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Abstract—A variety of clustering algorithms have recently been proposed to handle data that is not linearly separable; spectral

clustering and kernel k-means are two of the main methods. In this paper, we discuss an equivalence between the objective functions

used in these seemingly different methods—in particular, a general weighted kernel k-means objective is mathematically equivalent to a

weighted graph clustering objective. We exploit this equivalence to develop a fast high-quality multilevel algorithm that directly optimizes

various weighted graph clustering objectives, such as the popular ratio cut, normalized cut, and ratio association criteria. This eliminates

the need for any eigenvector computation for graph clustering problems, which can be prohibitive for very large graphs. Previous

multilevel graph partitioning methods such as Metis have suffered from the restriction of equal-sized clusters; our multilevel algorithm

removes this restriction by using kernel k-means to optimize weighted graph cuts. Experimental results show that our multilevel algorithm

outperforms a state-of-the-art spectral clustering algorithm in terms of speed, memory usage, and quality. We demonstrate that our

algorithm is applicable to large-scale clustering tasks such as image segmentation, social network analysis, and gene network analysis.

Index Terms—Clustering, data mining, segmentation, kernel k-means, spectral clustering, graph partitioning.

Ç

1 INTRODUCTION

CLUSTERING is an important problem with many applica-
tions, and a number of different algorithms and

methods have emerged over the years. In this paper, we
discuss an equivalence between two seemingly different
methods for clustering nonlinearly separable data: kernel
k-means and spectral clustering. Using this equivalence, we
design a fast kernel-based multilevel graph clustering
algorithm that outperforms spectral clustering methods in
terms of speed, memory usage, and quality.

The kernel k-means algorithm [1] is a generalization of the
standard k-means algorithm [2]. By implicitly mapping data
to a higher dimensional space, kernel k-means can discover
clusters that are nonlinearly separable in input space. This
provides a major advantage over standard k-means and
allows data clustering given a positive definite matrix of
similarity values.

On the other hand, graph clustering (also called graph
partitioning) algorithms focus on clustering the nodes of a
graph [3], [4]. Spectral methods have been used effectively
for solving a number of graph clustering objectives,
including ratio cut [5] and normalized cut [6]. Such an
approach has been useful in many areas such as circuit
layout [5] and image segmentation [6]. Recently, spectral
clustering, so-called because of the usage of eigenvectors,
has enjoyed immense popularity in various machine
learning tasks [7].

In this paper, we generalize and extend recent results [8],
[9], [10], [11] on connections between vector-based and

graph-based clustering to provide a unifying mathematical
connection between kernel k-means and graph clustering
objectives. In particular, a weighted form of the kernel
k-means objective is seen to be mathematically equivalent to a
general weighted graph clustering objective. Such an
equivalence has an immediate implication: We may use the
weighted kernel k-means algorithm to locally optimize a
number of graph clustering objectives, and conversely,
spectral methods may be employed for weighted kernel
k-means. In cases where eigenvector computation is prohi-
bitive (for example, if many eigenvectors of a very large
matrix are required), the weighted kernel k-means algorithm
may be more desirable than spectral methods. Previous work
in this area has not considered such a kernel-based approach
nor general weighted graph clustering objectives.

The benefits of using kernels in our analysis is high-
lighted in our development of a new multilevel graph
clustering algorithm that can be specialized to a wide class
of graph clustering objectives. In multilevel algorithms, the
input graph is repeatedly coarsened level by level until only
a small number of nodes remain. An initial clustering is
performed on the coarsened graph, and then, this clustering
is refined as the graph is uncoarsened level by level. These
methods are extremely fast and give high-quality partitions.
However, earlier multilevel methods such as Metis [12] and
Chaco [13] force clusters to be of nearly equal size and are
all based on optimizing the Kernighan-Lin (K-L) objective
[14]. In contrast, our multilevel algorithm removes the
restriction of equal cluster size and uses the weighted kernel
k-means algorithm during the refinement phase to directly
optimize various weighted graph cuts. Furthermore, the
multilevel algorithm only requires memory on the order of
the input graph; on the other hand, spectral methods that
compute k eigenvectors require OðnkÞ storage, where n is
the number of data points, and k is the number of clusters.
This makes the multilevel algorithm scalable to much larger
data sets than standard spectral methods.

We present experimental results on a number of
interesting applications, including gene network analysis,
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social network analysis, and image segmentation. We also
compare variants of our multilevel algorithm to a state-of-
the-art spectral method. These variants outperform or are
competitive with the spectral clustering algorithms in terms
of optimizing the corresponding objective functions.
Furthermore, all variants of our algorithm are significantly
faster than spectral methods and require far less memory
usage. In fact, the spectral method cannot be applied to our
social network example due to the size of the data set.

A word about our notation. Capital letters such as A, X,
and � represent matrices, whereas lowercase bold letters
such as a and b represent vectors. Script letters such as V and
E represent sets. We use kak to represent the L2 norm of a
vector a and kXkF for the Frobenius norm of a matrix X.
Finally, a � b is the inner product between the vectors a and b.

2 KERNEL k-MEANS

Given a set of vectors a1; a2; . . . ; an, the k-means algorithm
seeks to find clusters �1; �2; . . .�k that minimize the
objective function

D f�cgkc¼1

� �
¼
Xk
c¼1

X
ai2�c
kai �mck2; where mc ¼

P
ai2�c ai

j�cj
:

Note that the cth cluster is denoted by �c, a clustering or
partitioning by f�cgkc¼1, whereas the centroid or the mean of
cluster �c is denoted by mc.

A disadvantage to standard k-means is that clusters can
only be separated by a hyperplane; this follows from the
fact that a squared Euclidean distance is used as the
distortion measure. To allow nonlinear separators, kernel k-
means [1] first uses a function � to map data points to a
higher dimensional feature space and then applies k-means
in this feature space. Linear separators in the feature space
correspond to nonlinear separators in the input space.

The kernel k-means objective can be written as a
minimization of

Dðf�cgkc¼1Þ ¼
Xk
c¼1

X
ai2�c
k�ðaiÞ �mck2;

where mc ¼
P

ai2�c �ðaiÞ
j�cj

:

The squared distance k�ðaiÞ �mck2 may be rewritten as

�ðaiÞ � �ðaiÞ �
2
P

aj2�c �ðaiÞ � �ðajÞ
j�cj

þ
P

aj;al2�c �ðajÞ � �ðalÞ
j�cj2

:

Thus, only inner products are used in this computation. As
a result, given a kernel matrix K, where Kij ¼ �ðaiÞ � �ðajÞ,
distances between points and centroids can be computed
without knowing explicit representations of �ðaiÞ and �ðajÞ.
It can be shown that any positive semidefinite matrix K can
be thought of as a kernel matrix [15].

