR(f ;D) = P (f(X) = 1|Y = 1) is the true positive rate and TNR(f ;D) =
P (f(X) = −1|Y = −1) is the true negative rate, belongs in the family (1) with
constants a10 = a01 = 0, a11 = 1

2(1−π) and a00 = 1
2π , where π = P (Y = 1) under D.

3.2.1 Cost-sensitive Classification without Label Noise

Before we present our approaches for cost-sensitive classification under class-conditional
label noise, it will be useful to consider the setting without such label noise, and setup
appropriate notation. Given a utility measure U and training data, our goal is to learn
a decision function f that maximizes U with respect to the clean distribution. The opti-
mal decision function (called Bayes optimal) that maximizes U over all real-valued decision
functions is denoted as f?(x) := arg maxf U(f ;D). We denote by U∗ the optimal utility
value, i.e. U∗ = U(f?). It is not always possible to characterize the Bayes optimal of ar-
bitrary performance measures. Cost-sensitive measures are particularly interesting because
their Bayes optimal exhibits a simple form, and as a consequence, consistent algorithms are
readily obtained in practice in the noise-free case. Bayes optimal classifier for the family
(1) is characterized in the following Lemma. Recall that η(x) = P (Y = 1|x) under D.

Lemma 2 The Bayes optimal of any measure U in family (1) is given by

arg max
f
U(f ;D) = sign(η(x)− δ∗D),

where the threshold is defined as

δ∗D =
a00 − a10

a00 − a10 − a01 + a11
.

The proof is simple and can be found elsewhere (Elkan, 2001). It is well-known that accuracy
UAcc(f ;D) is maximized by sign(η(x)− 1/2) which is also readily obtained by applying the
above lemma. For the AM measure UAM (f ;D), one easily verifies that the threshold is
π = P (Y = 1).

For any general measure U , we are interested in controlling the deficit utility which is
U∗ − U(f ;D). The following simple lemma relates the deficit utility for the family (1) to
that of a certain weighted 0-1 risk.

Lemma 3 Define α-weighted risk under distribution D as:

Rα(f) := Rα,D(f) := E(X,Y )∼D

[
(1− α)1{Y=1}1{f(X)≤0} + α1{Y=−1}1{f(X)>0}

]
.

For any measure U in the family (1):

Rδ∗D(f)−R∗δ∗D =
1

(a11 + a00)− (a10 + a01)
(U∗ − U(f ;D)),

where R∗δ∗D
= minf Rδ∗D(f).
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Proof Let c1 = (a11+a00)−(a10−a01) and c2 = a00−a10. From Lemma 2, we know δ∗D = c2
c1

.
Note that 1 > c1 > 0 for otherwise maximizing U would not make sense (See Remark 4),
and therefore 0 ≤ δ∗D ≤ 1. For any f , let θ denote the classifier θ(x) = sign(f(x)). We can
rewrite U(θ) as U(θ) = c1[(1− δ∗D)TP + δ∗DTN ] + Ã, where Ã is a constant. We have:

Rδ∗D(θ) = E(X,Y )∼D

[(
(1− δ∗D)1{Y=1} + δ∗D1{Y=0}

)
.1{θ(X)6=Y }

]
= (1− δ∗D)P (Y = 1, θ(X) = −1) + δ∗DP (Y = −1, θ(X) = 1)

= (1− δ∗D)FN + δ∗DFP

= (1− δ∗D)(π − TP ) + δ∗D(1− π − TN)

= (1− δ∗D)π + δ∗D(1− π)−
(
(1− δ∗D)TP + δ∗DTN

)
= (1− δ∗D)π + δ∗D(1− π) +

Ã

c1
− 1

c1
U(θ).

Observing that (1 − δ∗D)π + δ∗D(1 − π) + Ã
c1

is a constant independent of θ, the proof is
complete.

Remark 4 Note that we can assume (a11 + a00) − (a10 + a01) > 0, otherwise maximizing
U would not make sense. If indeed, (a11 + a00)− (a10 + a01) < 0, then Lemma 3 still holds
but with U∗ interpreted as U∗ = minf U(f ;D).

Of course, minimizing the α-weighted risk on a training sample is not tractable. Scott
(2012) extends the notion of the classification calibration defined by Bartlett et al. (2006)
for the (unweighted) 0-1 loss. The following result of Scott (2012) tells us that by using a
similarly weighted surrogate loss function `α, one can control the excess α-weighted risk.
Define `α-risk, R`α,D(f) = E(X,Y )∼D[`α(f(X), Y )], and R∗`α = minf R`α,D(f).

Lemma 5 (α-classification calibration (Scott, 2012)) Given a loss function `(t, y),
and α ∈ (0, 1), define the α-weighted loss:

`α(t, y) =
(
(1− α)1{y=1} + α1{y=−1}

)
`(t, y) . (2)

`α is α-classification calibrated (or α-CC) iff there exists a convex, non-decreasing and
invertible transformation ψ`,α, with ψ`,α(0) = 0, such that

ψ`,α(Rα(f)−R∗α) ≤ R`α,D(f)−R∗`α .

In other words, consistency with respect to `α-risk implies consistency with respect to α-
weighted (0-1) risk for α-CC losses. Also, for any ` that is classification-calibrated (Bartlett
et al., 2006) (such as logistic, hinge and squared losses), the corresponding `α is α-CC.

If we choose α = δ∗D, Lemmas 3 and 5 together guarantee the consistency of using a
weighted surrogate loss function in practice, when we obtain samples from the clean distri-
bution D. However, if the labels are noisy, the outlined procedure is no longer consistent.
One necessarily has to change the loss function ` or rather `α to be able to tolerate the
noise, as described in the next two sections.
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Remark 6 Most commonly used loss functions such as hinge and logistic losses are (even)
margin losses, i.e. `(t, y) = φ(ty), for some φ : R → [0,∞). We could also consider an
uneven margin loss function of the form:

`(t, y) = 1{y=1}φ(t) + 1{y=−1}βφ(−γt),

for β, γ > 0. Scott (2012) showed that for convex φ, the above defined uneven margin loss
` is classification-calibrated, and in turn, the corresponding `α is α-CC, when β = 1

γ . Such
uneven margin losses have been used in practice mostly as heuristics as pointed out in (Scott,
2012). Thus, in principle, we could use uneven margin losses, and all the results in this
manuscript will hold just the same.

Notation. We use letters with the ‘tilde’ accent to denote noisy versions of quantities or
variables, e.g. ˜̀ is the loss function to be used on the noisy data, and ỹ denotes a noisy
label. We use F : X → R to denote a fixed class of real-valued decision functions. If f is not
quantified in a minimization, then it is implicit that the minimization is over all measurable
functions. Instances are denoted by x ∈ X ⊆ Rd. Though most of our results apply to a
general function class F , we instantiate F to be the set of hyperplanes of bounded L2 norm,
W = {w ∈ Rd : ‖w‖2 ≤W2} for certain specific results.

4. Approach of Unbiased Surrogates

The method of unbiased surrogates uses the noise rates to construct an unbiased estimator
˜̀(t, ỹ) for the loss `(t, y). The following key lemma tells us how to construct unbiased
estimator of the loss from noisy labels.

