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ABSTRACT
�e goal of co-clustering is to simultaneously identify a clus-

tering of the rows as well as the columns of a two dimensional

data matrix. Most existing co-clustering algorithms are designed to

�nd pairwise disjoint and exhaustive co-clusters. However, many

real-world datasets might contain not only a large overlap between

co-clusters but also outliers which should not belong to any co-

cluster. We formulate the problem of Non-Exhaustive, Overlapping

Co-Clustering where both of the row and column clusters are al-

lowed to overlap with each other and the outliers for each dimension

of the data matrix are not assigned to any cluster. To solve this

problem, we propose an intuitive objective function, and develop an

e�cient iterative algorithm which we call the NEO-CC algorithm.

We theoretically show that the NEO-CC algorithm monotonically

decreases the proposed objective function. Experimental results

show that the NEO-CC algorithm is able to e�ectively capture the

underlying co-clustering structure of real-world data, and thus

outperforms state-of-the-art clustering and co-clustering methods.
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1 INTRODUCTION
Let us consider a two dimensional data matrix such that each

row represents an object and each column represents an a�ribute or

a feature of an object. While one-way clustering algorithms focus

on clustering only one of the dimensions of the data matrix, it has

been recognized that simultaneously clustering both dimensions of

the data matrix is desirable to detect more semantically meaningful

clusters in many applications such as gene expression data anal-

ysis [9], word-document clustering, and market-basket analysis.

Many di�erent kinds of co-clustering methods have been proposed

to simultaneously identify a clustering of the rows as well as the

columns of the data matrix. However, most existing co-clustering

methods are based on an assumption that every object belongs

to exactly one row cluster and every a�ribute belongs to exactly

one column cluster. �is assumption hinders the existing methods

from correctly capturing the underlying structure of data because

in many real-world datasets, both of the row and column clusters

can overlap with each other and the data might contain outliers.
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(a) �e original data matrix

(b) Rearrangement of the rows and the columns
according to the output of the NEO-CC method.

Figure 1: Visualization of a user-movie ratings dataset.

We propose the Non-Exhaustive, Overlapping Co-Clustering

(NEO-CC) method to e�ciently detect coherent co-clusters such

that both of the row and column clusters are allowed to overlap with

each other and the outliers for each dimension of the data matrix are

not assigned to any cluster. For example, Figure 1 shows the output

of our NEO-CC method on a user-movie ratings dataset where each

row represents a user and each column represents a movie. As

shown in Figure 1(a), when we simply visualize the original data

matrix, it is hard to discover particular pa�erns of the matrix. In

Figure 1(b), we rearrange the rows and the columns according to

the output of the NEO-CC method, and explicitly mark the row

and column clusters. Now, we can observe the overlapping co-

clustering structure of the data matrix. Also, the NEO-CC method

detects one outlier from the rows, and when we look at the detected

outlier, it corresponds to a user who randomly gives ratings to a

number of movies without any particular pa�ern.

In this paper, we mathematically formulate the non-exhaustive,

overlapping co-clustering problem. To solve this problem, we pro-

pose an intuitive objective function, and develop a simple iterative

algorithm called the NEO-CC algorithm which monotonically de-

creases the proposed objective. Experimental results on real-world

datasets show that the NEO-CC algorithm is able to e�ectively

capture the underlying co-clustering structure of real-world data,

and thus outperforms state-of-the-art clustering and co-clustering

methods in terms of discovering the ground-truth clusters.

2 RELATEDWORK
We note that [11] and [10] study the overlapping co-clustering

problem but do not consider outlier detection. On the other hand, [5]

proposes a robust co-clustering algorithm by assuming the presence

of outliers, but does not consider overlapping co-clustering. �e

ROCC algorithm [4] and an in�nite plaid model (IPM) [8] have been

recently proposed to �nd non-exhaustive, overlapping co-clusters.

However, the ROCC algorithm includes complicated heuristics, and

the in�nite bi-clustering method requires a user to provide many



non-intuitive hyperparameters with the model. On the other hand,

our NEO-CC algorithm is a more principled method with simple

and intuitive parameters which can be easily estimated. Part of this

work has been presented in the �rst author’s Ph.D. dissertation [12].

For the one-way clustering problem, the NEO-K-Means [13]

has been recently proposed to identify overlapping clusters and

outliers in a uni�ed manner where the method is designed to cluster

only the rows of a data matrix. However, extending this idea to

the co-clustering problem is far from straightforward because of

the complicated interactions between the rows and the columns

of the data matrix where both the cluster overlap and the non-

exhaustiveness are allowed for each dimension of the matrix.