A kernel function � is commonly used to map the
original points to inner products. See Table 1 for commonly
used kernel functions; �ðai; ajÞ ¼ Kij:

2.1 Weighted Kernel k-Means

We now introduce a weighted version of the kernel k-means
objective function, first described in [9]. As we will see later,
the weights play a crucial role in showing an equivalence to
graph clustering. The weighted kernel k-means objective
function is expressed as

Dðf�cgkc¼1Þ ¼
Xk
c¼1

X
ai2�c

wik�ðaiÞ �mck2;

where mc ¼
P

ai2�c wi�ðaiÞP
ai2�c wi

and the weights wi are nonnegative. Note that mc

represents the “best” cluster representative since

mc ¼ argminz

X
ai2�c

wik�ðaiÞ � zk2:

As before, we compute distances only using inner

products since k�ðaiÞ �mck2 equals

�ðaiÞ � �ðaiÞ �
2
P

aj2�c wj�ðaiÞ � �ðajÞP
aj2�c wj

þ
P

aj;al2�c wjwl�ðajÞ � �ðalÞ
ð
P

aj2�c wjÞ
2

:

ð1Þ

Using the kernel matrix K, the above may be rewritten as

Kii �
2
P

aj2�c wjKijP
aj2�c wj

þ
P

aj;al2�c wjwlKjl

ð
P

aj2�c wjÞ
2

: ð2Þ

2.2 Computational Complexity
We now analyze the computational complexity of a basic
weighted kernel k-means algorithm presented in Algo-
rithm 1. The algorithm is a direct generalization of standard
k-means. As in standard k-means, given the current
centroids, the closest centroid for each point is computed.
After this, the clustering is recomputed. These two steps are
repeated until the change in the objective function value is
sufficiently small. It can be shown that this algorithm
monotonically converges as long as K is positive semi-
definite so that it can be interpreted as a Gram matrix.

DHILLON ET AL.: WEIGHTED GRAPH CUTS WITHOUT EIGENVECTORS: A MULTILEVEL APPROACH 1945

TABLE 1
Examples of Popular Kernel Functions



It is clear that the bottleneck in the kernel k-means
algorithm is Step 2, that is, the computation of distances
dðai;mcÞ. The first term, Kii, is a constant for ai and does not
affect the assignment of ai to clusters. The second term
requires OðnÞ computation for every data point, leading to a
cost of Oðn2Þ per iteration. The third term is fixed for
cluster c, so in each iteration, it can be computed once and
stored; over all clusters, this takes Oð

P
c j�cj

2Þ ¼ Oðn2Þ
operations. Thus, the complexity is Oðn2Þ scalar operations
per iteration. However, for a sparse matrix K, each iteration
can be adapted to cost OðnzÞ operations, where nz is the
number of nonzero entries in the matrix (nz ¼ n2 for a dense
kernel matrix). If we are using a kernel function � to
generate the kernel matrix from our data, computing K
usually requires Oðn2mÞ operations, where m is the original
data dimension. If the total number of iterations is � , then
the time complexity of Algorithm 1 is Oðn2ð� þmÞÞ if we are
given data vectors as input or Oðnz � �Þ if we are given a
positive definite matrix as input.

3 GRAPH CLUSTERING

We now shift our focus to a different approach to clustering
data, namely, graph clustering. In this model of clustering,
we are given a graph G ¼ ðV; E; AÞ, which is made up of a
set of vertices V and a set of edges E such that an edge
between two vertices represents their similarity. The
adjacency matrix A is jVj � jVj whose nonzero entries equal
the edge weights (an entry of A is 0 if there is no edge
between the corresponding vertices).

Let us denote linksðA;BÞ to be the sum of the edge
weights between nodes in A and B. In other words,

linksðA;BÞ ¼
X

i2A;j2B
Aij:

Furthermore, let the degree of A be the links of nodes in A
to all the vertices, that is, degreeðAÞ ¼ linksðA;VÞ.

The graph clustering problem seeks to partition the
graph into k disjoint partitions or clusters Vl; . . . ;Vk such
that their union is V. A number of different graph clustering
objectives have been proposed and studied and we will
focus on the most prominent ones.

Ratio association. The ratio association (also called
average association) objective [6] aims to maximize with-
in-cluster association relative to the size of the cluster. The
objective can be written as

RAssocðGÞ ¼ max
V l ;...;Vk

Xk
c¼1

linksðVc;VcÞ
jVcj

:

Ratio cut. The ratio cut objective [5] differs from ratio
association in that it seeks to minimize the cut between
clusters and the remaining vertices. It is expressed as

RCutðGÞ ¼ min
V l ;...;Vk

Xk
c¼1

linksðVc;V n VcÞ
jVcj

:

Kernighan-Lin objective. This objective [14] is nearly
identical to the ratio cut objective, except that the partitions
are required to be of equal size. Although this objective is
generally presented for k ¼ 2 clusters, we can easily general-
ize it for arbitrary k. For simplicity, we assume that the

number of vertices jVj is divisible by k. Then, we write the
objective as

KLObjðGÞ ¼ min
V l ;...;Vk

Xk
c¼1

linksðVc;V n VcÞ
jVcj

;

subject to jVcj ¼ jVj=k 8c ¼ 1; . . . ; k:

Normalized cut. The normalized cut objective [6], [16] is
one of the most popular graph clustering objectives and
seeks to minimize the cut relative to the degree of a cluster
instead of its size. The objective is expressed as

NCutðGÞ ¼ min
Vl ;...;Vk

Xk
c¼1

linksðVc;V n VcÞ
degreeðVcÞ

:

It should be noted that minimizing the normalized cut is
equivalent to maximizing the normalized association [16],
since linksðVc;V n VcÞ ¼ degreeðVcÞ � linksðVc;VcÞ.

General weighted graph cuts/association. We can
generalize the association and cut problems to weighted
variants. This will prove useful for building a general
connection to weighted kernel k-means. We introduce a
weight wi for each node of the graph, and for each cluster Vc,
we define wðVcÞ ¼

P
i2Vc wi. We generalize the association

problem to be

W AssocðGÞ ¼ max
Vl ;...;Vk

Xk
c¼1

linksðVc;VcÞ
wðVcÞ

:

Similarly, for cuts

W CutðGÞ ¼ min
Vl ;...;Vk

Xk
c¼1

linksðVc;V n VcÞ
wðVcÞ

:

Ratio association is a special case of W Assoc where all
weights are equal to one (and hence, the weight of a cluster is
simply the number of vertices in it), and a normalized
association is a special case where the weight of a node i is
equal to its degree (the sum of row iof the adjacency matrixA).
An analogous result is true for W Cut. More generally,
weights may be fixed to other values based on the clustering
problem. For example, Zass and Shashua [17] proposed the
use of Sinkhorn normalization to obtain vertex weights in
order that the normalized adjacency matrix is the closest
doubly stochastic matrix to the input in relative entropy.

