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Abstract

Scaling kernel machines to massive data sets is a major challenge due to storage and
computation issues in handling large kernel matrices, that are usually dense. Recently,
many papers have suggested tackling this problem by using a low-rank approximation
of the kernel matrix. In this paper, we first make the observation that the structure
of shift-invariant kernels changes from low-rank to block-diagonal (without any low-rank
structure) when varying the scale parameter. Based on this observation, we propose a
new kernel approximation framework – Memory Efficient Kernel Approximation (MEKA),
which considers both low-rank and clustering structure of the kernel matrix. We show
that the resulting algorithm outperforms state-of-the-art low-rank kernel approximation
methods in terms of speed, approximation error, and memory usage. As an example,
on the covtype dataset with half a million samples, MEKA takes around 70 seconds and
uses less than 80 MB memory on a single machine to achieve 10% relative approximation
error, while standard Nyström approximation is about 6 times slower and uses more than
400MB memory to achieve similar approximation. We also present extensive experiments
on applying MEKA to speed up kernel ridge regression.

Keywords: kernel approximation, Nyström method, kernel methods

1. Introduction

Kernel methods (Schölkopf and Smola, 2002) are a class of machine learning algorithms
that first map samples from input space to a high-dimensional feature space. In the
high-dimensional feature space, various methods can be applied depending on the machine
learning task, for example, kernel support vector machine (SVM) (Cortes and Vapnik,
1995) (Hsieh, Si, and Dhillon, 2014a) and kernel ridge regression (Saunders, Gammerman,
and Vovk, 1998). A key issue in scaling up kernel machines is the storage and computation
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of the kernel matrix, which is usually dense. Storing the dense matrix takes O(n2) space,
while computing it requires O(n2d) operations, where n is the number of data points and d
is the dimension. A common approach to achieve scalability is to approximate the kernel
matrix using limited memory storage. This approach not only resolves the memory issue,
but also speeds up kernel machine solvers, because the time complexity for using the kernel
is usually proportional to the amount of memory used to represent the kernel. Most kernel
approximation methods aim to form a low-rank approximation G ≈ CCT for the kernel
matrix G, with C ∈ Rn×k and rank k � n. Although it is well known that Singular Value
Decomposition (SVD) yields the best rank-k approximation, it often cannot be applied as it
requires the entire kernel matrix to be computed and stored. To overcome this issue, many
methods have been proposed to approximate the best rank-k approximation of a kernel ma-
trix, including Greedy basis selection techniques (Smola and Schölkopf, 2000), incomplete
Cholesky decomposition (Fine and Scheinberg, 2001), and Nyström methods (Williams and
Seeger, 2001).

However, it is unclear whether low-rank approximation is the most memory efficient
way to approximate a kernel matrix. In this paper, we first make the observation that for
practically used shift-invariant kernels, the kernel structure varies from low-rank to block-
diagonal as the scaling parameter γ varies from 0 to ∞. This observation suggests that
even the best rank-k approximation can have extremely large approximation error when
γ is large, so it is worth exploiting the block structure of the kernel matrix. Based on
this idea, we propose a Memory Efficient Kernel Approximation (MEKA) framework to
approximate the kernel matrix. Our proposed framework considers and analyzes the use
of clustering in the input space to efficiently exploit the block structure of shift-invariant
kernels. We show that the individual blocks generated by kmeans clustering have low-
rank structure, which motivates us to apply Nyström low-rank approximation to each block
separately. Between-cluster blocks are then approximated in a memory-efficient manner.
Our approach only needs O(nk + (ck)2) memory to store a rank-ck approximation(where
c � n is the number of clusters), while traditional low-rank methods need O(nk) space to
store a rank-k approximation. Therefore, using the same amount of storage, our method can
achieve lower approximation error than the commonly used low-rank methods. Moreover,
our proposed method takes less computation time than other low-rank methods to achieve
a given approximation error.

Theoretically, we show that under the same amount of storage, the error bound of
our approach can be better than standard Nyström if the gap between the k + 1-st and
ck + 1-st singular values of G is larger than ‖∆‖2 where ∆ consists of all between-cluster
blocks. On real datasets, our proposed algorithm consumes less memory and computation
time to achieve comparable reconstruction error. For example, on the covtype dataset with
half million samples, MEKA takes around 70 seconds and uses less than 80 MB memory
on a single machine to achieve 10% relative approximation error, while standard Nyström
approximation takes more than 400 seconds and uses more than 400MB memory to achieve
similar approximation. Also, MEKA is faster for kernel ridge regression compared with other
state-of-the-art kernel approximation methods. As an example, on the mnist2m dataset with
2 million samples, our method takes 550 seconds on a single machine using less than 500
MBytes memory to achieve accuracy comparable with standard Nyström approximation,
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which takes more than 2700 seconds and uses more than 2 GBytes memory on the same
problem.

Parts of this paper have appeared previously in (Si, Hsieh, and Dhillon, 2014a). In this
paper, we provide: (1) a more detailed survey of state-of-the-art methods; (2) much more
comprehensive experimental comparisons; (3) thorough investigation of the influence of the
parameters in our method; (4) the application of applying the block structure of kernel
matrix to speed up kernel SVM; and (5) more discussion including how to achieve stable
results and solve non-psd issues in MEKA.

The rest of the paper is outlined as follows. We first present related work in Section
2. We then explain the popular Nyström approximation method and present motivation
for our framework in Section 3. We then show the block structure of kernel matrix and its
application to speed up kernel SVM in Section 4. Our main kernel approximation algorithm
MEKA is proposed and analyzed in Section 5. Experimental results are given in Section 6,
and conclusion and discussion are provided in Section 7.

2. Related Research

To approximate the kernel matrix using limited memory, one common way is to use a low-
rank approximation. The best rank-k approximation can be obtained by the SVD, but it is
computationally prohibitive when n grows to tens of thousands. To address the scalability
issue of SVD, approximate SVD solvers such as randomized SVD (Halko, Martinsson, and
Tropp, 2011) have been widely used for large-scale data. To exploit the sparse structure of
large-scale network data, an alternative is to apply CUR matrix decomposition (Mahoney
and Drineas, 2009) that explicitly expresses the low-rank decomposition in terms of a small
number of rows and columns of the original data matrix. Another way is building a hi-
erarchical tree to initialize a block Lanczos algorithm to efficiently compute the spectral
decomposition of large-scale graphs (Si, Shin, Dhillon, and Parlett, 2014b). Unfortunately,
to approximate kernel matrices, all the above approaches need to compute the entire kernel
matrix, so the time complexity is at least O(dn2).

Many algorithms have been proposed to overcome the prohibitive time and space com-
plexity of SVD for approximating kernel matrices. They can be categorized into two classes:
methods that explicitly approximate kernel matrices, and methods that approximate the
kernel function.

Approximating the kernel matrix. The first class of approaches approximate
the kernel matrix based on a subset of sampled elements; as a result, all of them are data
dependent. The Nyström method (Williams and Seeger, 2001) is the most widely used
technique to approximate the kernel matrix given a sampled subset of columns. To ap-
proximate a rank-k approximation, Nyström approximation requires O(nk2 + k3) time to
form the rank-k approximation. Many strategies have been proposed to improve over the
basic Nyström approximation, including ensemble Nyström (Kumar, Mohri, and Talwalkar,
2009), Nyström with k-means to obtain benchmark points (Zhang, Tsang, and Kwok, 2008;
Zhang and Kwok, 2010), randomized Nyström (Li, Kwok, and Lu, 2010), Nyström approx-
imation with shift (Wang et al., 2014), adding ”pseudo landmark points” to the Nyström
approximation (Hsieh, Si, and Dhillon, 2014b), and fast-Nys that uses fast transform to
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generate structured landmark points to speed up Nyström approximation (Si, Hsieh, and
Dhillon, 2016).

Different Nyström sampling strategies are analyzed and compared in (Kumar, Mohri,
and Talwalkar, 2012; Gittens and Mahoney, 2013). Besides Nyström approximation, Fine
and Scheinberg (2001) use the incomplete Cholesky decomposition with pivoting for ap-
proximating kernel matrices, which requires O(nk2 + nkd) time for computing a rank-k
approximation. Bach and Jordan (2005) incorporate side information (labels) into the in-
complete Cholesky decomposition, and show that the resulting problem can be solved with
the same O(nk2 + nkd) time complexity. Finally, Achlioptas, McSherry, and Schölkopf
(2001) propose a sampling and reweighted approach to obtain an unbiased estimator of the
kernel-vector product, and use subspace iteration to approximate the top k eigenvectors.