Lemma 7 Let `(t, y) be any bounded loss function. Then, if we define,

˜̀(t, y) :=
(1− ρ−y) `(t, y)− ρy `(t,−y)

1− ρ+1 − ρ−1

we have, for any t, y, Eỹ
[
˜̀(t, ỹ)

]
= `(t, y) . In particular, for any given α ∈ (0, 1),

Eỹ
[
˜̀
α(t, ỹ)

]
= `α(t, y), where `α(t, y) is defined as in (2).

Proof One could directly compute and see that ˜̀ is unbiased. But to give a little more
insight into what motivates the definition of ˜̀, consider the conditions that unbiasedness
imposes on it. We should have, for every t,

E
ỹ
ρ∼y

[
˜̀(t, ỹ)

]
= `(t, y) .

Considering the cases y = +1 and y = −1 separately, gives the equations

(1− ρ+1)˜̀(t,+1) + ρ+1
˜̀(t,−1) = `(t,+1) ,

(1− ρ−1)˜̀(t,−1) + ρ−1 ˜̀(t,+1) = `(t,−1) .

10



Cost-Sensitive Learning with Noisy Labels

Solving these two equations for ˜̀(t,+1) and ˜̀(t,−1) gives

˜̀(t,+1) =
(1− ρ−1)`(t,+1)− ρ+1`(t,−1)

1− ρ+1 − ρ−1
,

˜̀(t,−1) =
(1− ρ+1)`(t,−1)− ρ−1`(t,+1)

1− ρ+1 − ρ−1
.

The second part of the lemma follows by observing that `α is bounded too.

In Section 3, we saw that in the noise-free case one can bound the deficit utility U∗ −
U(f ;D) by using a weighted surrogate loss approach with α = δ∗D. In the presence of noisy
labels, we can try to learn a good predictor that optimizes the measure U of the form (1)
by minimizing the sample average

f̂ ← argmin
f∈F

R̂˜̀
α
(f) :=

n∑
i=1

˜̀
α(f(Xi), Ỹi) . (3)

where α = δ∗D as before. By unbiasedness of ˜̀
α (Lemma 7), we know that, for any fixed

f ∈ F , the above sample average converges to R`α,D(f) even though the former is computed
using noisy labels whereas the latter depends on the true labels. The following result gives
a performance guarantee for this procedure in terms of the Rademacher complexity of
the function class F . The main idea in the proof is to use the contraction principle for
Rademacher complexity to get rid of the dependence on the proxy loss ˜̀

α. The price to pay
for this is Lρ, the Lipschitz constant of ˜̀

α.

Lemma 8 Let `(t, y) be L-Lipschitz in t (for every y). Then, for any α ∈ (0, 1), with
probability at least 1− δ,

max
f∈F

|R̂˜̀
α
(f)−R˜̀

α,Dρ
(f)| ≤ 2LρR(F) +

√
log(1/δ)

2n

where R(F) := EXi,εi
[
supf∈F

1
nεif(Xi)

]
is the Rademacher complexity of the function class

F and Lρ ≤ 2L/(1 − ρ+1 − ρ−1) is the Lipschitz constant of ˜̀
α. Note that εi’s are iid

Rademacher (symmetric Bernoulli) random variables.

Proof By the basic Rademacher bound on the maximal deviation between risks and
empirical risks over f ∈ F , we get

max
f∈F

|R̂˜̀
α
(f)−R˜̀

α,Dρ
(f)| ≤ 2 ·R(˜̀

α ◦ F) +

√
log(1/δ)

2n

where

R(˜̀
α ◦ F) := EXi,Ỹi,εi

[
sup
f∈F

1

n

n∑
i=1

εi ˜̀α(f(Xi), Ỹi)

]

11
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If ` is L-Lipschitz then for any α ∈ (0, 1), ˜̀
α is Lρ Lipschitz for Lρ = (1+ |ρ+1−ρ−1|)L/(1−

ρ+1 − ρ−1) ≤ 2L/(1 − ρ+1 − ρ−1) and hence by the Lipschitz composition property of
Rademacher averages, we have

R(˜̀
α ◦ F) ≤ Lρ ·R(F) .

The above lemma immediately leads to a performance bound for f̂ with respect to the
clean distribution D. Our first main result is stated in the theorem below. The proof relies
on using the α-CC property of the modified surrogate loss function.

Theorem 9 For any α ∈ (0, 1), with probability at least 1− δ,

R`α,D(f̂) ≤ min
f∈F

R`α,D(f) + 4LρR(F) + 2

√
log(1/δ)

2n
.

Furthermore, if `α is α-CC, then for the choice α = δ∗D, there exists a nondecreasing function
ζ`,α with ζ`,α(0) = 0 such that,

U∗ − U(f̂ ;D) ≤ ζ`,α
(

min
f∈F

R`α,D(f)−min
f
R`α,D(f) + 4LρR(F) + 2

√
log(1/δ)

2n

)
.

Proof Let f? be the minimizer of R`α,D(·) over F . We have

R`α,D(f̂)−R`α,D(f?)

= R˜̀
α,Dρ

(f̂)−R˜̀
α,Dρ

(f?)

= R̂˜̀
α
(f̂)− R̂˜̀

α
(f?) + (R˜̀

α,Dρ
(f̂)− R̂˜̀

α
(f̂))

+ (R̂˜̀
α
(f?)−R˜̀

α,Dρ
(f?))

≤ 0 + 2 max
f∈F

|R̂˜̀
α
(f)−R˜̀

α,Dρ
(f)| .

We can now apply Lemma 8 to control the last quantity above, and thus obtain the first
statement of the theorem. Now, if `α is α-CC, then for α = δ∗D, we know from Lemma
5 there exists a convex, invertible, nondecreasing transformation ψ` with ψ`,α(0) = 0 such
that,

ψ`,α(Rα(f)−R∗α) ≤ R`α,D(f)−min
f
R`α,D(f)

Subtracting minf R`α,D(f) off either sides of the first inequality in the theorem statement,
and realizing that ψ−1`,α is nondecreasing as well, with ψ−1`,α(0) = 0, we get:

Rα(f̂)−R∗α ≤ ψ−1`

(
min
f∈F

R`,D(f)−min
f
R`,D(f) + 4LρR(F) + 2

√
log(1/δ)

2n

)
.

Finally we can use Lemma 3 to bound U∗ − U(f̂ ;D), by setting ζ`,α = (a11 + a00 − a01 −
a10)ψ

−1
`,α.

12
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The term on the right hand side involves both approximation error (that is small if
F is large) and estimation error (that is small if F is small). However, by appropriately
increasing the richness of the class F with sample size, we can ensure that the utility of f̂
approaches the optimal utility under the true distribution. This is despite the fact that the
method of unbiased estimators computes the empirical minimizer f̂ on a sample from the
noisy distribution. Getting the optimal empirical minimizer f̂ is efficient if ˜̀

α, or rather ˜̀,
is convex. Next, we address the issue of convexity of ˜̀.

4.1 Convex losses and their estimators

Note that the loss ˜̀ may not be convex even if we start with a convex `. An example is
provided by the familiar hinge loss `hin(t, y) = [1 − yt]+. Stempfel and Ralaivola (2009)
showed that ˜̀

hin is not convex in general (of course, when ρ+1 = ρ−1 = 0, it is convex).
Below we provide a simple condition to ensure convexity of ˜̀.