For the Kernighan-Lin objective, an incremental algo-
rithm is traditionally used to swap chains of vertex pairs;
for more information, see [14]. For ratio association, ratio
cut, and normalized cut, the algorithms traditionally used
to optimize the objectives employ eigenvectors of the
adjacency matrix or a matrix derived from the adjacency
matrix. We discuss these spectral solutions in Section 4,
where we prove that the W Assoc objective is equivalent to
the weighted kernel k-means objective and that W Cut can
be viewed as a special case of W Assoc and, thus, as a
special case of weighted kernel k-means.

4 EQUIVALENCE OF THE OBJECTIVES

At first glance, the two approaches to clustering presented
in the previous two sections appear to be unrelated. In this
section, we first express the weighted kernel k-means
objective as a trace maximization problem. We then rewrite
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the weighted graph association and graph cut problems
identically as matrix trace maximizations, thus showing
that the two objectives are mathematically equivalent.
Finally, we discuss the connection to spectral methods
and show how to enforce the positive definiteness of the
adjacency matrix in order to guarantee convergence of the
weighted kernel k-means algorithm.

4.1 Weighted Kernel k-Means as Trace
Maximization

Let sc be the sum of the weights in cluster c, that is,

sc ¼
P

ai2�c wi. Define the n� k matrix Z

Zic ¼
1

s
1=2
c

if ai 2 �c
0 otherwise:

(

Clearly, the columns of Z are mutually orthogonal, as they
capture disjoint cluster memberships. Suppose � is the matrix
of all the �ðaiÞ vectors, i ¼ 1; . . . ; n, and W is the diagonal
matrix of weights. The matrix �WZZT has column i equal to
the mean vector of the cluster that contains ai. Thus, the
weighted kernel k-means objective may be written as

Dðf�cgkc¼1Þ ¼
Xk
c¼1

X
ai2�c

wik�ðaiÞ �mck2

¼
Xn
i¼1

wik��i �
�

�WZZT
�
�i
k2;

where ��i denotes the ith column of the matrix �. Let
~Y ¼W 1=2Z, observe that ~Y is an orthonormal matrix
ð ~Y T ~Y ¼ IkÞ. Thus,

Dðf�cgkc¼1Þ ¼
Xn
i¼1

wik��i �
�

�W 1=2 ~Y ~Y TW�1=2
�
�i
k2

¼
Xn
i¼1

k��iw1=2
i �

�
�W 1=2 ~Y ~Y T

�
�i
k2

¼k�W 1=2 � �W 1=2 ~Y ~Y Tk2
F :

Since traceðABÞ ¼ traceðBAÞ, traceðATAÞ ¼ kAk2
F , and

traceðAþBÞ¼traceðAÞþtraceðBÞ, we can rewriteDðf�cgkc¼1Þ:

¼ trace
�
W 1=2�T�W 1=2 �W 1=2�T�W 1=2 ~Y ~Y T

� ~Y ~Y TW 1=2�T�W 1=2 þ ~Y ~Y TW 1=2�T�W 1=2 ~Y ~Y T
�

¼ trace
�
W 1=2�T�W 1=2

�
� trace

�
~Y TW 1=2�T�W 1=2 ~Y

�
:

We note that the kernel matrix K is equal to �T� and that
traceðW 1=2KW 1=2Þ is a constant. Hence, the minimization of
the weighted kernel k-means objective function is equiva-
lent to

max
~Y

trace
�

~Y TW 1=2KW 1=2 ~Y
�
; ð3Þ

where ~Y is the orthonormal n� k matrix that is proportional
to the square root of the weight matrix W as detailed above.

4.2 Graph Clustering as Trace Maximization

With this derivation complete, we can now show how each
of the graph clustering objectives may be written as trace
maximizations as well.

Ratio association. The simplest objective to transform into
trace maximization is ratio association. Let us introduce an
indicator vector xc for partition c, that is, xcðiÞ ¼ 1, if cluster c
contains vertex i. Then, the ratio association objective equals

max

�Xk
c¼1

linksðVc;VcÞ
jVcj

¼
Xk
c¼1

xTc Axc
xTc xc

¼
Xk
c¼1

~xTc A~xc

�
;

whereA is the graph adjacency matrix, and ~xc ¼ xc=ðxTc xcÞ1=2.
The equalities hold since xTc xc gives us the size of partition c,
whereas xTc Axc equals the sum of the links inside partition c.

The above can be written as the maximization of
traceð ~XTA ~XÞ, where the cth column of ~X equals ~xc; clearly,
~XT ~X ¼ Ik. It is easy to verify that ~X equals ~Y from the

previous section when all weights are set to one. It follows
that, if K ¼ A and W ¼ I, the trace maximization for the
weighted kernel k-means (3) is equal to the trace maximiza-
tion for ratio association.

Since the trace maximizations are mathematically
equivalent, we can run weighted kernel k-means on the
adjacency matrix to monotonically increase the ratio
association in the graph. However, it is important to note
that the adjacency matrix should be positive definite to
ensure that it is a valid kernel matrix and can be factored as
�T�, thus allowing us to guarantee that the kernel k-means
objective function decreases at each iteration. If the matrix is
not positive definite, then, there is no such guarantee
(however, positive definiteness is a sufficient but not
necessary condition for convergence). We will see how to
satisfy this requirement in Section 4.4.

Note that this equivalence was discussed in [11]; no
efficient algorithms beyond standard spectral techniques
were developed in the paper to exploit the equivalence.

Ratio cut. Next, we consider the ratio cut problem

min
Xk
c¼1

linksðVc;V n VcÞ
jVcj

:

Define a diagonal degree matrix D with Dii ¼
Pn

j¼1 Aij.
Using the indicator vector xc from before, we can easily
verify that the above objective function can be rewritten as

min

�Xk
c¼1

xTc ðD�AÞxc
xTc xc

¼
Xk
c¼1

~xTc ðD�AÞ~xc ¼
Xk
c¼1

~xTc L~xc

�
;

where ~xc is defined as before, and the matrix L � D�A is
known as the Laplacian of the graph. Hence, we may write
the problem as a minimization of traceð ~XTL ~XÞ. Consider
the matrix I � L and note that traceð ~XT ðI � LÞ ~XÞ ¼ trace
ð ~XT ~XÞ � traceð ~XTL ~XÞ. Since ~X is orthonormal, trace
ð ~XT ~XÞ ¼ k, so maximizing traceð ~XT ðI � LÞ ~XÞ is equivalent
to the minimization of traceð ~XTL ~XÞ.

Putting this all together, we have arrived at an equivalent
trace maximization problem for ratio cut: minimizing the
ratio cut is equivalent to maximizing traceð ~XT ðI � LÞ ~XÞ.
Since ~X equals ~Y from the previous section when all weights
are equal to 1, this corresponds exactly to unweighted kernel
k-means, except that the matrixK is I � L. Note that while L
is known to be positive semidefinite, I � L can be indefinite.
We will see how to deal with this issue in Section 4.4.