Approximating the kernel function. The second class of methods is to directly
approximate the kernel function without computing elements of the kernel matrix, so the
approximation does not depend on the data. To approximate the kernel function, a typical
approach is to find a feature mapping Z : Rd → Rk where the kernel function K(x,y) can
be approximated by Z(x)TZ(y). Rahimi and Recht (2007, 2008) define the random feature
map for shift invariant kernel functions based on the Fourier transform. In the resulting
Random Kitchen Sinks (RKS) algorithm, the main computation turns out to be the matrix
vector multiplication Wxi for each instance xi, where W is a Gaussian random matrix. To
improve efficiency, Le, Sarlos, and Smola (2013) show that the computation of Wxi can be
sped up by the fast Hadamard transform. On the other hand, Yang et al. (2014) propose
to use a quasi Monte Carlo approach to improve the approximation performance of RKS.
In addition to shift invariant kernels, Kar and Karnick (2012) construct the random feature
map for polynomial kernels, and Hamid et al. (2014) propose the condensed random feature
map to improve performance.

Besides the above approaches based on random feature maps, there are other methods
that directly approximate the kernel function. Cotter, Keshet, and Srebro (2011) approxi-
mate the Gaussian kernel by the t-th order Taylor expansion, but it requires O(dt) features,
which is computationally burdensome for large d or t. Chang et al. (2010) propose to use
the kernel expansion for low-degree polynomial kernels. Recently, Yang et al. (2012) showed
that the Nyström method has a better generalization error bound than the RKS approach
if the gap in the eigen-spectrum of the kernel matrix is large.

Most of the above methods can be viewed as faster ways to find a rank-k approximation
of the kernel matrix, so the approximation error is always worse than the top-k SVD when
using O(nk) memory. As we show in Section 3, the kernel matrix typically changes from low-
rank to block structure as the scaling parameter γ increases. However, the block structure
of the kernel matrix has never been considered in dense kernel approximation, although
it has been studied for approximation of other types of matrices. For example, Savas and
Dhillon (2011) applied Clustered Low Rank Approximation (CLRA) to approximate large
and sparse social networks. CLRA applies spectral or graph clustering to the adjacency
matrix of a social network, runs SVD on each diagonal block, and uses matrix projection to
capture off-diagonal information. All these steps require storage of the entire matrix, thus
they are infeasible for large-scale dense kernel matrices. For example, computing the entire
kernel matrix of the mnist2m dataset would require about 8 TBytes of memory; moreover
the time for computing the SVD and projection steps is prohibitive. On the same dataset
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our proposed approach can obtain accurate results in 10 minutes with only 500 MBytes
memory (as shown in Section 6). To achieve this, we need totally different algorithms than
the ones in CLRA for clustering and approximating blocks to yield our memory-efficient
scheme.

More specifically, CLRA was designed to approximate sparse adjacency matrices, but
cannot be directly applied to large kernel matrices as that would require computation and
storage of the entire kernel matrix at a cost of O(n2d) time and O(n2) space. To over-
come this problem, we propose the following innovations: (1) We perform clustering, and
then apply Nyström approximation to within-cluster blocks to avoid computing all within-
block entries; (2) We theoretically justify the use of kmeans clustering to explore the block
structure of the kernel; (3) We propose a sampling approach to capture between-block in-
formation; (4) We theoretically show the error bound of our method and compare it with
the traditional Nyström approach.

3. Preliminaries and Motivation

Let K(·, ·) denote the kernel function, and G ∈ Rn×n be the corresponding kernel matrix
where Gij = K(xi,xj), and xi, xj ∈ Rd are data points. Computing and storing the kernel
matrix G usually takes O(n2d) time and O(n2) space, which is prohibitive when there are
millions of samples. One way to deal with these challenges is to approximate the dense kernel
matrix G by a low-rank approximation G̃. By doing this, kernel machines are transformed
to linear problems which can be solved efficiently. The best rank-k approximation of G
is given by its singular value decomposition(SVD), i.e., G ≈ UkΣkUk

T , where Σk is the
diagonal matrix of largest k singular values and Uk contains the corresponding singular
vectors.

However, computing the SVD of G is computationally prohibitive and memory intensive.
Many fast kernel approximation algorithms have thus been proposed and studied. Nyström
kernel approximation is a widely used approximation approach, which uses a sample of
m data points and does not need to form the entire G explicitly to generate its low-rank
approximation. In standard Nyström approximation (proposed in Williams and Seeger
(2001)), we first uniformly at random sample m data points and assemble the corresponding
m columns of G as the n ×m matrix C. Let M be the m ×m kernel matrix between the
m sampled points, then the standard Nyström method generates a rank-k approximation
to G as

G ≈ G̃ = CM+
k C

T , (1)

where Mk is the best rank-k approximation of M (by SVD) and M+
k is its pseudo-inverse.

Various extensions to this Nyström based kernel approximation have been proposed. For
example, k-means Nyström(Zhang, Tsang, and Kwok, 2008; Zhang and Kwok, 2010) uses
clusters centroids as the landmark points to form C; ensemble Nyström(Kumar, Mohri,
and Talwalkar, 2009) combines a collection of standard Nyström approximations. We will
compare state-of-the-art Nyström based methods in Section 6.

We use the Gaussian kernel as an example to discuss the structure of the kernel matrix
under different scale parameters. Given two samples xi and xj , the Gaussian kernel is

given by K(xi,xj)=e−γ‖xi−xj‖22, where γ is a scale or width parameter; the corresponding
kernel matrix entries are Gij = K(xi,xj). Low-rank approximation has been widely used
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to obtain an approximation for kernel matrices. However, under different scale parameters,
the kernel matrix has quite different structures, suggesting that different approximation
strategies should be used for different γ.

Let us examine two extreme cases of the Gaussian kernel: when γ → 0, G→ eeT where
e = [1, . . . , 1]T . As a consequence, G is close to low-rank when γ is small. However, at
the other extreme as γ → ∞, G changes to the identity matrix, which has full rank with
all eigenvalues equal to 1. In this case, G does not have a low-rank structure, but has a
block/clustering structure. This observation motivates us to consider both low rank and
clustering structure of the kernel matrix. Figures 1a and 1b give an example of the structure
of a Gaussian kernel with different γ on a real dataset by randomly sampling 5000 samples
from the covtype dataset.

Before discussing further details, we first contrast the use of block and low-rank ap-
proximations on the same dataset. We compare approximation errors for different methods
when they use the same amount of memory in Figure 1c. Clearly, low-rank approximation
methods work well only for very small γ values. Block Kernel Approximation (BKA), as
proposed in Section 4.1, is a simple way to use clustering structure of G that is effective for
large γ. Our proposed algorithm, MEKA, considers both block and low-rank structure of
the kernel, and thus performs better than others under different γ values as seen in Figure
1c.

(a) The Gaussian kernel matrix
with γ = 0.1 on covtype dataset

(b) The Gaussian kernel matrix
with γ = 1 on covtype dataset

(c) Comparison of different kernel
approximation methods for various
γ.

Figure 1: (a) and (b) show that the structure of the Gaussian kernel matrix K(x,y) =
e−γ‖x−y‖

2
for the covtype data tends to become more block diagonal as γ increases(dark

regions correspond to large values, while lighter regions correspond to smaller values). Plot
(c) shows that low-rank approximations work only for small γ, and Block Kernel Approx-
imation (BKA) works for large γ, while our proposed method MEKA works for small as
well as large γ.

4. Block Kernel Approximation

In this section, we first introduce Block Kernel Approximation (BKA), a simple way to
exploit the clustering structure of kernel matrices, and then show its application for speeding
up kernel SVM.
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4.1 Clustering Structure of Shift-invariant Kernel Matrices

There has been substantial research on approximating shift-invariant kernels (Rahimi and
Recht, 2007). A kernel function K(xi,xj) is shift-invariant if the kernel value depends only
on xi − xj , that is, K(xi,xj) = f(η(xi − xj)) where f(·) is a function that maps Rd to
R, and η > 0 is a constant to determine the “scale” of the data. η is very crucial to the
performance of kernel machines and is usually chosen by cross-validation. We further define
gu(t) = f(ηtu) to be a one variable function along u’s direction where u is an unit vector.
We assume the kernel function satisfies the following property:

Assumption 1 gu(t) is differentiable for all t 6= 0.