Lemma 10 Suppose `(t, y) is convex and twice differentiable almost everywhere in t (for
every y) and also satisfies the symmetry property

∀t ∈ R, `′′(t, y) = `′′(t,−y) .

Then ˜̀(t, y) is also convex in t.

Proof Let us compute ˜̀′′(t, y) (recall that differentiation is w.r.t. t) and show that it is
non-negative under the symmetry condition `′′(t, y) = `′′(t,−y). We have

˜̀′′(t, y) =
(1− ρ−y)`′′(t, y)− ρy`′′(t,−y)

1− ρ+1 − ρ−1

=
(1− ρ−y)`′′(t, y)− ρy`′′(t, y)

1− ρ+1 − ρ−1

=
(1− ρ−y − ρy)`′′(t, y)

1− ρ+1 − ρ−1
= `′′(t, y) ≥ 0 ,

since ` is convex in t.

Examples satisfying the conditions of the lemma above are the squared loss `sq(t, y) =
(t− y)2, the logistic loss `log(t, y) = log(1 + exp(−ty)) and the Huber loss:

`Hub(t, y) =


−4yt if yt < −1

(t− y)2 if − 1 ≤ yt ≤ 1

0 if yt > 1

Consider the case where ˜̀ turns out to be non-convex when ` is convex, as in ˜̀
hin. In

the online learning setting (where the adversary chooses a sequence of examples, and the
prediction of a learner at round i is based on the history of i−1 examples with independently

13
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flipped labels) which we will discuss shortly, we would use a stochastic mirror descent type
algorithm (Nemirovski et al., 2009) to arrive at risk bounds similar to Theorem 9. Then, we
only need the expected loss to be convex and therefore `hin does not present a problem. At
first blush, it may appear that we do not have much hope of obtaining f̂ in the iid setting
efficiently. However, Lemma 8 provides a clue.

We will now focus on the function class W of hyperplanes. Even though R̂˜̀(w) is non-

convex, it is uniformly close to R˜̀,Dρ
(w). Since R˜̀,Dρ

(w) = R`,D(w), this shows that R̂˜̀(w)
is uniformly close to a convex function over w ∈ W. The following result shows that we
can therefore approximately minimize F (w) = R̂˜̀(w) by minimizing the biconjugate F ??.
Recall that the (Fenchel) biconjugate F ?? is the largest convex function that minorizes F .

Lemma 11 Let F :W → R be a non-convex function defined on function class W such it
is ε-close to a convex function G :W → R:

∀w ∈ W, |F (w)−G(w)| ≤ ε

Then any minimizer of F ?? is a 2ε-approximate (global) minimizer of F .

Proof Since F ≥ G− ε and F ?? is the largest convex function that minorizes F , we must
have F ?? ≥ G− ε. This means that F ?? + 2ε ≥ G+ ε ≥ F . Thus, F is sandwiched between
F ?? + 2ε and F ??. The lemma follows directly from this.

Now, the following theorem establishes bounds for the case when ˜̀ is non-convex, via
the solution obtained by minimizing the convex function F ∗∗.

Theorem 12 Let ` be a loss, such as the hinge loss, for which ˜̀ is non-convex. Let W =
{w : ‖w2‖ ≤ W2}, let ‖Xi‖2 ≤ X2 almost surely, and let ŵapprox be any (exact) minimizer
of the convex problem

min
w∈W

F ??(w) ,

where F ??(w) is the (Fenchel) biconjugate of the function F (w) = R̂˜̀
α
(w), where α = δ∗D.

Then, with probability at least 1− δ, ŵapprox is a 2ε-minimizer of R̂˜̀
α
(·) where

ε =
2LρX2W2√

n
+

√
log(1/δ)

2n
.

Therefore, with probability at least 1− δ,

R`α,D(ŵapprox) ≤ min
w∈W

R`α,D(w) + 4ε .

Proof The first part of the theorem follows by combining Lemma 8 and Lemma 11, using
the fact that if ‖w‖2 ≤ W2 for any w and ‖Xi‖2 ≤ X2 then, R(W) ≤ W2X2/

√
n. Note

that Theorem 9 is true also for 2ε-minimizers of the empirical risk R̂˜̀
α

provided we add 2ε
to the right hand side.

Numerical or symbolic computation of the biconjugate of a multidimensional function
is difficult, in general, but can be done in special cases. It will be interesting to see if
techniques from Computational Convex Analysis (Lucet, 2010) can be used to efficiently
compute the biconjugate above.

14
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4.2 Online learning setting

Consider the setting where an adversary chooses a sequence (x1, y1), . . . , (xn, yn) of exam-
ples. At time i, the learner has to make a prediction based on (x1, ỹ1), . . . , (xi−1, ỹi−1) and
xi. But the learner’s cumulative loss as well as that of the best fixed predictor in hindsight
are both computed using the true labels yi. Note that if `(t, y) is convex in t (for every y),
and for a given α ∈ (0, 1) we choose λ1 ∈ ∂`α(t, y) and λ2 ∈ ∂`α(t,−y), (where ∂`α is the
subdifferential w.r.t. t) we have

Eỹ [g(t, ỹ)] ∈ ∂`α(t, y) (4)

where

g(t, y) =
(1− ρ−y)λ1 − ρy λ2

1− ρ+1 − ρ−1
(5)

We show that Algorithm 1 indeed satisfies low regret (in expectation) on the original se-
quence chosen by the adversary even though it only receives noisy versions of the labels.
We fix the function class to be the set W of bounded-norm hyperplanes.

Algorithm 1: Online learning using unbiased gradients

Choose learning rate γ > 0
W = {w : ‖w‖2 ≤W2}
ΠW (·) = Euclidean projection onto W
Initialize w0 ← 0
for i = 1 to n do

Receive xi ∈ Rd
Predict 〈wi−1,xi〉
Receive noisy label ỹi
Update wi ← ΠW (wi−1 − γg(〈wi−1,xi〉 , ỹi)xi) where g(·, ·) is defined in (5)

end for

Theorem 13 Let `(t, y) be convex and L-Lipschitz in t (for every y). Fix an arbitrary
sequence (x1, y1), . . . , (xn, yn), and α ∈ (0, 1). If Algorithm 1 is run on noisy data set
(x1, ỹ1), . . . , (xn, ỹn) with learning rate γ = W2/(X2Lρ

√
n) where ỹi is noisy version of yi

with noise rates ρ+1, ρ−1, then we have

Eỹ1:n

[
n∑
i=1

`α(〈wi−1,xi〉 , yi)

]
− min
‖w‖2≤W2

n∑
i=1

`α(〈w,xi〉 , yi) ≤ LρX2W2

√
n ,

where Lρ := (1 + |ρ+1 − ρ−1|)L/(1 − ρ+1 − ρ−1) and it is assumed that ‖xi‖ ≤ X2 for all
i ∈ [n].