Kernighan-Lin objective. The Kernighan-Lin (K-L) graph
clustering objective follows easily from the ratio cut objective.
For the case of K-L clustering, we maintain equally sized
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partitions and, hence, the only difference between the ratio
cut and K-L clustering is that each of the xc indicator vectors is
constrained to have exactly jVj=k nonzero entries. If we start
with equally sized partitions, an incremental weighted kernel
k-means algorithm (where we only swap points or perform a
chain of swaps to improve the objective function) can be run
to simulate the K-L algorithm. We discuss this in further
detail in Section 5.4.

Normalized cut. We noted earlier that the normalized
cut problem is equivalent to the normalized association
problem; that is, the problem can be expressed as

max

�Xk
c¼1

linksðVc;VcÞ
degreeðVcÞ

¼
Xk
c¼1

xTc Axc
xTc Dxc

¼
Xk
c¼1

~xTc A~xc

�
;

where ~xc ¼ xc=ðxTc DxcÞ1=2.
The above may be rewritten as traceðY TD�1=2AD�1=2Y Þ,

where Y ¼D1=2 ~X and is orthonormal. In this case, we
set the weighted kernel k-means weight matrix W in (3) to
D and the matrix K to D�1AD�1. It can be verified that Y ¼
~Y in this case; thus, the objective functions for weighted
kernel k-means and normalized cut are exactly equivalent. If
the matrixK is positive definite, we have a way to iteratively
minimize the normalized cut using weighted kernel
k-means. Note that the seemingly simpler choice of W ¼
D�1 and K ¼ A does not result in a direct equivalence since
Y and ~Y are functions of the partition, as well as the weights
(and, so, Y 6¼ ~Y if W ¼ D�1 and K ¼ A).

The equivalence between normalized cuts and a weighted
k-means formulation was first shown in [8] and in our earlier
paper [9].

General weighted graph cuts/association. More gener-
ally, the weighted association problem can be expressed as a
trace maximization problem

max

�Xk
c¼1

linksðVc;VcÞ
wðVcÞ

¼
Xk
c¼1

xTc Axc
xTc Wxc

¼
Xk
c¼1

~xTc A~xc

�
;

where ~xc ¼ xcðxTc WxcÞ�1=2. With Y ¼W 1=2 ~X, this simplifies
to

WAssocðGÞ ¼ max
Y

trace
�
Y TW�1=2AW�1=2Y

�
: ð4Þ

Our analysis easily extends to the WCut problem. Using
the same notation as before

WCutðGÞ ¼ min
Xk
c¼1

xTc ðD�AÞxc
xTc Wxc

¼ min
Xk
c¼1

~xTc L~xc

¼ min
Y

trace
�
Y TW�1=2LW�1=2Y

�
:

The WCut problem can be expressed as WAssoc by
noting that

trace
�
Y TW�1=2ðW � LÞW�1=2Y

�
¼ k� trace

�
Y TW�1=2LW�1=2Y

�
:

Hence, optimizing WAssoc on the matrix W � L is
equivalent to optimizing WCut on A.

It is easy to see that the matrix Y in this section is identical
to ~Y in Section 4.1. Setting the kernel matrixK toW�1AW�1,
the trace maximization for weighted kernel k-means in (3) is

seen to equal traceð ~Y TW�1=2AW�1=2 ~Y Þ, which is exactly the
trace maximization for the weighted graph association in (4).
In the other direction, given a kernel matrix K and a weight
matrix W , define an adjacency matrix A ¼WKW to obtain
the equivalence. Thus, we see how to map from one problem
to the other.

Computationally, the weighted kernel k-means algorithm
can be expressed purely in graph-theoretic terms. Recall (2),
the formula for computing the distance from a point to the
centroid of cluster c

Kii �
2
P

aj2�c wjKijP
aj2�c wj

þ
P

aj;al2�c wjwlKjl

ð
P

aj2�c wjÞ
2

:

We can ignore the first term as a constant. If we consider
running weighted kernel k-means for the weighted graph
association objective, we use K ¼W�1AW�1 as our kernel
matrix and, so, we can rewrite this distance calculation asP

aj;al2�c Ajl

ð
P

aj2�c wjÞ
2
�

2
P

aj2�c Aij

wi
P

aj2�c wj
¼ linksðVc;VcÞ

wðVcÞ2
� 2linksðvi;VcÞ

wi � wðVcÞ
:

The above expression can be used to compute Step 2 in
Algorithm 1 and, so, the resulting weighted kernel k-means
algorithm is purely graph theoretic. Note that simple
extensions of the above formula can be used if shifting is
performed to enforce positive definiteness (discussed below
in Section 4.4).

4.3 The Spectral Connection

A standard result in linear algebra [18] states that if we relax
the trace maximizations in (4) such that Y is an arbitrary
orthonormal matrix, then, the optimal Y is of the form VkQ,
where Vk consists of the leading k eigenvectors of
W�1=2AW�1=2, and Q is an arbitrary k� k orthogonal
matrix. As these eigenvectors are not indicator vectors,
postprocessing (or rounding) of the eigenvectors is needed
to obtain a discrete clustering. Nearly all spectral clustering
objectives can be viewed as special cases of the general trace
maximization problem in (4). The corresponding spectral
algorithms compute and use the leading k eigenvectors of
W�1=2AW�1=2 to optimize graph clustering objectives such
as ratio cut [5] and normalized cut [6], [7], [16]. Our
equivalence shows that spectral solutions are not necessary,
and the objectives may be directly optimized by kernel
k-means.

Spectral methods typically perform well because they
compute the globally optimal solution of a relaxation to the
original clustering objective. However, these methods can be
expensive on very large graphs. In contrast, kernel k-means is
fast but is prone to problems of poor local minima and
sensitivity to initial starting partitions. In Section 5, we will
exploit the above analysis to develop a fast multilevel
algorithm that overcomes such problems. This algorithm
consistently outperforms spectral methods in terms of
objective function value, as well as speed and memory usage.
Before developing this algorithm, we briefly show how to
enforce positive definiteness for graph clustering.

4.4 Enforcing Positive Definiteness

For weighted graph association, we define a matrix K ¼
W�1AW�1 to map to weighted kernel k-means. However,
whenA is an arbitrary adjacency matrix,W�1AW�1 need not
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be positive definite and, hence, kernel k-means will not
necessarily converge. In this section, we show how to avoid
this problem by introducing an appropriate diagonal shift to
K and briefly discuss how such a diagonal shift affects the
practical performance of weighted kernel k-means. This
solution can be viewed as a generalization of the work in [11],
where diagonal shifting was used in the unweighted case.