Most of the practically used shift-invariant kernels satisfy the above assumption, for ex-
ample, the Gaussian kernel (K(x,y) = e−γ‖x−y‖

2
2), and the Laplacian kernel (K(x,y) =

e−γ‖x−y‖1). It is clear that η2 is equivalent to γ for the Gaussian kernel if written in the
form of K(x,y) = f(η(x−y)). When η is large, off-diagonal blocks of shift-invariant kernel
matrices will become small, and most of the information is concentrated in the diagonal
blocks. To approximate the kernel matrix by exploiting this clustering structure, we first
present a simple Block Kernel Approximation (BKA) as follows. Given a good partition
V1, . . . ,Vc of the data points, where each Vs is a subset of {1, . . . , n}, BKA approximates
the kernel matrix as:

G ≈ G̃ ≡


G(1,1) 0 . . . 0

0 G(2,2) . . . 0
...

...
. . .

...

0 0 . . . G(c,c)

 . (2)

Here, G(s,s) denotes the kernel matrix for block Vs – note that this implies that diagonal
blocks G̃(s,s) = G(s,s) and all the off-diagonal blocks, G̃(s,t) = 0 with s 6= t.

BKA is useful when η is large. By analyzing its approximation error, we now show that
k-means in the input space can be used to capture the clustering structure for shift-invariant
kernels. The approximation error equals ‖G̃−G‖2F =

∑
i,jK(xi,xj)

2−
∑c

s=1

∑
i,j∈Vs K(xi,xj)

2.

Since the first term is fixed, minimizing the error ‖G̃ − G‖2F is the same with maximizing
the second term, the sum of squared within-cluster entries D =

∑c
s=1

∑
i,j∈Vs K(xi,xj)

2.

However, directly maximizing D will not give a useful partition – the maximizer will
assign all the data into one cluster. The same problem occurs in graph clustering (Shi and
Malik, 2000; von Luxburg, 2007). A common approach is to normalize D by each cluster’s
size |Vs|. The resulting spectral clustering objective (also called ratio association) is:

Dkernel({Vs}cs=1) =

c∑
s=1

1

|Vs|
∑
i,j∈Vs

K(xi,xj)
2. (3)

Maximizing (3) usually yields a balanced partition, but the computation is expensive be-
cause we have to compute all the entries in G. In the following theorem, we derive a lower
bound for Dkernel({Vs}cs=1):
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Theorem 1 For any shift-invariant kernel that satisfies Assumption 1,

Dkernel({Vs}cs=1) ≥ C̄ − η2R2Dkmeans({Vs}cs=1) (4)

where C̄ = nf(0)2

2 , R is a constant depending on the kernel function, and Dkmeans ≡∑c
s=1

∑
i∈Vs ‖xi − ms‖22 is the k-means objective function, where ms = (

∑
i∈Vsxi)/|Vs|,

s=1,· · ·, c, are the cluster centers.

Proof We use u to denote the unit vector in the direction of xi − xj (xi 6= xj). By the
mean value theorem, we have

K(xi,xj) = gu(η‖xi − xj‖2) = gu(0) + ηg′u(s)‖xi − xj‖2

for some s ∈ (0, η‖xi − xj‖2). By definition, f(0) = gu(0), so

f(0) ≤ K(xi,xj) + ηR‖xi − xj‖2, (5)

where R := sup
θ∈R,‖v‖=1

|g′v(θ)|. (6)

Squaring both sides of (5) we have

f(0)2 ≤K(xi,xj)
2 + η2R2‖xi − xj‖22 + 2K(xi,xj)(ηR‖xi − xj‖2).

From the classical arithmetic and geometric mean inequality, we can upper bound the last
term by

2K(xi,xj)(ηR‖xi − xj‖2) ≤ K(xi,xj)
2 + η2R2‖xi − xj‖22,

therefore
f(0)2

2
≤ K(xi,xj)

2 + η2R2‖xi − xj‖22. (7)

Plugging (7) into (3), we have

Dkernel({Vs}cs=1) ≥
c∑
s=1

1

|Vs|
∑
i,j∈Vs

(
f(0)2

2
− η2R2‖xi − xj‖22

)

≥ nf(0)2

2
− η2R2

c∑
s=1

1

|Vs|
∑
i,j∈Vs

‖xi − xj‖22,

which can be manipulated to prove the desired bound (4).

Interestingly, the right hand side of (4) can be maximized when the k-means objective
function Dkmeans is minimized. Therefore, although optimal solutions for k-means and
ratio association might be different (consider the two circles data, when each circle forms
a cluster), Theorem 1 shows that conducting k-means in the input space will provide a
reasonably good way to exploit the clustering structure of shift-invariant kernels, especially
when it is infeasible to perform spectral clustering on G which might need precomputation
of the entire kernel matrix. Figure 2 shows that the partition from k-means can often work
as well as spectral clustering on G, which directly optimizes Dkernel, and both of them are
much better than random partitions. One advantage of conducting k-means is that the
time complexity of each iteration is O(ndc), which is much less than computing the kernel
when the dimensionality d� n.
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(a) covtype (b) cadata

Figure 2: The Gaussian kernel approximation error of BKA using different ways to generate
five partitions on 500 samples from covtype and cadata; on these data sets k-means in the
input space performs similarly to spectral clustering on the kernel matrix, but is more
efficient.

4.2 Speeding up Kernel SVM with BKA

In this section we will show how to use block kernel approximation(BKA) to divide kernel
SVM problem into subproblems and significantly speed up the computation. Given a set of
instance-label pairs (xi, yi), i = 1, . . . , n,xi ∈ Rd and yi ∈ {1,−1}, the main task in training
the kernel SVM is to solve the following quadratic optimization problem:

min
α
f(α) =

1

2
αTQα− eTα, s.t. 0 ≤ α ≤ C, (8)

where e is the vector of all ones; C is the balancing parameter between loss and regulariza-
tion in the SVM primal problem; α ∈ Rn is the vector of dual variables; and Q is an n× n
matrix with Qij = yiyjGij , where Gij = K(xi,xj) is the kernel value between i-th and j-th
sample. Letting α∗ denote the optimal solution of (8), the decision value for a test data x
can be computed by

n∑
i=1

α∗i yiK(x,xi). (9)

Due to high computation cost of directly solving kernel SVM, we can approximate the
kernel matrix G by BKA to divide whole kernel SVM problem into subproblems, where
each subproblem can be handled efficiently and independently.

To do this, we first partition the dual variables into k subsets {V1, . . . ,Vk}, where
{V1, . . . ,Vk} are partitions generated by performing kmeans on the data points, and then
solve the respective subproblems independently

min
α(c)

1

2
(α(c))

TQ(c,c)α(c)−eTα(c), s.t. 0≤α(c)≤C, (10)

where c = 1, . . . , k, α(c) denotes the subvector {αi | i ∈ Vc} and Q(c,c) is the submatrix of
Q with row and column indexes Vc.
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dataset
Number of Number of

d
training samples testing samples

ijcnn1 49,990 91,701 22
census 159,619 39,904 409
covtype 464,810 116,202 54

Table 1: Dataset statistics

The quadratic programming problem (8) has n variables, and takes at least O(n2)
time to solve in practice. By dividing it into k subproblems (10) with equal sizes, the time
complexity for solving the subproblems can be reduced to O(k ·(nk )2) = O(n2/k). Moreover,
the space requirement is also reduced from O(n2) to O(n2/k2).

After computing all the subproblem solutions, we concatenate them to form an approxi-
mate solution for the whole problem ᾱ = [ᾱ(1), . . . , ᾱ(k)], where ᾱ(c) is the optimal solution
for the c-th subproblem.

4.3 Comparing BKA-SVM with Low-rank Kernel SVM Solvers(BKA-SVM)

We now compare block structure based kernel SVM solver–BKA-SVM with low-rank struc-
ture based kernel SVM solvers. All the experiments are conducted on an Intel 2.66GHz
CPU with 8G RAM. We use 3 benchmark datasets as shown in Table 1. The thee datasets
can be downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

or the UCI data repository. We use a random 80%-20% split for covtype, and the original
training/testing split for other datasets.

4.3.1 Competing Methods

We include the following exact kernel SVM solvers (LIBSVM), approximate low-rank SVM
solvers (LLSVM, FastFood) in our comparison:

1. LIBSVM: the implementation in the LIBSVM library (Chang and Lin, 2011) with a
small modification to handle SVM without the bias term – we observe that LIBSVM
has similar test accuracy with/without bias. We also include the results for using
LIBSVM with random 1/5 subsamples on each dataset in Table 2.

2. LLSVM: improved Nyström method for nonlinear SVM by (Wang et al., 2011). We
solve the resulting linear SVM problem by the dual coordinate descent solver in LIB-
LINEAR (Hsieh et al., 2008).