Proof Let us use the abbreviation gi for g(〈wi−1,xi〉 , ỹi)xi so that the update in Algo-
rithm 1 becomes wi ← ΠW (wi−1 − γgi). It is well known (Zinkevich, 2003) that, for any
w,

n∑
i=1

〈gi,wi−1 −w〉 ≤ γ

2

n∑
i=1

‖gi‖2 +
‖w‖2

2γ
. (6)
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Since ` is L-Lipschitz, the λ1, λ2 appearing in the definition (5) of g(·, ·) satisfy |λ1|, |λ2| ≤ L.
This implies |g(t, y)| ≤ (1+|ρ+1−ρ−1|)L/(1−ρ+1−ρ−1) = Lρ and hence ‖gi‖ ≤ LρX2. Thus,

we have, for any w with ‖w‖ ≤ W2,
∑n

i=1 〈gi,wi−1 −w〉 ≤ γL2
ρX

2
2n

2 +
W 2

2
2γ . Choosing γ =

(W2/LρX2)
1√
n

, we get
∑n

i=1 〈gi,wi−1 −w〉 ≤ LρX2W2
√
n. Note that wi−1 only depends

on ỹ1:i−1. Hence

Eỹi [〈gi,wi−1 −w〉 | ỹ1:i−1] = 〈Eỹi [gi | ỹ1:i−1] ,wi−1 −w〉 ≥ `α(〈wi−1,xi〉 , yi)−`α(〈w,xi〉 , yi)

because Eỹi [gi | ỹ1:i−1] ∈ ∂w=wi−1`α(〈w,xi〉 , yi) by (4) and the chain rule for differentiation,
and `α(〈w,xi〉 , yi) is convex in w. Thus, for any w with ‖w‖2 ≤W2,

Eỹ1:n

[
n∑
i=1

`α(〈wi−1,xi〉 , yi)

]
−

n∑
i=1

`α(〈w,xi〉 , yi) ≤ LρX2W2

√
n.

Since the above inequality is true for any w with ‖w‖2 ≤ 1, the statement of the theorem
follows.

5. Approach of Surrogates for Weighted 0-1 Loss

The second approach is based on directly obtaining weighted surrogates for U . We develop
the method of “label-dependent” costs from two key observations. First, the Bayes classifier
under noisy distribution, denoted by f̃∗, simply uses a threshold that, in general, is different
from that under clean distribution. Second, f̃∗ is the minimizer of a certain weighted 0-1
loss under the noisy distribution. The framework we develop here generalizes known results
for the uniform noise rate setting ρ+1 = ρ−1 and offers a more fundamental insight into the
problem.

From Lemma 2, we know that the optimal Bayes classifier f̃∗ under Dρ thresholds
η̃(X) = P (Ỹ = 1|X) at a certain δ̃∗. Now, noting that:

η̃(x) = (1− ρ+1)η(x) + ρ−1(1− η(x)) = (1− ρ+1 − ρ−1)η(x) + ρ−1,

we see that f̃∗ can be written as:

f̃∗(x) = sign

(
η(x)− δ̃∗ − ρ−1

1− ρ+1 − ρ−1

)
. (7)

Not surprisingly, this optimal threshold simplifies for cost-sensitive performance measures.
In particular, as shown in the following corollary, the optimal threshold for the AM measure
does not change under the noisy distribution.

Corollary 14 1. For the Accuracy measure:

arg max
f
UAcc(f ;Dρ) = arg min

f
RDρ(f) = sign

(
η(x)− 1/2− ρ−1

1− ρ+1 − ρ−1

)
.
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2. For the AM Measure:

arg max
f
UAM (f ;D) = arg max

f
UAM (f ;Dρ) = sign(η(x)− π).

Proof

1. For the 0-1 loss, δ∗D = δ̃∗ = 1/2 and the result is immediate.

2. We know δ∗D = π from Lemma 2. Also, δ̃∗ = P (Ỹ = 1) = (1 − ρ−1 − ρ+1)π + ρ−1.
Substituting in (7), we observe that the threshold remains π.

Interestingly, this noisy Bayes classifier can also be obtained as the minimizer of a
weighted 0-1 loss; which as we will show, allows us to “correct” for the threshold under
the noisy distribution. Let us first introduce the notion of label-dependent costs for binary
classification. We can write the 0-1 loss as a label-dependent loss as follows:

1{sign(f(X)) 6=Y } = 1{Y=1}1{f(X)≤0} + 1{Y=−1}1{f(X)>0}

Clearly, the classical 0-1 loss is unweighted. Consider the α-weighted 0-1 loss (which is a
special case of the weighted loss (2)):

Uα(t, y) = (1− α)1{y=1}1{t≤0} + α1{y=−1}1{t>0},

where α ∈ (0, 1). In fact we see that minimization w.r.t. the 0-1 loss is equivalent to
that w.r.t. U1/2(f(X), Y ). It is not a coincidence that Bayes optimal f∗ has a threshold
1/2. The following lemma (Scott, 2012) shows that in fact for any α-weighted 0-1 loss, the
minimizer thresholds η(x) at α.

Lemma 15 (α-weighted Bayes optimal (Scott, 2012)) For α ∈ (0, 1),

f∗α := arg min
f
Rα(f) = sign(η(x)− α) .

At this juncture, we are interested in the following question: For a given δ, does there
exist an α ∈ (0, 1) such that the minimizer of Uα-risk under noisy distribution Dρ has the
same sign as that of the Bayes optimal f∗δ ? We now present our second main result in the
following theorem that makes a stronger statement — the Uα-risk under noisy distribution
Dρ is linearly related to Uδ-risk under the clean distribution D. The corollary of the theorem
answers the question in the affirmative.

Theorem 16 For any given δ ∈ (0, 1), for the choices,

α∗ = ρ−1 + (1− ρ+1 − ρ−1)δ and Aρ = 1− ρ+1 − ρ−1,

there exists a constant BX that is independent of f such that, for all functions f ,

Rα∗,Dρ(f) = AρRδ,D(f) +BX .
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Proof For simplicity, let us think of f as {±1}-valued. We have,

Cδ,D(f) = EY
[
(1− δ)1{Y=1}1{f(X)6=1} + δ1{Y=−1}1{f(X)6=−1}

]
and

Cα,Dρ(f) = EỸ
[
(1− α)1{Ỹ=1}1{f(X)6=1} + α1{Ỹ=−1}1{f(X)6=−1}

]
.

Note thatRδ,D(f) = EX [Cδ,D(f)], andRα,Dρ(f) = EX
[
Cα,Dρ(f)

]
. Also note that Cδ,D(f) =

(1− δ)η(X) if f(X) = −1, and Cδ,D(f) = δ(1− η(X)) otherwise.
Similarly, Cα,Dρ(f) = (1 − α)η̃(X) if f(X) = −1 and Cα,Dρ(f) = α(1 − η̃(X)) otherwise.
We want to find A and B such that the following equations hold simultaneously:

(1− α)η̃(X) = A(1− δ)η(X) +B

α(1− η̃(X)) = Aδ(1− η(X)) +B

Using the relation between η(X) and η̃(X) and solving for A we get,

A =
(1− ρ+1 − ρ−1)η(X) + ρ−1 − α

η(X)− δ
.

Choosing α = α∗ = ρ−1 + (1 − ρ+1 − ρ−1)δ, and simplifying, we get a constant A that
depends only on the noise rates:

A = Aρ = 1− ρ+1 − ρ−1.

Consequently,
B = ρ−1(1− α∗) + (δ − α∗)(1− ρ+1 − ρ−1)η(X).