Given A, define K0 ¼ �W�1 þW�1AW�1, where � is a
positive constant large enough to ensure that K0 is positive
definite. Since W�1 is a positive diagonal matrix, adding
�W�1 adds positive entries to the diagonal of W�1AW�1.
Substituting K0 for K in (3), we get

trace
�

~Y TW 1=2K0W 1=2 ~Y
�
¼ trace

�
~Y TW 1=2�W�1W 1=2 ~Y

�
þ trace

�
~Y TW�1=2AW�1=2 ~Y

�
¼ �kþ trace

�
~Y TW�1=2AW�1=2 ~Y

�
:

Hence, the maximizer ~Y using K0 is identical to that of the
weighted association problem in (4), except that K0 is
constructed to be positive definite. Running weighted
kernel k-means on K0 results in monotonic optimization
of the weighted association objective.

A similar approach can be used for the weighted cut
problem. In Section 4.2, we showed that WCut on the
adjacency matrix A is equivalent to WAssoc on W � L.
Hence, if we let A0 ¼W � L, it follows that defining K0 ¼
�W�1 þW�1A0W�1 for a large enough � yields a positive
definite kernel. In Table 2, the weights and kernels for various
graph objectives are summarized. Though adding a diagonal
shift does not change the global optimizer, it is important to
note that adding too large a shift may result in a decrease in
quality of the clusters produced by Algorithm 1. This is due to
points becoming closer to their current centroids and farther
from other centroids as � increases. See [19] for a detailed
analysis.

5 THE MULTILEVEL ALGORITHM

Typically, the best algorithms for optimizing weighted graph
clustering objectives use spectral clustering methods. In this
section, we use the theoretical equivalence in Section 4.2 to
develop a new kernel-based multilevel clustering algorithm.

The framework of our multilevel algorithm is similar to
that of Metis [12], a popular multilevel graph clustering
algorithm for optimizing the Kernighan-Lin objective. Fig. 1
provides a graphical overview of the multilevel framework.
We assume that we are given an input graph G0 ¼
ðV0; E0; A0Þ along with the number of desired partitions.
Below, we describe our multilevel algorithm in terms of its
three phases: coarsening, base-clustering, and refinement.

5.1 Coarsening Phase

Starting with the initial graph G0, the coarsening phase
repeatedly transforms the graph into smaller and smaller
graphs Gl;G2; . . . ; Gm such that jV0j > jVlj > . . . > jVmj. To
coarsen a graph from Gi to Giþ1, sets of nodes in Gi are
combined to form supernodes inGiþ1. When combining a set
of nodes into a single supernode, the edge weights out of the
supernode are taken to be the sum of the edge weights out of
the original nodes.

A popular approach for multilevel coarsening (and one
used by Metis) is to use heavy edge coarsening. This approach
works as follows: given a graph, start with all nodes
unmarked. Visit each vertex in a random order. For each
vertex x, if x is not marked, merge x with the unmarked
vertex y that corresponds to the highest edge weight among
all edges betweenx and unmarked vertices. Then, markx and
y. If all neighbors of x have been marked, mark x and do not
merge it with any vertex. Once all vertices are marked, the
coarsening for this level is complete.

This coarsening procedure works well for the Kernighan-
Lin objective, but we generalize it to a max-cut coarsening
procedure to make it effective for a wider class of objectives.
Given a vertex x, instead of merging using the criterion of
heavy edges, we instead look for the unmarked vertex y that
maximizes

eðx; yÞ
wðxÞ þ

eðx; yÞ
wðyÞ ; ð5Þ

where eðx; yÞ corresponds to the edge weight between
vertices x and y, and wðxÞ; wðyÞ are the weights of vertices x
and y, respectively. These vertex weights correspond to the
weights in Section 4. For example, in the normalized cut case,
the weight of a vertex is its degree, and (5) reduces to the
normalized cut between x and y. For ratio association, (5)
simplifies to the heaviest edge criterion, since the weight is 1
for all vertices.

5.2 Base Clustering Phase

Eventually, the graph is coarsened to the point where very
few nodes remain in the graph. We specify a parameter
indicating how small we want the coarsest graph to be; in our
experiments, we stop coarsening when the graph has less
than 5k nodes, where k is the number of desired clusters. At
this point, we perform a base (or initial) clustering by directly
clustering the coarsest graph.
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TABLE 2
Popular Graph Clustering Objectives and
Corresponding Weights and Kernels for

Weighted Kernel k-Means Given Adjacency Matrix A

Fig. 1. Overview of the multilevel algorithm (for k ¼ 2).



One base-clustering approach is the region-growing
algorithm of Metis [12]. This algorithm clusters the base
graph by selecting random vertices and growing regions
around the vertices in a breadth-first fashion to form clusters.
Since the quality of the resulting clusters depends on the
choice of the initial vertices, the algorithm is run several times
with different starting vertices, and the best clustering is
selected. This base-clustering method is extremely efficient,
though it tends to generate clusters of nearly equal size.
Alternatively, we have found that an effective base clustering
is provided by a state-of-the-art spectral clustering algorithm.
This spectral algorithm generalizes the normalized cut
algorithm of Yu and Shi [16] to work with arbitrary weights.
As a result, the base clustering may be optimized for different
graph clustering objectives. Further details are available in
[19]. Since the coarsest graph is significantly smaller than the
input graph, spectral methods are adequate in terms of speed.

In addition to region growing and spectral clustering, we
have also tested a third approach for base clustering—the
bisection method. In this method, we bisect the coarsest graph
into two clusters and then break up these two clusters into
four clusters and so on until k clusters are obtained. When
bisecting a cluster, we run the multilevel algorithm withk ¼ 2
to a coarsest level of 20 nodes and use kernel k-means with
random initialization at the lowest level. The region growing
and bisection methods require no eigenvector computation,
which makes them simpler and more appealing than spectral
initialization. In Section 6, we compare different base-
clustering methods in terms of quality and speed.

5.3 Refinement

The final phase of the algorithm is the refinement phase.
Given a graph Gi, we form the graph Gi�1 (Gi�1 is the graph
used in level i� 1 of the coarsening phase). The clustering
in Gi induces a clustering in Gi�1 as follows: If a supernode
in Gi is in cluster c, then all nodes in Gi�1 formed from that
supernode are in cluster c. This yields an initial clustering
for the graph Gi�1, which is then improved using a
refinement algorithm. Note that we also run the refinement
algorithm on the coarsest graph. The multilevel algorithm
terminates after refinement is performed on the original
graph G0. Since we have a good initial clustering at each
level, the refinement usually converges very quickly,
making this procedure extremely efficient.

Our multilevel algorithm uses weighted kernel k-means
for the refinement step. Depending on the graph clustering
objective to be optimized, we can appropriately set the
weights and kernel at each step of the refinement given the
adjacency matrix for the current level. At all levels except the
coarsest level, the initialization for weighted kernel k-means
is taken to be the clustering induced by the previous level.