3. FastFood: use random Fourier features to approximate the kernel function (Le et al.,
2013). We solve the resulting linear SVM problem by the dual coordinate descent
solver in LIBLINEAR.

Both LLSVM and FastFood use low-rank representation to approximate kernel matrix so
that to speed up solving kernel SVM.

10

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets


Memory Efficient Kernel Approximation

ijcnn1 census covtype
C = 32, γ = 2 C = 512, γ = 2−9 c = 32, γ = 32

time(s) acc(%) time(s) acc(%) time(s) acc(%)

BKA-SVM 5 98.49 838 94.72 436 96.05

LIBSVM 115 98.69 2920 94.2 83631 96.15

LIBSVM (subsample) 6 98.24 641 93.2 5330 92.46

LLSVM 38 98.23 1212 92.8 4451 84.21

FastFood 87 95.95 851 91.6 8550 80.1

Table 2: Comparison on real datasets using the RBF kernel.

4.3.2 Parameter Setting

We consider the RBF kernel K(xi,xj) = exp(−γ‖xi − xj‖22). We use same kernel func-
tion for both training and test phases. We chose the balancing parameter C and kernel
parameter γ by 5-fold cross validation on a grid of points: C = [2−10, 2−9, . . . , 210] and
γ = [2−10, . . . , 210] for ijcnn1, census, and covtype. For BKA-SVM, we set the number of
clusters to be 64 for these three datasets. There is a tradeoff between the number of clus-
ters and prediction accuracy. If we increase the number of clusters, BKA-SVM will become
faster, but the prediction accuracy will mostly decrease. On the other hand, if the number
of clusters is set smaller, BKA-SVM can achieve higher accuracy (in most cases), while
takes more time to train. The following are parameter settings for other methods in Table
2: the rank is set to be 3000 in LLSVM; number of Fourier features is 3000 in Fastfood1;
the tolerance in the stopping condition for LIBSVM is set to 10−3 (the default setting of
LIBSVM).

Tables 2 present time taken and test accuracies. Experimental results show that the
BKA-SVM achieves near-optimal test performance. Also we observe that BKA-SVM per-
forms better than low-rank approximation based methods for kernel SVM problem showing
the benefit of using block structure of kernel matrix.

We can see that BKA exploits the block structure of kernel matrix, and can speed up
the training of kernel SVM. As shown in Tandon et al. (2016), BKA can also be used for
speeding up kernel ridge regression problem. About the memory requirement, which is the
main theme of this paper, BKA takes O(n

2

k ) memory to approximate the kernel matrix,
while popular low-rank based kernel approximation methods are more memory efficient,
and only need linear memory to represent the kernel matrix.

5. Memory Efficient Kernel Approximation

There are two main drawbacks of the BKA approach: (i) it ignores all off-diagonal blocks,
which results in large error when η is small (as seen in Figure 1(c)); (ii) for large-scale kernel
approximation, it is too expensive to compute and store all the diagonal block entries. To

1. In Fastfood we control the number of blocks so that number of Fourier features is close to 3000 for each
dataset.
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overcome these two drawbacks, we propose to use low-rank representation for each block in
the kernel matrix.

5.1 Low Rank Structure of Each Block

To motivate the use of low-rank representation in our proposed method, we first present
the following bound:

Theorem 2 Given data points x1, . . . ,xn ∈ Rd, and a partition V1, . . . ,Vc, and assume f
is Lipschitz continuous, then for any s, t (s = t or s 6= t)

‖G(s,t)−G(s,t)
k ‖F ≤4Ck−1/d

√
|Vs||Vt|min(rs, rt),

where G
(s,t)
k is the best rank-k approximation to G(s,t); C is the Lipschitz constant of the

shift-invariant function f ; rs is the radius of the s-th cluster.

Proof To prove this theorem, we use the ε-net theorem in (Cucker and Smale, 2001),
which states that when all the data xi ∈ Rd, i = 1, · · · , n are in a ball with radius r, there
exist T = (4r

r̄ )d balls of radius r̄ that cover all the data points. If we set T to be k, then

r̄ = k−1/d4r.
Let x1, . . . ,xns be the data points in the s-th cluster, and let y1, . . . ,ynt

be the data

points in the t-th cluster, and ns = |Vs|, nt = |Vt|. Our goal is to show that G(s,t) is low-

rank, where G
(s,t)
i,j = K(xi,yj). Assume rt is the radius of the t-th cluster, therefore we can

find k balls with radius r̄ = k−1/d4rt to cover {yj}nt
j=1.

Assume centers of the balls for t-th cluster are m1,m2, . . . ,mk, then we can form a
low-rank matrix Ḡ(s,t) = Ū V̄ T , where for all i = 1, . . . , ns, j = 1, . . . , nt, and q = 1, . . . , k,

Ūi,q = K(xi,mq) and V̄j,q =

{
1 if yj ∈ Ball(mq),

0 otherwise.

Assume yj is in ball q, then

(G
(s,t)
ij − Ḡ(s,t)

ij )2 = (f(xi − yj)− f(xi −mq))
2

≤ C2‖(xi − yj)− (xi −mq)‖2

= C2‖yj −mq‖22
≤ C2r̄2.

Therefore, if (G(s,t))∗ is the best rank-k approximation for G(s,t), then

‖G(s,t) − (G(s,t))∗‖F ≤ ‖G(s,t) − Ḡ(s,t)‖F ≤ Ck−1/d4rt
√
nsnt. (11)

Similarly, by covering s-th cluster {xi}ns
i=1 with k balls we can get the following inequality:

‖G(s,t) − (G(s,t))∗‖F ≤ Ck−1/d4rs
√
nsnt. (12)

Combining (11) and (12) gives the results.

12
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16 14 13 7 7

14 29 13 9 9

13 13 20 10 10

7 9 10 29 11

7 9 10 11 28

(a) k-means clustering.

139 99 101 44 45

99 116 86 43 44

101 86 131 46 47

44 43 46 47 45

45 44 47 45 49

(b) a random partition.

Table 3: Rank of each of the 5 blocks (from a subsampled ijcnn1 data set) using different
partition strategies: (a) by k-means clustering; (b) by a random partition.

Theorem 2 suggests that each block(diagonal or off-diagonal block) of the kernel matrix
will be low-rank if we find the partition by k-means in the input space and the radius of the
cluster is small. In the following we present empirical confirmation of this result. In Table
3, we present the numerical rank of each block, where numerical rank for a m by n matrix
A is defined as the number of singular values with magnitude larger than max(n,m)‖A‖2δ
where δ is a small tolerance 10−6. We sample 4000 data points from the ijcnn1 dataset and
generate 5 clusters by k-means and random partition. Table 3a shows the numerical rank
for each block using k-means, while Table 3b shows the numerical rank for each block when
the partitions are random. We observe that by using k-means, the rank of each block is
fairly small.

5.2 Memory Efficient Kernel Approximation (MEKA)

Based on the above observation, we propose a fast and memory efficient scheme to approx-
imate shift-invariant kernel matrices. As suggested by Theorem 2, each block tends to be
low-rank after k-means clustering; thus we can form a rank-k approximation for each of
the c2 blocks separately to achieve low error; however, this approach would require O(cnk)
memory, which can be prohibitive. Therefore, our proposed method first performs k-means
clustering, and after rearranging the matrix according to clusters, it computes the low-rank
basis only for diagonal blocks (which are more dominant than off-diagonal blocks) and uses
them to approximate off-diagonal blocks. Empirically, we observe that the principal angles
between the dominant singular subspaces of diagonal block and off-diagonal block are small
(as shown in Figure 3). In Figure 3, we randomly sampled 1000 data points from the cov-
type and ijcnn1 datasets and generated 5 clusters by k-means for each dataset. The blue
line shows the cosines of the principal angles between the dominant singular subspace of a
diagonal block G(s,s) and that of an off-diagonal block G(s,t) for different ranks k, where s
and t are randomly chosen. We can observe that most of the cosines are close to 1, showing
that there is substantial overlap between the dominant singular subspaces of the diagonal
and off-diagonal block.

By using our proposed approach, we focus on diagonal blocks, and spend less effort
on the off-diagonal blocks. Assume the rank-ks approximation of the sth diagonal block is

13
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(a) covtype (b) ijcnn1

Figure 3: The cosines of the principal angles between the dominant singular subspaces of
diagonal block and off-diagonal block of a Gaussian kernel ((a): γ = 0.1 and 1000 random
samples from covtype; (b): γ = 1 and 1000 random samples from ijcnn1) with respect to
different ranks. The cosines of the principal angles are close to 1 showing that two subspaces
are similar.