Taking expectation with respect to X, we conclude:

Rα∗,Dρ(f) = AρRδ,D(f) +BX ,

where BX = EX [B].

Corollary 17 Let α∗ = ρ−1 + (1−ρ+1−ρ−1)δ∗D. The α?-weighted Bayes optimal classifier
under noisy distribution coincides with that of U measure under clean distribution:

argmin
f

Rα∗,Dρ(f) = argmin
f

Rδ∗D,D(f) = argmin
f
U(f ;D).

We are now ready to state our next main result — a certain weighted ERM is consistent:
i.e. the “true” performance of the empirical minimizer w.r.t. the noisy distribution con-
verges to the optimal performance U∗ at a steady rate. The resulting bound has a striking
resemblance to that of our first result in Theorem 9. The proof technique is similar to that
of Theorem 9, and crucially relies on using the relationship established in Theorem 16.
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Theorem 18 Given a convex loss function ` : R → [0,∞) with Lipschitz constant L such
that it is classification-calibrated (i.e. `

′
(0) < 0), consider the empirical risk minimization

problem with noisy labels:

f̂α = argmin
f∈F

1

n

n∑
i=1

`α(f(Xi), Ỹi). (8)

where `α is defined as in (2). Then, for the choice of α∗ in Corollary 17, there exists
a nondecreasing function ζ`α? with ζ`α? (0) = 0, such that the following bound holds with
probability at least 1− δ:

U∗ − U(f̂α∗ ;D) ≤ 1

Aρ
ζ`α?

(
min
f∈F

Rα∗,Dρ(f)−min
f
Rα∗,Dρ(f) + 4LR(F) + 2

√
log(1/δ)

2n

)
,

where Aρ = 1− ρ+1 − ρ−1.

Proof From Corollary 4.1 of Scott (2012), we can infer that `α is α-CC for given α ∈ (0, 1),
as ` is convex, classification-calibrated and `

′
(0) < 0. Then, from Theorem 3.1 of Scott

(2012), there exists an invertible, non-decreasing convex transformation ψ`α with ψ`α(0) = 0
such that, for any f and any distribution D,

ψ`α(Rα,D(f)−min
f
Rα,D(f)) ≤ R`α,D(f)−min

f
R`α,D(f).

Fix distribution to be Dρ, and let f = f̂α. The RHS of the above inequality can then
be controlled similarly as in the proof of Theorem 9. It is easy to see that the Lipschitz
constant of `α is same as that of `, denoted L. With probability at least 1− δ:

R`α,Dρ(f̂α)−min
f∈F

R`α,Dρ(f) ≤ 4LR(F) + 2

√
log(1/δ)

2n
.

Now consider Rα,Dρ(f)−minf Rα,Dρ(f). Using the linear relationship between Rα,Dρ and
Rδ∗D,D at α∗ (Theorem 16), we get Rα∗,Dρ(f)−minf Rα∗,Dρ(f) = Aρ(Rδ∗D,D(f)−R∗δ∗D). BX

vanishes because it is constant for the distribution Dρ. Note that ψ−1`α∗ is nondecreasing as

well and ψ−1`α∗ (0) = 0. Subtracting minf Rα∗,Dρ(f) from both sides of the second inequality
above, we get: With probability at least 1− δ,

Rδ∗D,D(f̂α∗)−R∗δ∗D ≤ A
−1
ρ ψ−1`α?

(
min
f∈F

Rα∗,Dρ(f)−min
f
Rα∗,Dρ(f) + 4LR(F) + 2

√
log(1/δ)

2n

)
.

Invoking Lemma 3 and setting ζ`α? = (a11 + a00 − a10 − a01)ψ−1`α? , the proof is complete.

6. Experiments

In our first set of experiments, we demonstrate the robustness of the proposed algorithms
to increasing rates of label noise on synthetic and real-world data sets. In our second set of
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experiments, we also conduct a comparison of the performance of our two proposed methods
with state-of-the-art methods for dealing with random label noise. In our experiments, we
use the two utility measures listed in Proposition 1, i.e. UAcc and UAM ; note that the utility
measures are computed with respect to the clean distribution. For given noise rates ρ+1

and ρ−1, labels are flipped accordingly. To account for randomness in the flips to simulate
a given noise rate, we repeat each experiment 3 times, with independent corruptions of the
data set for same setting of ρ+1 and ρ−1, and present the mean accuracy over the trials.
Specifically, we divide each data set randomly into three training and test sets, and compute
average utility over 3 train-test splits. We use cross-validation to tune parameters specific
to the algorithms. Note that we perform cross-validation on a separate validation set with
noisy labels. In our final set of experiments, we address a practical question of specifying
true noise rates to the algorithms, and study how misspecification of noise rates affects the
performance of the algorithms.

Proposed methods. For evaluation, we choose the following representative algorithms
based on each of the two proposed methods: For the method in Section 4, we use unbiased
estimator of the logistic loss. Here, the resulting ERM, i.e. (3) with `log, is solved using a
gradient descent procedure. We refer to this as ˜̀

log for ease in the remainder of the section.
For the method in Section 5 we use the widely-used C-SVM (Liu et al., 2003; Mordelet
and Vert, 2014) method as well as weighted logistic regression, wherein we apply different
costs on positive and negative examples in the respective loss functions. We use the libsvm

library to solve the resulting ERM problems, i.e. (8) with `hin or `log respectively. In all
the cases, we tune the parameters α, ρ+1 and ρ−1 by cross-validation (on noisy validation
set).

6.1 Synthetic data

First, we use the synthetic 2D linearly separable data set shown in Figure 1(a). We observe
from experiments that our methods achieve over 90% accuracy even when ρ+1 = ρ−1 = 0.4.
Figure 1 shows the performance of ˜̀

log on the data set for different noise rates. Next, we use a
2D UCI benchmark non-separable data set (‘banana’). The data set and classification results
using C-SVM (which corresponds to vanilla SVM for uniform noise rates, α∗ = 1/2) are
shown in Figure 2. The results for higher noise rates are impressive as observed from Figures
2(d) and 2(e). The ‘banana’ data set has been used in previous research on classification
with noisy labels. In particular, the Random Projection classifier (Stempfel and Ralaivola,
2007) that learns a kernel perceptron in the presence of noisy labels achieves about 84%
accuracy at ρ+1 = ρ−1 = 0.3 as observed from our experiments (as well as shown by Stempfel
and Ralaivola, 2007), and the random hyperplane sampling method (Stempfel et al., 2007)
gets about the same accuracy at (ρ+1, ρ−1) = (0.2, 0.4) (as reported by Stempfel et al.,
2007). Contrast these with C-SVM that achieves about 90% accuracy at ρ+1 = ρ−1 = 0.2
and over 88% accuracy at ρ+1 = ρ−1 = 0.4.