We have optimized our implementation of weighted
kernel k-means in several ways for maximum efficiency. For
example, we have found that using only “boundary” points
for the weighted kernel k-means algorithm speeds up
computation considerably with little loss in cluster quality.
When running kernel k-means, most points that are
swapped from one cluster to another cluster in one iteration
lie on the cluster boundary; that is, these nodes contain an
edge to a node in another cluster. When determining which
points to move from one cluster to another in weighted
kernel k-means, we have the option of only considering
such boundary points to speed up the computation.

Moreover, we can compute distances in the kernel space
efficiently. We can precompute wðVcÞ and linksðVc;VcÞ for
every cluster to save computation time (see the end of
Section 4.2), and we can compare distances without having
to explicitly form the kernel matrix or use any floating-point
division (and, thus, our code only uses integer arithmetic if
the initial edge weights are integers).

5.4 Local Search

A common problem when running standard batch kernel
k-means is that the algorithm has a tendency to be trapped
into qualitatively poor local minima. An effective technique
to counter this issue is to do a local search by incorporating
an incremental strategy. A step of incremental kernel
k-means attempts to move a single point from one cluster
to another in order to improve the objective function. For a
single move, we look for the move that causes the greatest
decrease in the value of the objective function. For a chain of
moves, we look for a sequence of such moves. The set of
local minima using local search is a superset of the local
minima using the batch algorithm. Often, this enables the
algorithm to reach much better local minima. It has been
shown in [20] that incremental k-means can be implemen-
ted efficiently. Such an implementation can be easily
extended to weighted kernel k-means. In practice, we
alternate between standard batch updates and incremental
updates. Further details can be found in [20].

As shown earlier, the Kernighan-Lin objective can also be
viewed as a special case of the weighted kernel k-means
objective (the objective is the same as ratio cut except for the
cluster size restrictions), but running weighted kernel
k-means provides no guarantee about the size of the
partitions. We may still optimize the Kernighan-Lin objective
by using a local search approach based on swapping points: if
we perform only local search steps via swaps during the
weighted kernel k-means algorithm, then the cluster sizes
remain the same. An approach to optimizing Kernighan-Lin
would therefore be to run such an incremental kernel
k-means algorithm using chains of swaps. This approach is
very similar to the usual Kernighan-Lin algorithm [14].

6 EXPERIMENTAL RESULTS

In this section, we present a number of experiments to show
the efficiency and effectiveness of our multilevel algorithm,
which we call Graclus.1 The problem of graph clustering
arises in various real-life pattern recognition applications; we
examine problems in gene network analysis, social network
analysis, and image segmentation. These applications do not
generally have ground truth clusters but yield examples of
large clustering problems that frequently arise in practice. We
show that Graclus discovers meaningful clusters in all these
varied applications and outperforms spectral methods in
terms of objective function value and computation time.
Later, we perform experiments on some standard benchmark
data sets, which have been used for testing graph clustering
algorithms to objectively compare our methods to spectral
methods. In all experiments, we use a state-of-the-art spectral
clustering algorithm based on that in [16] for comparison
purposes. This algorithm uses a sophisticated postprocessing
(or rounding) method for computing a discrete clustering
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1. Software for our multilevel algorithm is available at http://
www.cs.utexas.edu/users/dml/Software/graclus.html.



from the eigenvectors, and empirically, it performed the best
among various spectral clustering algorithms that we tested
in terms of optimizing the objective function value. Note that
the algorithm in [16] was developed only for the normalized
cut criterion; we have adapted it to work for general weighted
graph clustering objectives.

Due to the different base-clustering methods, the option
of local search, and the option of using all points or
boundary points, Graclus has several potential variants.
Except for the benchmark graphs in Section 6.4, we use
region-growing initialization, which we found overall to
have the best tradeoff between speed and quality. In
Section 6.4, we compare different base-clustering methods
with the spectral algorithm and Metis on a number of
benchmark graphs in terms of computation time, as well as
objective function values. All experiments were performed
on a Linux machine with a 2.4-GHz Pentium IV processor
and 1 Gbyte of main memory.

6.1 Gene Network Analysis

We first consider the Mycobacterium tuberculosis gene network
in [21], where the nodes are genes and an edge exists between
two genes if and only if these two genes are inferred to be
functionally linked by two or more of the following
computational methods: the Rosetta Stone method [22], the
Phylogenetic profile method [23], the Operon method [24],
and the Conserved Gene Neighbor method [25]. This network
contains 1,381 nodes and 9,766 functional edges. The weight

of an edge is defined to be the number of methods that infer
the two associated nodes to have functional linkage, thus, the
weights range in value from 2 to 4. A spy plot of the sparse
functional linkage matrix is shown in Fig. 2a. We apply two
variants of Graclus and the spectral algorithm on this graph
using the normalized cut objective to generate 4, 8, 16, 32, 64,
and 128 clusters. Table 3 shows the normalized cut values
produced by the three algorithms—Graclus with all the
points, Graclus with only the boundary points, and the
spectral algorithm. In all cases, Graclus outperforms the
spectral method in terms of the normalized cut value.

To visually demonstrate that genes strongly connected in
the functional linkage graph are grouped together by
Graclus, we rearrange the rows and columns of the gene
matrix so that the rows (and columns) in the same cluster
are adjacent to one another using the results from Graclus
with boundary points for k ¼ 128. Fig. 2b shows the matrix
after rearrangement. As can be seen, after clustering, most
of the nonzeros are concentrated around the diagonal,
suggesting a tight clustering.

We now discuss a sampling of the produced clusters to
demonstrate their biological significance. The histidine
biosynthesis pathway is known to contain 10 genes: Rv1599
(hisD), Rv1600 (hisC), Rv1601 (hisB), Rv1602 (hisH), Rv1603
(hisA), Rv1605 (hisF), Rv1606 (hisI2), Rv2121c (hisG),
Rv2122c (hisI), and Rv3772 (hisC2) [21]. The pathway is
shown in Fig. 3a, where arrows denote the direction of
biochemical reactions and each gene denotes the enzyme
specified by the corresponding gene that is necessary to carry
out the reactions. Graclus accurately uncovers this
pathway—all 10 of these genes are found to be in one cluster.
Another cluster discovered by the multilevel method con-
tains seven out of eight genes involved in the adenosine
triphosphate (ATP) synthase complex: Rv1304 (AtpB),
Rv1306 (AtpF), Rv1307 (AtpH), Rv1308 (AtpA), Rv1309
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Fig. 2. Spy plots of the functional linkage matrix before and after

clustering (128 clusters)—each dot indicates a nonzero entry.

TABLE 3
Normalized Cut Values Returned by Graclus

and the Spectral Method

Fig. 3. (a) Histidine biosynthesis pathway and (b) ATP synthase

multiprotein complex [21].