W (s)L(s,s)(W (s))T , we form the following memory-efficient kernel approximation:

G̃ = WLW T , (13)

where W is a diagonal matrix as

W ≡


W (1) 0 . . . 0

0 W (2) . . . 0
...

...
. . .

...

0 0 . . . W (c)

 ; (14)

and L is a “link” matrix consisting of c2 blocks, where each ks×kt block L(s,t) captures the
interaction between the sth and tth clusters. For now, let us first assume ks = k ∀s (we will
discuss different strategies to choose ks later). Note that if we were to restrict L to be a
block diagonal matrix, G̃ would still be a block diagonal approximation of G. However, we
consider the more general case that L is dense. In this case, each off-diagonal block G(s,t)

is approximated as W (s)L(s,t)(W (t))T , and this approximation is memory efficient as only
O(k2) additional memory is required to represent the (s, t) off-diagonal block. If a rank-k
approximation is used within each cluster, then the generated approximation has rank ck,
but only needs a total of O(nk + (ck)2) storage.

Computing W (s). Since we aim to deal with dense kernel matrices of huge size, we
use the standard Nyström approximation to compute low-rank “basis” for each diagonal
block. When applying the standard Nyström method to a ns × ns block G(s,s), we sample
m columns from G(s,s), evaluate their kernel values, compute the rank-k pseudo-inverse of

an m × m matrix, and form G(s,s) ≈ W (s)L(s,s)(W (s))
T

. The time required per block is
O(nsm(k+ d) +m3), and thus our method requires a total of O(nm(k+ d) + cm3) time to
form W . We can replace Nyström by any other low-rank approximation method discussed

14
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in Section 2. In Figure 4 we compare using standard Nyström(Nys)(Williams and Seeger,
2001), k-means Nyström(KNys)(Zhang and Kwok, 2010), and Nyström with randomized
SVD(RNys)(Li, Kwok, and Lu, 2010) to generate W (s) on both ijcnn1 and cadata datasets.
As shown in Figure 4, we observe that the standard Nyström method combined with MEKA
gives excellent performance.

(a) ijcnn1 (b) cadata

Figure 4: Comparison of using Nys, KNys, and RNys to obtain the basis W (s) for diagonal
blocks in MEKA on ijcnn1 and cadata datasets. The x-axis shows the computation time
and y-axis shows the relative kernel approximation error(%).

Computing L(s,t). The optimal least squares solution for L(s,t)(s 6= t) is the minimizer
of the local approximation error ‖G(s,t)−W (s)L(s,t)(W (t))T ‖F . However, forming the entire
G(s,t) block can be time consuming. For example, computing the whole kernel matrix for
mnist2m with 2 million data points takes more than a week. Therefore, to compute L(s,t),
we propose to randomly sample a (1 + ρ)k× (1 + ρ)k submatrix Ĝ(s,t) from G(s,t), and then
find L(s,t) that minimizes the error on this submatrix. If the row/column index set for the
subsampled submatrix Ĝ(s,t) in G(s,t) is vs/vt, then L(s,t) can be computed in closed form:

L(s,t) = ((W (s)
vs )TW (s)

vs )−1(W (s)
vs )T Ĝ(s,t)W (t)

vt ((W (t)
vt )TW (t)

vt )−1,

where W
(s)
vs and W

(t)
vt are formed by the rows in W (s) and W (t) with row index sets vs and

vt respectively.
Since there are only k2 variables in L(s,t), we do not need too many samples for each

block, and the time to compute L(s,t) is O((1 + ρ)3k3). In practice, we observe that set-
ting ρ to be 2 or 3 is enough for a good approximation, so the time complexity is O(k3).
Empirically, many values in the off-diagonal blocks are close to zero, and only a few of
them have large values as shown in Figure 1. Based on this observation, we further propose
a thresholding technique to reduce the time for storing and computing L(s,t). Since the
distance between cluster centers is a good indicator for the values in an off-diagonal block,
we can set the whole block L(s,t) to 0 if K(ms,mt) ≤ ε for some thresholding parameter
ε > 0, where ms and mt are the k-means centroid for the s-th and t-th cluster respectively.
Obviously, to choose ε, we need to achieve a balance between speed and accuracy. When ε is
small, we will approximate more off-diagonal blocks; while when ε is large, we will set more
off-diagonal blocks to be 0, but increase the approximation error. We test the influence
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of thresholding parameter ε on the ijcnn1 and cadata data in Figure 5. When ε is large,
although MEKA yields higher approximation error(because it omits more off-diagonal in-
formation), it is faster. On the other hand, for small ε, when more off-diagonal information
is considered, we notice an increase in time and smaller in approximation error. In practice,
we need to use cross-validation to select ε.

(a) ijcnn1 (b) cadata

Figure 5: Time (in seconds) and kernel approximation quality of MEKA when varying the
thresholding parameter ε for setting off-diagonal blocks in L to be zero.

Choosing the rank ks for each cluster. We need to decide the rank for the
sth(s = 1, · · · , c) cluster, ks, which can be done in different ways: (i) the same k for all the
clusters; (ii) ks is proportional to the size of sth cluster; (iii) eigenvalues based approach. For
(iii), supposeM (s) is thems×ms matrix consisting of the intersection ofms sampled columns
inG(s,s), andM is the cm×cm(

∑c
s=1ms = cm) block-diagonal matrix withM (s) as diagonal

block. We can choose ks such that the set of top-ck eigenvalues ofM is the union of the eigen-
values of M (s) in each cluster, that is, [σ1(M), . . . , σck(M)] = ∪cs=1[σ1(M (s)), . . . , σks(M

(s))].
To use (iii), we can oversample points in each cluster, e.g., sample 2k points from each
cluster, perform eigendecompostion of a 2k × 2k kernel matrix, sort the eigenvalues from
c clusters, and finally select the top-ck eigenvalues and their corresponding eigenvectors.
Comparing these three strategies, (i) achieves lower memory usage and is fastest, and (ii)
is more accurate than (i) with more memory usage, while (iii) is slowest but achieves lower
error for diagonal blocks. In Figure 6, we compare these three sampling strategies to choose
ks on ijcnn1 and cadata datasets. It is shown that these three methods perform similarly
well and choosing ks to be same for each cluster performs sightly better than by the size
of each cluster and singular values based approach. In the experiment, we set all the clus-
ters to have the same rank k. We show that this simple choice of ks already outperforms
state-of-the-art kernel approximation methods.

We are now ready to present our main algorithm in Algorithm 1. In Table 4, we compare
the time and space complexity for our method with SVD, standard Nyström, and RKS. We
can see that MEKA is more memory efficient. For the time complexity, both TL (time for
computing off-diagonal L) and TC (time for clustering) are small as (1) we use thresholding
to force some L(s,t) blocks to be zero, and perform least squares on small blocks, which
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(a) ijcnn1 (b) cadata

Figure 6: Comparison of different strategies to choose the rank ks of each cluster in MEKA
on ijcnn1 and cadata datasets.

Method Storage Rank Time Complexity

RKS (Rahimi and Recht, 2008) O(cnk) ck O(cnkd)

Nyström(Williams and Seeger, 2001) O(cnk) ck O(cnm(ck + d) + (cm)3)

SVD O(cnk) ck O(n3 + n2d)

MEKA O(nk + (ck)2) ck O(nm(k + d) + cm3 + TL + TC)

Table 4: Memory and time analysis of various kernel approximation methods, where TL is
the time to compute the matrix L and TC is the time for clustering in MEKA.

means TL can at most be O(1
2c

2k3); (2)TC is proportional to the number of samples. For a
large dataset, we sample 20000 points for k-means, and thus the clustering is more efficient
than working on the entire data set.

Algorithm 1 Memory Efficient Kernel Approximation (MEKA)

Input : Data points {(xi)}ni=1, scaling parameter γ, rank k, and no. of clusters c.