6.2 Comparison with state-of-the-art methods on UCI benchmark data

We next compare our methods with three state-of-the-art methods for dealing with random
classification noise: Random Projection (RP) classifier (Stempfel and Ralaivola, 2007),
NHERD (Crammer and Lee, 2010) (project and exact variants, which were shown to be the
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Figure 1: Classification of linearly separable synthetic data set using ˜̀
log. The noise-free

data is shown in the leftmost panel. Plots (b) and (c) show training data corrupted
with noise rates (ρ+1 = ρ−1 = ρ) 0.2 and 0.4 respectively. Plots (d) and (e) show
the corresponding classification results. The algorithm achieves 98.5% accuracy
even at 0.4 noise rate per class. (Best viewed in color).

best performing variants from among the NHERD family of methods proposed by Crammer
et al. 2006, 2009; Dredze et al. 2008), and perceptron algorithm with margin (PAM) which
was shown to be robust to label noise by Khardon and Wachman (2007). We use seven
standard UCI classification data sets listed in Table 1; here, data sets 1 through 6 are
preprocessed and made available by Gunnar Rätsch.1

Using linear kernel. Results for the accuracy measure, for different settings of noise rates,
using linear kernel in the compared methods, are shown in Table 2. C-SVM is competitive
in 5 out of 7 data sets (Breast cancer, Thyroid, German, Image and Spambase), while
relatively poorer in the other two. Note that in many cases, especially when ρ+1 = ρ−1, the
standard SVM (i.e. where positive and negative examples are weighted equally) as well as
C-SVM (where α parameter that controls the relative weighting is tuned) yield the same
accuracy, indicating that the cross-validation effectively selects equal weights; recall that
the theory indeed suggests when the noise rates are equal, the optimal choice of weights
are equal, i.e. α = 1/2 (see Section 5). The corresponding results for the AM measure, for
different settings of noise rates, are shown in Table 5. We find that C-SVM is competitive
in three data sets, and NHERD is competitive in most of the data sets. Also observe that

1. http://theoval.cmp.uea.ac.uk/matlab
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Figure 2: Classification of ‘banana’ data set using C-SVM. The noise-free data is shown
in (a). Plots (b) and (c) show training data corrupted with noise rates (ρ+1 =
ρ−1 = ρ) 0.2 and 0.4 respectively. Note that for ρ+1 = ρ−1, α

∗ = 1/2 (i.e. C-SVM
reduces to regular SVM). Plots (d) and (e) show the corresponding classification
results (Accuracies are 90.6% and 88.5% respectively). Even when 40% of the
labels are corrupted (ρ+1 = ρ−1 = 0.4), the algorithm recovers the class structures
as observed from plot (e). Note that the accuracy of the method at ρ = 0 is 90.8%.

at high noise rates AM is a more reliable measure of performance — in case of the four
data sets Breast cancer, Diabetes, Thyroid and German which have class imbalance, the
classifier optimized for the accuracy measure (Table 2) tends to bias its predictions towards
the majority class (suggested by accuracy values matching the class imbalance ratio) but
the achieved AM values are low.

We present the results for logistic loss based methods, using linear kernel, in Tables 3
and 6. As in the case of SVM based methods, we find, when ρ+1 = ρ−1, the standard
logistic regression (i.e. where positive and negative examples are weighted equally) as well
as weighted logistic regression in the third column (where α parameter that controls the
relative weighting is tuned) yield the same accuracy, indicating that the cross-validation
effectively selects equal weights. In terms of accuracy, we find that ˜̀

log (in the second
column) is competitive in all the data sets, wherease in terms of AM measure (see Table 6),
(weighted) logistic regression performs the best more often.
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Data set Dim Num. Positives Num. Negatives
Breast cancer 9 77 186
Diabetes 8 268 500
Thyroid 5 65 150
German 20 300 700
Heart 13 120 150
Image 18 1188 898
Spambase 57 1813 2788

Table 1: UCI data sets used in experiments.

Data set Noise rates SVM C-SVM PAM NHERD RP
ρ+1 = ρ−1 = 0.2 70.25 70.25 68.42 64.90 38.95

Breast cancer ρ+1 = 0.3, ρ−1 = 0.1 71.53 71.53 69.97 65.68 66.93
ρ+1 = ρ−1 = 0.4 69.49 70.77 44.25 56.50 55.95
ρ+1 = ρ−1 = 0.2 75.35 75.35 62.76 73.18 71.09

Diabetes ρ+1 = 0.3, ρ−1 = 0.1 75.52 75.52 57.64 74.74 73.26
ρ+1 = ρ−1 = 0.4 68.84 68.84 51.52 71.09 68.58
ρ+1 = ρ−1 = 0.2 81.94 81.94 63.58 78.49 78.89

Thyroid ρ+1 = 0.3, ρ−1 = 0.1 86.63 86.63 45.48 87.78 78.89
ρ+1 = ρ−1 = 0.4 76.63 76.63 70.98 85.95 70.69
ρ+1 = ρ−1 = 0.2 72.87 72.87 55.47 67.80 67.72

German ρ+1 = 0.3, ρ−1 = 0.1 69.46 69.46 50.02 67.80 63.93
ρ+1 = ρ−1 = 0.4 62.20 56.60 41.33 54.80 56.27
ρ+1 = ρ−1 = 0.2 82.96 82.96 73.09 82.96 76.05

Heart ρ+1 = 0.3, ρ−1 = 0.1 77.53 77.53 71.60 81.48 78.77
ρ+1 = ρ−1 = 0.4 78.27 72.35 61.23 52.59 72.59
ρ+1 = ρ−1 = 0.2 79.55 79.55 70.66 77.76 80.51

Image ρ+1 = 0.3, ρ−1 = 0.1 74.05 74.05 68.94 79.39 81.02
ρ+1 = ρ−1 = 0.4 73.73 73.73 63.66 69.61 70.79
ρ+1 = ρ−1 = 0.2 87.03 87.03 40.04 88.67 62.22

Spambase ρ+1 = 0.3, ρ−1 = 0.1 88.61 88.61 39.46 76.80 63.33
ρ+1 = ρ−1 = 0.4 81.28 81.28 39.17 82.03 66.00

Table 2: UAcc measure of classification (linear) algorithms on UCI benchmark data sets. Entries

within 1% from the best in each row are in bold. All the methods use linear kernel.

All method-specific parameters are estimated through cross-validation. We show the best

performing NHERD variant (‘project’ and ‘exact’) in each case.

Using Gaussian kernel. For kernelized algorithms, we set the Gaussian kernel width
parameter γ to 1/d where d is the dimensionality of data (the default parameter setting in
libsvm). The results comparing SVM based methods are presented in Tables 4 and 7 for
accuracy and AM measure respectively. We see a similar trend in performances as in the
case of linear kernel. Note that the NHERD method is not kernelizable, so the results are
omitted.