(AtpG), Rv1310 (AtpD), and Rv1311 (AtpC) [21]. The eighth
gene, RV1305 (AtpE), is not in the network since it is
functionally linked to other genes only by the Operon
method. Fig. 3b illustrates the complex embedded in the
membrane. As protons flow through the membrane, the
cylinder-like AtpE and shaft-like AtpG rotate. The rotation of
the shaft causes a conformational change in the subunits
(AtpD and AtpA) of the orange-shaped head, where ATP is
made.

We can also use the clustering results to infer previously
uncharacterized gene functions. For example, one of the
clusters discovered by our algorithm contains 16 genes:
Rv0016c, Rv0017c, Rv0019c, Rv0050, Rv2152c, Rv2153c,
Rv2154c, Rv2155c, Rv2156c, Rv2157c, Rv2158c, Rv2163c,
Rv2165c, Rv2166c, Rv2981c, and Rv3682. According to the
Sanger M. tuberculosis Web server,2 12 of these genes have the
annotation murein sacculus and peptidoglycan, a polymer that is
composed of polysaccharide and peptide chains and is found
in Mycobacterial cell walls. Therefore, we can infer that the
remaining genes Rv0019c, Rv2154c, Rv2165c, and Rv2166c
have functions related to cell wall/envelope metabolism,
which coincides with the results discovered in [21].

6.2 The Internet Movie Database (IMDB) Movie
Data Set

The IMDB data set3 contains information about movies,
music bands, actors, movie festivals, and events. By
connecting actors with movies or events in which they

participate, we form a large sparse undirected graph with
about 1.36 million nodes and 4.27 million edges.

Due to the size of the graph, we do not apply local search
when running Graclus. We apply the spectral algorithm and
Graclus to this data set and generate 2, 4, 8, . . . , 1,024 clusters.
We record the normalized cut and ratio association values
along with computation times in Tables 4 and 5. Note that
some cells in the tables are left empty because the spectral
method cannot be run due to memory issues—storing
k eigenvectors of this graph quickly becomes prohibitive.
Comparing the values when the spectral method can be run,
we see that, in most cases, Graclus produces better objective
function values than the spectral algorithm: four out of five
for ratio association and four out of five for normalized cut
when running Graclus on the boundary points and five out of
five for both objectives when running on all the points.
Interestingly, there is a significant improvement in ratio
association values when using all points in Graclus as
opposed to the boundary points.

Both variants of Graclus are much faster when k is large;
for example, to produce 32 clusters using the normalized cut
objective, Graclus with boundary points takes only about
40 seconds, whereas the spectral algorithm requires over
4,400 seconds. Note that the spectral method for normalized
cut takes many more iterations to converge than the spectral
method for ratio association, yielding larger computation
times.

In order to demonstrate the quality of clustering, we
generate 5,000 clusters so the clusters are sufficiently small.
Note that it is impractical to run a spectral algorithm
directly on this data set to produce 5,000 clusters not only
because computing 5,000 eigenvectors of a graph of this size
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TABLE 4
Normalized Cut Values and Computation Time for a Varied Number of Clusters of the IMDB Movie Data Set,

Using Two Variants of Our Multilevel Algorithm and the Spectral Method

TABLE 5
Ratio Association Values and Computation Time for a Varied Number of Clusters of the IMDB Movie Data Set,

Using Two Variants of Our Multilevel Algorithm and the Spectral Method

2. Annotations from http://www.sanger.ac.uk/Projects/
M_tuberculosis/Gene_list/.

3. Downloaded from http://www.imdb.com/interfaces.



would be extremely slow but also because storing the

eigenvectors would require about 24 Gbytes of main

memory. It takes approximately 12 minutes for Graclus

using the normalized cut objective and boundary points to

cluster this graph into 5,000 clusters. The resulting cluster

sizes range from 10 to 7,999.
We briefly discuss a sampling of the produced clusters.

Cluster 911 is of size 98 and contains “Harry Potter” movies

and the actors in these movies. The left column in Table 6

lists movies in the cluster, where we see five Harry Potter

films. There are also three other documentary TV programs

on Harry Potter in this cluster. The right column in Table 6

lists a selection of some of the actors in the cluster, where

we see the major cast members of the Harry Potter movies

such as Daniel Radcliffe, Rupert Grint, Emma Watson, and

so forth. Cluster 1,008 is of size 197 and contains the

filmmaker Steven Spielberg. Table 7 list several documen-

taries in this cluster about the films he has made. In

addition, the cluster also contains a number of people who

work with Spielberg, such as composer John Williams and

cinematographer Janusz Kaminski, both of whom have

worked on several of Spielberg’s movies. Small clusters

often contain one movie or movie series and cast members

that acted only in this movie or movie series. For example,

cluster 155 contains “Cruise Ship” (2002) and nine of its cast

members; cluster 2,350 contains the short series “Festival

número” (no. 1-12), shot in year 1965. Popular actors,

directors, or well-known movie festivals are associated with

more people, so they often belong to larger clusters.

6.3 Image Segmentation

Normalized cuts are often used for image segmentation,
and spectral methods are typically used [16]. However,
computing the eigenvectors of a large affinity matrix may
be computationally expensive, especially if many eigenvec-
tors are needed. In addition, Lanczos-type algorithms can
sometimes fail to converge in a prespecified number of
iterations, which occurred in some of our Matlab runs on
the image data set. However, Graclus can optimize the
normalized cut using an eigenvector-free approach.

Due to lack of space, we cannot present detailed results on
image segmentation but provide an example to demonstrate
that Graclus can successfully be used in this domain. We
construct the affinity matrix by preprocessing the image in
Fig. 4 using a code obtained from Stella Yu.4 Then, we apply
Graclus and the spectral algorithm to the affinity matrix.
Graclus with boundary points gives a normalized cut value of
0.0221, smaller than 0.0239, the normalized cut value
obtained using the spectral algorithm. Fig. 4 shows the
segmentation of the sample image (into three segments)
performed by Graclus.

6.4 Benchmark Graph Clustering

The previous sections have looked at applications in pattern
recognition. For an objective comparison, we now compare
Graclus to the spectral method and the Metis software on
standard benchmark graphs in terms of computation time, as
well as clustering quality. The following variants of Graclus
are considered: GraclusK, GraclusB, and GraclusS, which
denote Graclus using region growing, bisection, and spectral
initialization, respectively. For all variants, if local search is
not used, we append 0 to the name; otherwise, we append 20
to indicate that a local search chain of length 20 is used. In all
these experiments, boundary points were used for clustering.

We generate 128 clusters for all the graphs listed in
Table 8 using Graclus and the spectral algorithm. Results
using the bisection method are very similar to those using
the region-growing initialization and, thus, are not pre-
sented here. Instead, we present results for GraclusK and
GraclusS. The computation times are given in Table 9.
Graclus clearly outperforms the spectral algorithm in terms
of computation time. In many cases, Graclus is hundreds or
even thousands of times faster than the spectral algorithm.
For example, the spectral algorithm takes 636.82 seconds to
cluster the “finance256” graph, whereas GraclusK0 and
GraclusK20 finish in 0.23 and 0.32 seconds, respectively.
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TABLE 6
A Selection of Movies and Actors in Cluster 911

TABLE 7
A Selection of Documentaries in Cluster 1,008

4. http://www.cs.berkeley.edu/~stellayu/code.html.