Output: The rank-ck approximation G̃ = WLW T using O(nk + (ck)2) space

Generate the partition V1, . . . ,Vc by k-means;
for s = 1, . . . , c do

Perform the rank-k approximation G(s,s) ≈W (s)L(s,s)(W (s))T by standard
Nyström;

end
forall (s, t)(s 6= t) do

Sample a submatrix Ḡ(s,t) from G(s,t) with row index set vs and column index
set vt;

Form W
(s)
vs by selecting the rows in W (s) according to index set vs;

Form W
(t)
vt by selecting the rows in W (t) according to index set vt;

Solve the least squares problem: Ḡ(s,t) ≈W (s)
vs L

(s,t)(W
(t)
vt )T to obtain L(s,t);

end
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Dataset TC TW TL
pendigit 0.05 0.69 0.35

ijcnn1 0.15 1.27 0.84

covtype 1.83 9.82 12.23

Table 5: Time (in seconds) for each step of MEKA, where TW is the time to compute
low-rank approximation for the diagonal block matrices; TL is the time to form the “link”
matrix L; TC is the time for performing k-means clustering.

In Table 5, we show the time cost for each step of MEKA on pendigit, ijcnn1, and
covtype datasets. The execution time of our proposed algorithm mainly consists of three
parts:(1) time for performing k-means clustering (TC), (2) time for forming the “basis” W
from the diagonal blocks (TW ), (3) time to compute the link matrix L from off-diagonal
blocks (TL). From Table 5, we observe that compared with TW and TL, TC is fairly small
and TW dominates the whole process in most cases. For covtype data set, since we choose
c to be large, TL is sightly larger than TW . We will analyze TW , TL, and TC for different c
in the experiment part.

5.3 Analysis

We now bound the approximation error for our proposed method. We show that when
σk+1−σck+1 is large, where σk+1 and σck+1 are the k + 1st and ck + 1st singular values of G
respectively, and entries in off-diagonal blocks are small, MEKA has a better approximation
error bound compared to standard Nyström that uses similar storage.

Theorem 3 Let ∆ denote a matrix consisting of all off-diagonal blocks of G, so ∆(s,t) =
G(s,t) for s 6= t and all zeros when s = t. We sample cm points from the dataset uniformly
at random without replacement and split them according to the partition from k-means,
such that each cluster has ms benchmark points and

∑c
s=1ms = cm. Let Gck be the best

rank-ck approximation of G, and G̃ be the rank-ck approximation from MEKA. Suppose we
choose the rank ks for each diagonal block using the eigenvalue based approach as mentioned
in Section 5.1, then with probability at least 1 − δ, the following inequalities hold for any
sample of size cm:

‖G−G̃‖2≤‖G−Gck‖2+
1√
c

2n√
m
Gmax(1 + θ) + 2‖∆‖2,

‖G−G̃‖F ≤‖G−Gck‖F +

(
64k

m

) 1
4

nGmax(1+θ)
1
2 +2‖∆‖F

where θ =
√

n−m
n−0.5

1
β(m,n) log 1

δd
G
max/G

1
2
max; β(m,n) = 1 − 1

2 max{m,n−m} ;Gmax = maxiGii;

and dGmax represents the distance maxij
√
Gii +Gjj − 2Gij.
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Proof Let B denote the matrix formed by the diagonal block of G, that is,

B ≡


G(1) 0 . . . 0

0 G(2) . . . 0
...

...
. . .

...

0 0 . . . G(c)

 . (15)

According to the definition of ∆, G = B + ∆. In MEKA, the error ‖G̃ − G‖2 consists of
two components,

‖G̃−G‖2 = ‖B̃ −B + (∆̃−∆)‖2 ≤ ‖B̃ −B‖2 + ‖∆̃−∆‖2 (16)

where B̃ and ∆̃ are the approximations for B and ∆ in MEKA respectively.
Let us first consider the error in approximating the diagonal blocks ‖B̃ − B‖2. Since

we sample cm benchmark points from n data points uniformly at random without re-
placement and distribute them according to the partition coming from k-means, the s-
th cluster now has ms benchmark points with

∑s=c
s=1ms = cm. For the s-th diagonal

block G(s), we will perform the rank-ks approximation using standard Nyström, so we have

G(s) ≈ E(s)(M
(s)
ks

)+E(s), where E(s) denotes the matrix formed by ms sampled columns from

G(s) and M
(s)
ks

is a ms ×ms matrix consisting of the intersection of sampled ms columns.
Suppose we use the singular value based approach to choose ks for s-th cluster as de-

scribed in Section 5.1, and

M+
ckequiv


(M

(1)
k1

)+ 0 . . . 0

0 (M
(2)
k2

)+ . . . 0
...

...
. . .

...

0 0 . . . (M
(c)
kc

)+,

 (17)

where M is the cm × cm block diagonal matrix that consists of the intersection of the
sampled cm columns. Then we can see that approximating the diagonal blocks B is equiv-
alent to directly performing standard Nyström on B by sampling cm benchmark points
uniformly at random without replacement to achieve the rank-ck approximation. The stan-
dard Nyström’s norm-2 and Frobenius error bound are given in (Kumar et al., 2009), so
‖B − B̃‖2 can be bounded with probability at least 1− δ as

‖B − B̃‖2 ≤ ‖B −Bck‖2 +
2n√
cm

Bmax[1 +

√
n− cm
n− 0.5

1

β(cm, n)
log

1

δ
dBmax/B

1
2
max],

where Bck denotes the best rank-ck approximation to B; Bmax = maxiBii; d
B
max represents

the distance maxij
√
Bii +Bjj − 2Bij .

To bound ‖∆̃ − ∆‖2, recall that some off-diagonal blocks in MEKA are set to 0 by
thresholding and 0 is one special solution of least squares problem to compute L(s,t), we
have ‖∆̃−∆‖2 ≤ ‖∆‖2.

Furthermore, according to perturbation theory (Stewart and Ji-Guang, 1990), we have

‖B −Bck‖2 ≤ ‖G−Gck‖2 + ‖∆‖2. (18)
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The inequality in (16) combined with (18) gives a bound on ‖G̃−G‖2 as,

‖G̃−G‖2 ≤ ‖B −Bck‖2 + ‖∆‖2 +
2n√
cm

Bmax[1 +

√
n− cm
n− 0.5

1

β(cm, n)
log

1

δ
dBmax/B

1
2
max]

≤ ‖G−Gck‖2 + 2‖∆‖2 +
2n√
cm

Bmax[1 +

√
n− cm
n− 0.5

1

β(cm, n)
log

1

δ
dBmax/B

1
2
max]

≤ ‖G−Gck‖2 + 2‖∆‖2 +
2n√
cm

Gmax[1 +

√
n− cm
n− 0.5

1

β(cm, n)
log

1

δ
dGmax/G

1
2
max]

≤ ‖G−Gck‖2 + 2‖∆‖2 +
1√
c

2n√
m
Gmax[1 +

√
n−m
n− 0.5

1

β(m,n)
log

1

δ
dGmax/G

1
2
max],

where Gck denotes the best rank-ck approximation to G; Gmax = maxiGii; d
G
max represents

the distance maxij
√
Gii +Gjj − 2Gij . The third inequality is because G = B+∆, Bmax ≤

Gmax and dBmax ≤ dGmax. The last inequality is because n� m and n� cm.
Similarly by using perturbation theory and upper bounds for the Frobenius error of

standard Nyström, the result follows.

When ks(s = 1, · · · , c) is balanced (meaning ks is approximately the same for each clus-
ter) and n is large, MEKA provides a rank-ck approximation using roughly the same amount
of storage as rank-k approximation by standard Nyström. Interestingly, from Theorem 3,
if ‖G−Gk‖2 − ‖G−Gck‖2 ≥ 2‖∆‖2, then

‖G− G̃‖2 ≤ ‖G−Gk‖2 +
1√
c

2n√
m
Gmax(1 + θ).

The second term in the right hand side of above inequality is only 1√
c

of that in the spectral

norm error bound for standard Nyström that uniformly samples m columns without replace-
ment in G to obtain the rank-k approximation as shown in (Kumar, Mohri, and Talwalkar,
2009). Thus, if there is a large enough gap between σk+1 and σck+1, the error bound for our
proposed method is better than standard Nyström that uses similar storage. Furthermore,
when γ is large, G tends to have better clustering structure, suggesting in Theorem 3 that
‖∆‖ is usually quite small. Note that when using the same rank k for all the clusters, the
above bound can be worse because of some extreme cases, e.g., all the top-ck eigenvalues
are in the same cluster. In practice we do not observe those extreme situations. We also
want to mention that both ‖∆‖F and ‖∆‖2 will be affected by the number of clusters c.