Overall, the experimental results support the theoretical guarantees; we observe that
the proposed methods are competitive and are able to tolerate moderate to high amounts
of label noise in the data.
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Data set Noise rates Logistic
Regression

Approach 1:
(3) with `log

Approach 2:
(8) with `log

ρ+1 = ρ−1 = 0.2 65.86 70.12 66.40
Breast cancer ρ+1 = 0.3, ρ−1 = 0.1 64.11 70.07 69.46

ρ+1 = ρ−1 = 0.4 59.51 67.79 56.43
ρ+1 = ρ−1 = 0.2 73.52 76.04 73.52

Diabetes ρ+1 = 0.3, ρ−1 = 0.1 71.96 75.52 72.48
ρ+1 = ρ−1 = 0.4 67.62 65.89 66.75
ρ+1 = ρ−1 = 0.2 82.54 87.80 82.54

Thyroid ρ+1 = 0.3, ρ−1 = 0.1 82.26 80.34 82.23
ρ+1 = ρ−1 = 0.4 77.28 83.10 76.36
ρ+1 = ρ−1 = 0.2 66.33 71.80 66.33

German ρ+1 = 0.3, ρ−1 = 0.1 66.93 71.40 68.33
ρ+1 = ρ−1 = 0.4 55.87 67.19 55.41
ρ+1 = ρ−1 = 0.2 81.23 82.96 81.23

Heart ρ+1 = 0.3, ρ−1 = 0.1 81.73 84.44 81.73
ρ+1 = ρ−1 = 0.4 73.58 57.04 73.58
ρ+1 = ρ−1 = 0.2 82.90 82.45 82.90

Image ρ+1 = 0.3, ρ−1 = 0.1 82.07 82.55 82.07
ρ+1 = ρ−1 = 0.4 76.25 63.47 76.25
ρ+1 = ρ−1 = 0.2 87.72 89.80 87.72

Spambase ρ+1 = 0.3, ρ−1 = 0.1 72.37 89.28 72.37
ρ+1 = ρ−1 = 0.4 79.88 80.22 79.88

Table 3: UAcc measure of logistic loss based classification algorithms on UCI benchmark data sets.

Entries within 1% from the best in each row are in bold. All the methods use linear kernel.

All method-specific parameters are estimated through cross-validation.
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Data set Noise rates SVM C-SVM PAM RP
ρ+1 = ρ−1 = 0.2 70.77 70.77 67.45 65.91

Breast cancer ρ+1 = 0.3, ρ−1 = 0.1 71.02 71.02 73.31 70.01
ρ+1 = ρ−1 = 0.4 62.64 62.64 60.56 63.92
ρ+1 = ρ−1 = 0.2 74.91 73.35 74.65 72.40

Diabetes ρ+1 = 0.3, ρ−1 = 0.1 73.87 73.09 72.66 68.14
ρ+1 = ρ−1 = 0.4 55.30 52.86 63.45 65.19
ρ+1 = ρ−1 = 0.2 92.23 92.23 91.92 83.53

Thyroid ρ+1 = 0.3, ρ−1 = 0.1 84.09 84.09 85.33 80.06
ρ+1 = ρ−1 = 0.4 73.86 73.86 82.56 84.43
ρ+1 = ρ−1 = 0.2 74.20 74.20 73.80 72.14

German ρ+1 = 0.3, ρ−1 = 0.1 70.40 70.40 70.67 72.60
ρ+1 = ρ−1 = 0.4 61.45 61.45 59.73 59.52
ρ+1 = ρ−1 = 0.2 66.17 70.86 78.27 78.27

Heart ρ+1 = 0.3, ρ−1 = 0.1 77.04 77.04 73.83 68.64
ρ+1 = ρ−1 = 0.4 60.00 60.74 67.41 68.89
ρ+1 = ρ−1 = 0.2 94.09 94.09 92.36 80.50

Image ρ+1 = 0.3, ρ−1 = 0.1 91.50 91.50 86.26 73.86
ρ+1 = ρ−1 = 0.4 81.11 81.11 80.38 75.29
ρ+1 = ρ−1 = 0.2 78.41 78.41 77.30 59.94

Spambase ρ+1 = 0.3, ρ−1 = 0.1 75.16 75.16 75.46 57.29
ρ+1 = ρ−1 = 0.4 62.72 65.20 63.55 55.01

Table 4: UAcc measure of classification (kernelized) algorithms on UCI benchmark data sets. Entries

within 1% from the best in each row are in bold. All the methods use Gaussian kernel with

width γ = 1/d (where d is the number of dimensions). All method-specific parameters are

estimated through cross-validation. NHERD algorithm is excluded as it is not kernelizable.
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Data set Noise rates SVM C-SVM PAM NHERD RP
ρ+1 = ρ−1 = 0.2 50.82 50.82 62.94 66.14 37.58

Breast cancer ρ+1 = 0.3, ρ−1 = 0.1 57.48 57.48 59.94 64.28 62.69
ρ+1 = ρ−1 = 0.4 52.59 50.83 56.52 56.21 56.02
ρ+1 = ρ−1 = 0.2 70.85 70.85 69.90 74.48 72.17

Diabetes ρ+1 = 0.3, ρ−1 = 0.1 75.26 75.26 66.19 76.66 73.80
ρ+1 = ρ−1 = 0.4 63.15 63.15 60.16 71.88 69.00
ρ+1 = ρ−1 = 0.2 72.16 72.16 67.25 77.67 74.16

Thyroid ρ+1 = 0.3, ρ−1 = 0.1 79.69 79.69 55.05 83.99 74.05
ρ+1 = ρ−1 = 0.4 64.23 64.23 55.45 82.97 66.62
ρ+1 = ρ−1 = 0.2 62.15 62.15 64.68 70.64 67.72

German ρ+1 = 0.3, ρ−1 = 0.1 69.59 69.59 63.09 70.45 65.23
ρ+1 = ρ−1 = 0.4 54.13 53.51 54.62 54.70 56.00
ρ+1 = ρ−1 = 0.2 81.82 81.82 75.05 82.97 75.99

Heart ρ+1 = 0.3, ρ−1 = 0.1 77.98 77.98 73.10 82.19 78.46
ρ+1 = ρ−1 = 0.4 76.42 67.81 66.16 52.07 72.85
ρ+1 = ρ−1 = 0.2 76.43 76.43 67.29 76.75 79.23

Image ρ+1 = 0.3, ρ−1 = 0.1 75.70 75.70 67.13 80.21 76.87
ρ+1 = ρ−1 = 0.4 69.68 69.68 58.03 70.64 70.68
ρ+1 = ρ−1 = 0.2 85.88 85.88 50.00 88.62 61.19

Spambase ρ+1 = 0.3, ρ−1 = 0.1 88.27 88.27 52.07 80.06 67.67
ρ+1 = ρ−1 = 0.4 78.81 78.81 50.00 81.51 63.26

Table 5: UAM measure of classification (linear) algorithms on UCI benchmark data sets. Entries

within 1% from the best in each row are in bold. All the methods use linear kernel.