Among the Graclus variants, spectral initialization is slower
than the initialization by bisection or region growing.

The quality results are shown in Fig. 5. Since the
normalized cut and ratio association values for the test
graphs are quite different, we scale the values in Fig. 5 using
the corresponding values generated by the spectral algo-
rithm. Graclus achieves better results than the spectral
method in most cases (for example, all variants of Graclus
give lower normalized cut values in six of the seven graphs,
and at least one variant of Graclus gives a higher ratio
association value for each graph). The variant using spectral
initialization generally gives results that are slightly better
than the variant that uses region growing as the initializa-
tion (base clustering step). For example, in the case of the
“memplus” graph, all variants of Graclus produce ratio

association values at least 20 percent more than the spectral
algorithm. Local search can sometimes significantly im-
prove the performance of Graclus. For example, local search
increases the ratio association value by 34 percent and
decreases the normalized cut value by 10 percent with
GraclusK on the “gupta2” graph.

We now compare Graclus with the Metis software in terms
of scalability on a representative graph. Note that all our
experiments show that Graclus consistently produces better
normalized cut and ratio association values than Metis, which
is not surprising since Metis minimizes the edge cut value
instead of the normalized cut or ratio association. Fig. 6 shows
the runtimes of Graclus and Metis for 32, 64, 128, 256, and
512 clusters of the “ramage02” graph. From the figure, we see
that our Graclus algorithm is comparable to KMetis but runs
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Fig. 4. Segmentation of a sample image. The leftmost plot is the original image and each of the three plots to the right of it is a component

(cluster)—body, tail, and background. The normalized cut value for Graclus is 0.0221, smaller than 0.0239, the normalized cut value obtained using

the spectral method.

TABLE 8
Test Graphs from Various Applications [26]

TABLE 9
Computation Time (in Seconds) Used by the Spectral Method and Graclus to Compute Normalized Cut Values

(Top Table) and Ratio Association Values (Bottom Table)



faster than PMetis when the number of clusters is small; when
the number of clusters becomes large, Graclus is comparable
to PMetis but faster than KMetis.

In summary, all variants of Graclus are significantly faster
than the spectral methods and are comparable or better in
terms of quality—among the variants, GraclusS20 generally
gives the best clustering results. However, GraclusS20 is
slightly slower than other variants of Graclus such as
GraclusK0, which is up to 2,000 times faster than the spectral
method. Furthermore, Graclus is comparable to Metis in
terms of speed and produces better weighted graph cuts.

7 RELATED WORK

There has been extensive work on various forms of spectral
and graph clustering. The Kernighan-Lin heuristic has been
used in graph clustering for decades [14], and many efficient
algorithms have been proposed for locally optimizing the
K-L objective. Some of the earliest work on spectral methods
was done by Hall [4] and Donath and Hoffman [3]. The

k-way ratio cut objective was used for circuit partitioning in
[5], whereas normalized cuts were introduced for image
segmentation in [6] and later extended to k-way partitioning
in [16]. Kernel-based clustering using spectral methods was
discussed in [27] and [28]; the spectral algorithms discussed
in [28] correspond to optimizing ratio association and ratio
cut. Kernel k-means was introduced in [1] as an extension to
standard Euclidean k-means. Other uses of kernels, most
importantly in nonlinear component analysis, were also
explored in [1]. Kernel-based learning methods have
appeared in a number of other areas in the last few years,
especially in the context of support vector machines [15].

The spectral relaxation of the standard Euclidean k-means
objective function was discussed in [10]. The formulation
was based on unweighted k-means and no connection was
made to graph cuts. A recent paper [11] also discusses a
connection between k-means and spectral clustering in the
unweighted case; however, normalized cuts were not
amenable to the analysis in [11]. The latter paper also
discussed the issue of enforcing positive definiteness for
clustering. In [8], Bach and Jordan studied a cost function for
spectral clustering that can be minimized to either learn the
similarity matrix or the clustering. In a footnote, Bach and
Jordan [8] mentioned a connection between k-means and
normalized cut involving an Oðn3Þ decomposition of a
positive semidefinite similarity matrix. None of these papers
considers the use of kernels or generalized graph cuts.
Weights, which play an important role in normalized cuts,
are not discussed in [10] or [11]. More recently, Zass and
Shashua [17] has considered connections between normal-
ized cuts and k-means, as well as connections to doubly
stochastic matrices and clustering with side information.

Our multilevel algorithm is based on Metis [12], a fast
and popular graph partitioning algorithm. Metis is often
cited as one of the best examples of a multilevel graph
clustering algorithm. However, Metis and Chaco [13] are
both restricted to the Kernighan-Lin heuristic and force
nearly equally sized clusters. Some recent work has
considered hierarchical spectral methods [29] to improve
efficiency, though this work is limited to stochastic matrices
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Fig. 5. Quality comparison between the spectral method and Graclus in terms of (a) normalized cut and (b) ratio association values for 128 clusters.

The plot shows the effect of local search and different base-clustering methods. All the values in each five-bar group of the plot are scaled by the
corresponding value generated using the spectral method. Note that, in (a), bars below the horizontal line indicate that Graclus performs better; in
(b), bars above the horizontal line indicate that Graclus performs better.

Fig. 6. Computation time comparison between Graclus and Metis on
“ramage02”.



(and, thus, applies only to the normalized cut objective); as
future work, it may be possible to compare with, extend, or
incorporate the methods discussed in this domain.

Preliminary versions of our work have appeared in [9]
and [30]. The current paper substantially extends the
theoretical results of our earlier work, including generalizing
graph cuts and methods for enforcing positive definiteness.
The multilevel algorithm has been considerably improved
over the version presented in [30], often by an order of
magnitude in speed.

8 CONCLUSION

Spectral clustering has received considerable attention in

the last few years as a powerful clustering method with

varied applications. However, previous algorithms for

spectral clustering objectives have relied on eigenvector

computation, which can be prohibitive for very large data

sets. In this paper, we have discussed a mathematical

equivalence between a general spectral clustering objective

and the weighted kernel k-means objective. Using this

equivalence, we have designed a fast multilevel algorithm

that outperforms spectral methods in terms of quality,

speed, and memory usage. Since special cases of this

general spectral clustering objective include normalized cut,

ratio cut, and ratio association, our multilevel algorithm

provides an eigenvector-free method for minimizing sev-

eral popular objectives. The refinement step in our

algorithm uses weighted kernel k-means, an algorithm

which has heretofore received very little practical attention

in the research community. Experimental results on a gene

network, a social network, and several benchmark graphs

demonstrate the effectiveness of our multilevel algorithm.
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