6. Experimental Results

In this section, we empirically demonstrate the benefits of our proposed method, MEKA on
various data sets2 that are listed in Table 6. Experiment results here are mainly based on

2. All the datasets are downloaded from www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets and UCI
repository (Bache and Lichman, 2013). Note that the census datasets in Table 1 and Table 6 come from
different sources.
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Dataset n d Dataset n d

wine 6,497 11 census 22,784 137
cpusmall 8,192 12 ijcnn1 49,990 22
pendigit 10,992 16 covtype 581,012 54
cadata 20,640 8 mnist2m 2,000,000 784

Table 6: Data set statistics (n: number of samples; d: dimension of samples).

the Gaussian kernel, but we observe similar behavior on other shift-invariant kernels (see
Section 6.2). Note that the same kernel function is used in both training and test phases.
We compare our method with six state-of-the-art kernel approximation methods:

1. The standard Nyström method (denoted by Nys)(Williams and Seeger, 2001). In
the experiment, we uniformly sample 2k columns of G without replacement, and run
Nyström for rank-k approximation.

2. Kmeans Nyström (denoted by KNys)(Zhang and Kwok, 2010), where the landmark
points are the cluster centroids. As suggested in (Zhang et al., 2012), we sample 20000
points for clustering when the total number of data samples is larger than 20000.

3. Random Kitchen Sinks (denoted by RKS)(Rahimi and Recht, 2008), which approxi-
mates the shift-invariant kernel based on its Fourier transform.

4. Fastfood with “Hadamard features” (denoted by fastfood)(Le, Sarlos, and Smola,
2013).

5. Ensemble Nyström (denoted by ENys) (Kumar, Mohri, and Talwalkar, 2009). Due to
concern for the computation cost, we set the number of “experts” in ENys 3.

6. Nyström using randomized SVD (denoted by RNys)(Li, Kwok, and Lu, 2010). We
set the number of power iterations q = 1 and oversampling parameter p = 10.

We compare all the methods on two different tasks: kernel low-rank approximation and
kernel ridge regression. We do not compare with BKA in this section, because (1) the
approximation error of BKA is large when γ is small (as shown in Figure 1); (2) BKA is time
consuming because it needs to compute all the diagonal blocks’ kernel values, which needs
O(n

2d
c ) time; (3) BKA is not memory efficient to approximate the kernel matrix, because

it needs O(n
2

c ) space to store the approximation. All the experiments are conducted on a
machine with an Intel Xeon X5440 2.83GHz CPU and 32G RAM.

6.1 Kernel Approximation Quality

We now compare the kernel approximation quality for the above methods.
Main results. The kernel approximation results are shown in Figure 7 and Table

7. We use relative kernel approximation error ‖G − G̃‖F /‖G‖F to measure the quality.
We randomly sampled 20000 rows of G to evaluate the relative approximation error for
ijcnn1 and covtype. In Figure 7, we show the kernel approximation performance of different
methods by varying k and γ. The rank (k) varies from 100 to 600 for ijcnn1 and covtype
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Dataset k γ c Nys RNys KNys ENys RKS fastfood MEKA

pendigit 128 2 5 0.1325 0.1361 0.0828 0.2881 0.4404 0.4726 0.0811
ijcnn1 128 1 10 0.0423 0.0385 0.0234 0.1113 0.2972 0.2975 0.0082
covtype 256 10 15 0.3700 0.3738 0.2752 0.5646 0.8825 0.8920 0.1192

Table 7: Comparison of approximation error of our proposed method with six other state-
of-the-art kernel approximation methods on real datasets, where γ is the Gaussian scaling
parameter; c is the number of clusters in MEKA; k is the rank of each diagonal-block in
MEKA and the rank of the approximation for six other methods. Note that for a given
k, every method has roughly the same amount of memory. All results show relative kernel
approximation errors for each k.

and from 20 to 200 for the pendigit data. Figure 7 shows that our proposed approximation
scheme always achieves lower error with less time and memory. The main reason is that
using similar amount of time and memory, our method aims to approximate the kernel
matrix by a rank-ck approximation, while all other methods are only able to form a rank-k
approximation.

In Table 7, we fix the rank k and γ, so that each method has the same memory usage
of low-rank representation, and compare MEKA with them in terms of relative approxima-
tion error. As it can be seen, under the same amount of memory, our proposed method
consistently yields lower approximation error than other methods.

Also as we can see from Table 7 and Figure 8, Nyström based methods perform much
better than random features based methods (including RKS and Fastfood here) in terms of
kernel approximation quality. Therefore we do not show their performance in Figure 7, so
that we could see the difference between MEKA and other Nyström based methods.

Robustness to the Gaussian scaling parameter γ. To show the robustness of
our proposed algorithm with different γ as explained in Section 3, we test its performance
on the ijcnn1 (Figure 9a), cadata (Figure 9b) and sampled covtype datasets (Figure 1c).
The relative approximation errors for different γ values are shown in the figures using a
fixed amount of memory. For large γ, the kernel matrix tends to have a block structure,
so our proposed method yields lower error than other methods. The gap becomes larger
as γ increases. Interestingly, Figure 1c shows that the approximation error of MEKA is
superior to even the exact SVD, as it is much more memory efficient. Even for small γ
where the kernel exhibits low-rank structure, our proposed method performs better than
Nyström based methods, suggesting that it can get the low-rank structure of the kernel
matrix.

Robustness to the number of clusters c. Compared with Nyström, one main extra
parameter for our method is the number of clusters c. In Figure 10, we test our method
with different values of c on ijcnn1 dataset. In Figure 10a, we show how the approximation
error changes when c is varied from 5 to 25 (with rank k = 100 in each cluster). The
memory usage is nk + (ck)2, so the storage increases as c increases. For a fair comparison,
we increase the rank of other methods as c increases, so that all the methods use the same
amount of memory. Figure 10a shows that the performance of our proposed method for
varying choices of c. We can observe that under different c, MEKA always performs better
than others. Furthermore, in Figure 10b we show the time cost for each step of MEKA on
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(a) pendigit (γ = 2), memory vs
approx. error.

(b) ijcnn1 (γ = 1), memory vs ap-
prox. error.

(c) covtype (γ = 1), memory vs
approx. error.

(d) pendigit (γ = 2), time vs ap-
proximation error.

(e) ijcnn1 (γ = 1), time vs approx-
imation error.

(f) covtype (γ = 1), time vs ap-
proximation error.

(g) pendigit (γ = 10), memory vs
approximation error.

(h) ijcnn1 (γ = 10), memory vs ap-
proximation error.

(i) covtype (γ = 10), memory vs
approximation error.

(j) pendigit (γ = 10), time vs ap-
proximation error.

(k) ijcnn1 (γ = 10), time vs ap-
proximation error.

(l) covtype (γ = 10), time vs ap-
proximation error.

Figure 7: Low-rank Gaussian kernel approximation results. Methods with approximation
error above the top of y-axis are not shown.
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Figure 8: Comparison between Nyström based methods (MEKA and standard Nyström)
and random feature based methods (RKS and fastfood). We can see that Nyström based
methods perform much better than random feature based methods for kernel approximation.

(a) ijcnn1. (b) cadata.

Figure 9: The kernel approximation errors for different Gaussian scaling parameter γ.

ijcnn1 dataset when varying the number of clusters c. Here the parameter γ is set to be 1.
From Figure 10b, we observe that when the number of clusters c is small, TW will dominate
the whole process. As c increases, the time for computing the link matrix L, TL, increases.
This is because the number of off-diagonal blocks increases quadratically with c. Since the
time complexity for k-means is O(ncd), TC increases linearly with c.

6.2 The Performance of MEKA for Approximating the Laplacian Kernel

As we mentioned in Section 5, our algorithm is suitable for approximating stationary ker-
nels. Besides Gaussian kernel, we can apply MEKA to approximate other kernels, e.g.,
Laplacian kernel (K(x, y) = e−γ‖x−y‖1). Figure 11 compares our proposed method with the
standard Nyström(Nys), Randomized Nyström(RNys), and Kmeans Nyström(KNys) for
approximating the Laplacian kernel on ijcnn1 data. Similar to Gaussian kernel, we observe
that MEKA is more memory efficient and faster than other methods for approximating the
Laplacian kernel.
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(a) kernel approximation under different num-
bers of clusters c in MEKA. For standard
Nyström(Nys), Randomized Nyström(RNys), and
Kmeans Nyström(KNys), we use the same memory
with MEKA.

(b) Time for each step of MEKA when varying the
number of clusters c. TC is the time for perform-
ing k-means clustering; TW is the time to form
the “basis” W from the diagonal blocks; and TL

is the time to compute L from off-diagonal blocks.

Figure 10: The kernel approximation errors and time cost for each step of MEKA when
varying c on ijcnn1 dataset.

(a) memory vs approximation error. (b) time vs approximation error.