All method-specific parameters are estimated through cross-validation. We show the best

performing NHERD variant (‘project’ and ‘exact’) in each case.
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Data set Noise rates Logistic
Regression

Approach 1:
(3) with `log

Approach 2:
(8) with `log

ρ+1 = ρ−1 = 0.2 65.95 59.58 65.20
Breast cancer ρ+1 = 0.3, ρ−1 = 0.1 61.61 56.28 65.75

ρ+1 = ρ−1 = 0.4 57.11 51.50 54.50
ρ+1 = ρ−1 = 0.2 74.70 63.37 74.70

Diabetes ρ+1 = 0.3, ρ−1 = 0.1 73.38 63.13 73.74
ρ+1 = ρ−1 = 0.4 68.18 56.07 67.19
ρ+1 = ρ−1 = 0.2 78.70 82.42 78.70

Thyroid ρ+1 = 0.3, ρ−1 = 0.1 79.28 68.04 79.38
ρ+1 = ρ−1 = 0.4 73.46 53.19 72.41
ρ+1 = ρ−1 = 0.2 69.24 67.47 69.24

German ρ+1 = 0.3, ρ−1 = 0.1 69.59 53.87 70.44
ρ+1 = ρ−1 = 0.4 57.07 51.50 56.65
ρ+1 = ρ−1 = 0.2 81.48 80.92 81.48

Heart ρ+1 = 0.3, ρ−1 = 0.1 81.73 83.37 81.73
ρ+1 = ρ−1 = 0.4 74.13 51.59 74.13
ρ+1 = ρ−1 = 0.2 81.79 80.23 81.79

Image ρ+1 = 0.3, ρ−1 = 0.1 81.12 81.18 81.12
ρ+1 = ρ−1 = 0.4 75.87 56.60 75.87
ρ+1 = ρ−1 = 0.2 88.38 89.05 88.38

Spambase ρ+1 = 0.3, ρ−1 = 0.1 76.78 88.27 76.78
ρ+1 = ρ−1 = 0.4 80.97 75.80 80.97

Table 6: UAM measure of logistic loss based classification algorithms on UCI benchmark data sets.

Entries within 1% from the best in each row are in bold. All the methods use linear kernel.

All method-specific parameters are estimated through cross-validation.
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Data set Noise rates SVM C-SVM PAM RP
ρ+1 = ρ−1 = 0.2 56.28 56.28 58.02 54.83

Breast cancer ρ+1 = 0.3, ρ−1 = 0.1 56.96 56.96 57.08 58.15
ρ+1 = ρ−1 = 0.4 50.84 50.84 49.84 52.89
ρ+1 = ρ−1 = 0.2 70.00 66.68 70.07 68.20

Diabetes ρ+1 = 0.3, ρ−1 = 0.1 73.98 71.29 72.90 69.32
ρ+1 = ρ−1 = 0.4 56.75 52.04 58.48 61.41
ρ+1 = ρ−1 = 0.2 88.87 88.87 89.77 84.72

Thyroid ρ+1 = 0.3, ρ−1 = 0.1 74.97 74.97 78.26 68.13
ρ+1 = ρ−1 = 0.4 66.70 66.70 74.53 80.59
ρ+1 = ρ−1 = 0.2 63.51 63.51 64.46 64.41

German ρ+1 = 0.3, ρ−1 = 0.1 67.79 67.79 67.71 65.86
ρ+1 = ρ−1 = 0.4 52.60 52.60 53.27 54.61
ρ+1 = ρ−1 = 0.2 63.98 68.86 77.41 77.65

Heart ρ+1 = 0.3, ρ−1 = 0.1 77.61 77.61 74.99 69.59
ρ+1 = ρ−1 = 0.4 57.80 56.44 66.71 65.85
ρ+1 = ρ−1 = 0.2 93.51 93.51 91.45 80.47

Image ρ+1 = 0.3, ρ−1 = 0.1 92.00 92.00 87.40 75.42
ρ+1 = ρ−1 = 0.4 78.90 78.90 77.78 75.58
ρ+1 = ρ−1 = 0.2 77.11 77.11 75.82 56.44

Spambase ρ+1 = 0.3, ρ−1 = 0.1 77.47 77.47 77.75 57.42
ρ+1 = ρ−1 = 0.4 55.52 59.57 60.84 53.27

Table 7: UAM measure of classification (kernelized) algorithms on UCI benchmark data sets. En-

tries within 1% from the best in each row are in bold. All the methods use Gaussian

kernel with width γ = 1/d (where d is the number of dimensions). All method-specific

parameters are estimated through cross-validation. NHERD algorithm is excluded as it is

not kernelizable.
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6.3 Knowledge of noise rates

The proposed algorithms require the knowledge of noise rates ρ+1 and ρ−1. However, in
practice, we do not know the true value of noise rates, and therefore we resort to cross-
validating the values in our experiments. In some cases (and domains), we may be able to
approximately specify noise rates. This motivates our study presented in Figure 3. True
noise rates ρ+1 = ρ−1 = ρ are misspecified as (ρ+1±ε, ρ−1±ε) for ε ∈ {0.1, 0.2, 0.3, 0.4}. The
ratio between the average accuracy for a given ε and the accuracy at ε = 0, i.e. when true
noise rates are specified, is a measure of sensitivity of the algorithms to ε-misspecification
of noise rates. We would want the ratio to be close to 1 for a given ε, which would suggest
that the method is fairly robust with respect to the ε-misspecification. The results in
Figure 3 show that the proposed methods are robust to ε-misspecification of noise rates,
which in turn suggests that our methods can find better use in applications where labels
can be noisy and noise rates are approximately known, without resorting to ad-hoc cross-
validation procedures on the noisy data. We emphasize here that in case the true noise rates
are known, our methods can benefit from that knowledge as observed from our experiments,
whereas the competitive methods cannot as they do not involve noise rates.

7. Conclusions and Future Work

We addressed learning in the presence of asymmetric random label noise with respect to gen-
eral cost-sensitive utilities. We have obtained general theoretical results as well as efficient
algorithms for this setting using the methods of unbiased estimators and weighted loss func-
tions. The proposed algorithms are easy to implement and the classification performance is
encouraging even at high noise rates and in particular is competitive with state-of-the-art
methods on benchmark data. Our developments provide a new family of methods that
can be applied to the positive-unlabeled learning problem (Elkan and Noto, 2008), but the
implications of our methods for this setting should be carefully analyzed. We could consider
harder noise models such as label noise depending on the example, and nastier variants of
label noise where labels to flip are chosen adversarially.

Our analysis in this paper covers cost-sensitive classification losses, but there are other
measures used in practice such as Fβ, that are not covered by our family. Consistent
learning for such general performance measures is beginning to be understood in the noise-
free setting (Koyejo et al., 2014; Narasimhan et al., 2014). It would be interesting to see
if we can extend some of the ideas in this paper to more general utility measures. It will
also be of interest to extend our methods to deal with label noise in more general learning
problems such as classification with a reject option, multiclass classification, learning with
partial labels, learning to rank, and multilabel classification. Some of these extensions have
begun to occur (van Rooyen and Williamson, 2015) but others are yet to be explored.
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(c) Huber online
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(d) Logistic online

Figure 3: Study of sensitivity of batch (˜̀
log) and online (Hinge, Huber and Logistic) meth-

ods (Algorithm 1) to specification of noise rates ρ+1 and ρ−1. True noise rates
ρ+1 = ρ−1 = ρ are misspecified as (ρ+1 ± ε, ρ−1 ± ε) for ε ∈ {0.1, 0.2, 0.3, 0.4}.
The ratio between the average accuracy for a given ε and the accuracy at ε = 0,
i.e. when true noise rates are specified, is plotted for different values of noise
rates ρ. The ratio is computed for each of the 6 UCI data sets in Table 1 and
the mean and the standard deviation of the ratios are shown. Ratio being equal
to 1 for a given ε means that the performance of the algorithm, on average, is
unaltered by misspecification of noise rates up to ε. As expected, the ratio de-
creases, i.e. the algorithms perform worse as ε increases. Most of the ratios being
close to 1 suggests that the proposed methods are fairly robust with respect to
ε-misspecification of noise rates.
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