Figure 11: Low-rank Laplacian kernel approximation results for ijcnn1 dataset.

6.3 Kernel Ridge Regression

Next we compare the performance of various methods on kernel ridge regression (Saunders,
Gammerman, and Vovk, 1998):

max
α

λαTα+αTGα− 2αTy, (19)

where G is the kernel matrix formed by training samples {x1, . . . ,xl}, and y ∈ Rl are the
targets. For each kernel approximation method, we first form the approximated kernel G̃,
and then solve (19) by conjugate gradient (CG). The main computation in CG is the matrix
vector product G̃v. Using low-rank approximation, this can be computed using O(nk) flops.
For our proposed method, we compute WLW Tv, where W Tv =

∑c
s=1W

(s)v(s) requires
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Dataset k γ c λ Nys RNys KNys ENys RKS fastfood MEKA

wine 128 2−10 3 2−4 0.7514 0.7555 0.7568 0.7732 0.7459 0.7509 0.7375
cadata 128 22 5 2−3 0.1504 0.1505 0.1386 0.1462 0.1334 0.1502 0.1209
cpusmall 256 22 5 2−4 8.8747 8.6973 6.9638 9.2831 9.6795 10.2601 6.1130
census 256 2−4 5 2−5 0.0679 0.0653 0.0578 0.0697 0.0727 0.0732 0.0490
covtype 256 22 10 2−2 0.8197 0.8216 0.8172 0.8454 0.8011 0.8026 0.7106
mnist2m 256 2−5 40 2−5 0.2985 0.2962 0.2725 0.3018 0.3834 na 0.2667

Table 8: Comparison of our proposed method with six other state-of-the-art kernel approx-
imation methods on real datasets for kernel ridge regression, where λ is the regularization
constant. All the parameters are chosen by cross validation, and every method has roughly
the same amount of memory as in Table 7. All results show test RMSE for regression for
each k. Note that k for fastfood needs to be larger than d, so we cannot test fastfood on
mnist2m when k = 256.

O(nk) flops, L(Wv) requiresO(‖L‖0) flops, andW (LW Tv) requiresO(nk) flops. Therefore,
the time complexity for computing the matrix vector product for both MEKA and low-rank
approximation methods is proportional to the memory for storing the approximate kernel
matrices. Besides kernel approximation algorithms, we compare our method with another
divide-and-conquer based kernel ridge regression method (denoted DC-KRR)(Zhang et al.,
2013). The basic idea in Zhang et al. (2013) is to randomly partition the data into c parts
and then train a kernel ridge regression model in each partition. To test a new data point,
it will be tested on each submodel and the final prediction is the average of c predictions.

The parameters are chosen by five fold cross-validation and shown in Table 8. The rank
for these algorithms is varied from 100 to 1000. The test root mean square error (test
RMSE) is defined as ‖yte − Gteα‖, where yte ∈ Ru is testing labels and Gte ∈ Ru×l is
the approximate kernel values between testing and training data. The covtype and mnist2m
data sets are not originally designed for regression, and here we set the target variables to be
0 and 1 for mnist2m and -1 and 1 for covtype. Table 8 compares the kernel ridge regression
performance of our proposed scheme with six other methods given the same amount of
memory or same k in terms of test RMSE. It shows that our proposed method consistently
performs better than other methods. Figure 12 shows the time usage of different methods
for regression by varying the memory or rank k. As we can see that using the same amount
of time, our proposed algorithm always achieves the lowest test RMSE. The total running
time consists of the time for obtaining the low-rank approximation and time for regression.
The former depends on the time complexity for each method, and the latter depends on the
memory requirement to store the low-rank matrices. As shown in the previous experiment,
MEKA is faster than the other methods while achieving lower approximation error and
using less memory. As a consequence, it achieves lower test RMSE in less time compared
to other kernel approximation methods.

7. Conclusions and Discussions

In this paper, we have proposed a novel framework, Memory Efficient Kernel Approximation
(MEKA) for approximating shift-invariant kernel matrices. We observe that the structure
of the shift-invariant kernel matrix changes from low rank to block diagonal as the scale
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(a) wine, time vs regression error. (b) cpusmall, time vs regression er-
ror.

(c) cadata, time vs regression er-
ror.

(d) census, time vs regression er-
ror.

(e) covtype, time vs regression er-
ror.

(f) mnist2m, time vs regression er-
ror.

Figure 12: Kernel ridge regression results for various data sets. Methods with regression
error above the top of y-axis are not shown. All results are averaged over five independent
runs.

parameter is changed. Our method exploits both low-rank and block structure present in the
kernel matrix, and thus performs better than previously proposed low-rank based methods
in terms of approximation and regression error, speed and memory usage. The code for
MEKA is available at www.cs.utexas.edu/~ssi/meka/. We will discuss next about some
typical problems encountered when using MEKA and how to deal with them.

7.1 Dealing with the Non-PSD Issue

If for each off-diagonal block, we sample all the entries, the resulting approximate matrix
in MEKA will be positive semidefinite(PSD). The reason is as follow: if we use all the
all-diagonal blocks to compute the link matrix L, the approximation will be G ≈ WLW T

with L = W TGW . Since G is PSD, so it is with L, which proves WLW T will be PSD.

However, due to the sampling procedure in MEKA, the resulting approximate matrix
might not be PSD, which will cause some problems when PSD is required for some ap-
plications, e.g., kernel SVM with hinge loss. There are two simple and effective ways to
solve this issue: (1) The first method (MEKA-PSD) is to set negative eigenvalues to 0.
The procedure is first to perform eigen-decomposition on the small ck × ck ”link” matrix
L = USUT (where U and S are the eigenvector and eigenvalue matrices for L respectively)
in the MEKA representation, and then shrink its negative eigenvalues to be 0, which forms
the new eigenvalue matrix S̄ for L. After that, the new MEKA approximation will become:
Ḡ = WUS̄UTW T . Since S̄ is now PSD, so it is with WUS̄UTW T . Therefore, Ḡ will be
PSD after above shrinking operation. Due to eigen-decomposition on L and the following
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shrinking operation, both the kernel approximation error and computation time will in-
crease slightly. We show the comparison of Nys, MEKA and MEKA-PSD on ijcnn1 dataset
in Figure 13. We can see that to achieve similar approximation, MEKA-PSD is slightly
slower than MEKA, but still performs better than Nys, which also generates PSD kernel
approximation. (2) The second method is to directly add a small value ε to the diagonal of
Ḡ, which is equivalent to using regularization term when applying MEKA for kernel meth-
ods. We show the kernel ridge regression results in Table 8, where we add regularization
term to MEKA. Note that to make sure the resulting MEKA approximation is PSD for the
second method, ε should be equal or larger than the absolute value of the smallest negative
eigenvalue of Ḡ.

Figure 13: MEKA-PSD kernel approximation results for ijcnn1 dataset.

7.2 Dealing with the Instability Issue

There are two steps in Algorithm 1 that might cause the approximation unstable. One is
due to the basis formed from each diagonal block– Wi. If the kernel matrix has strong block-
diagonal structure, choosing columns from diagonal blocks to form W will perform well; on
the contrary, if the kernel matrix does not have very strong block structure, other sampling
strategies can be involved, for example, sampling columns from the rows corresponding to
each partition to form the basis. Another step which might cause unstable result is due to
insufficient entries sampled when forming the ”link” matrix L. One way to solve this issue
is to sample more entries from each off-diagonal block to form L when the computation
time is not the main concern.

7.3 Other Applications using MEKA

In the experiment section, we apply MEKA for kernel approximation and kernel ridge
regression, and besides that we could use our MEKA framework for many other machine
learning applications: such as speeding up the computation of the inverse of the kernel
matrix.

For many machine learning applications, e.g., Gaussian Process, we need to compute
the matrix inverse (G + λI)−1, where computing the inverse of a dense matrix becomes
the bottleneck for these applications. By approximating kernel matrix G in MEKA form
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G ≈WLW T , the inverse operation can be done in a faster fashion using Woodbury formula.

(λI +G)−1 ≈ (λI +WLW T )−1

=
1

λ
(I −W (λL−1 +W TW )−1W T )

We can see that after the approximation, we only need to inverse the ck×ck matrix which
reduce the time complexity for inverse of the dense matrix from O(n3) to O(n(ck)2 +(ck)3).

Besides speeding up the matrix inverse, MEKA can also be used to approximate the
eigendecomposition of kernel matrix and used in various machine learning applications, for
instance, manifold learning and kernelized dimensionality reduction.
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