3 THE NEO-CC OBJECTIVE FUNCTION
Given a two-dimensional data matrix X ∈ Rn×m , let Xr denote

the set of data points for row clustering, and Xc denote the set of

data points for column clustering. �e co-clustering problem is

to cluster Xr = {x1, x2, . . . , xn } (xi ∈ Rm for i = 1, . . . ,n) into k
row clusters {Cr

1
,Cr

2
, . . . ,Crk }, and cluster Xc = {x1, x2, . . . , xm }

(xj ∈ Rn for j = 1, . . . ,m) into l column clusters {Cc
1
,Cc

2
, . . . ,Ccl }.

Inspired by the traditional MSSR co-clustering objective [3], we

design our NEO-CC objective function by considering the sum of

squared di�erences between each entry and each mean of the co-

clusters the data point belongs to. Let U = [ui j ]n×k denote the

assignment matrix for row clustering, i.e., ui j = 1 if xi belongs to

cluster j; ui j = 0 otherwise. Similarly, let V = [vi j ]m×l denote the

assignment matrix for column clustering. Suppose that we have

a small data matrix X ∈ R4×5
and the assignment matrices U and

V as shown in Figure 2(a). For an entry x21, Figure 2(b) shows

the contribution of the entry x21 to the NEO-CC objective when

xr
2
∈ Cr

1
, xr

2
∈ Cr

2
(xr

2
∈ R5

), xc
1
∈ Cc

1
, xc

1
∈ Cc

2
(xc

1
∈ R4

). For the

entry x21, the NEO-CC objective considers the squared di�erences

between x21 and four di�erent means, each of which corresponds

to a di�erent combination of the row and column clusters the entry

belongs to. Now, let us represent this idea using matrices and

vectors. Let
ˆU = [ u1√

n1

, · · · , uk√nk
] denote a normalized assignment

matrix where uc is the c-th column ofU and nc is the size of cluster

c . Let ûi denote the i-th column of
ˆU . Similarly, we also de�ne

ˆV and

let v̂j denote the j-th column of
ˆV . Let I{exp} = 1 if exp is true; 0

otherwise, and let 1 denote a vector having all the elements equal to

one. Finally, given a vector y ∈ Rm , let us de�ne D(y) = [di j ]m×m
as the diagonal matrix with dii = yi (i = 1, . . . ,m). �en, our

NEO-CC objective function is:

minimize

U ,V

k∑
i=1

l∑
j=1

‖D(ui )X D(vj ) − ûi ûTi X v̂j v̂Tj ‖2F
subject to trace(U TU ) = (1 + αr )n,∑n

i=1
I{(U 1)i = 0} ≤ βrn,

trace(V TV ) = (1 + αc )m,∑m
i=1

I{(V 1)i = 0} ≤ βcm,

(1)

where αr and βr are the parameters for row clustering, and αc and

βc are the parameters for column clustering. �e parameters αr and

αc control the amount of overlap among the clusters while βr and

βc control the degree of non-exhaustiveness. We introduce these

parameters motivated by the one-way NEO-K-Means method [13].

�e �rst two constraints in (1) are associated with the row clus-

tering whereas the last two constraints are associated with the

column clustering. �e �rst constraint indicates that the total num-

ber of assignments in U is equal to (1 + αr )n. �us, more than n

(a) Data matrix X , row clusteringU , and column clustering V

(b) �e contribution of x21 to the NEO-CC objective

Figure 2: �e NEO-CC objective considers the di�erences be-
tween each entry and the co-cluster means the entry belongs to.

assignments are made in U for αr > 0, which implies that some

data points belong to more than one cluster. �e second constraint

indicates the upper bound of the number of outliers, i.e., there

can be at most βrn outliers. We can similarly interpret the last

two constraints for the column clustering. �e NEO-CC objective

seamlessly generalizes the NEO-K-Means [13] and the MSSR [3]

objectives. If V = I , αc = 0, βc = 0, then (1) is equivalent to the

NEO-K-Means objective. If αr = 0, αc = 0, βr = 0, βc = 0, then (1)

is equivalent to the MSSR objective.

4 THE NEO-CC ALGORITHM
To optimize our NEO-CC objective function, we develop an iter-

ative NEO-CC algorithm which we describe in Algorithm 1. �e

NEO-CC algorithm repeatedly updates U and V until the change

in the objective becomes su�ciently small or the maximum num-

ber of iterations is reached. Within each iteration, U and V are

alternatively updated. We initialize U and V by running the one-

way NEO-K-Means clustering algorithm on the data matrix and

the transpose of the matrix, respectively. We also estimate the

parameters αr , βr , αc , and βc using the strategies suggested in [13].

Algorithm 1 consists of two main parts – updating row clustering

(lines 3–20) and updating column clustering (lines 21–38). Let us

�rst describe how U is updated. To update U , we need to compute

distances between every data point in Xr and the clusters Crq for

q = 1, · · · ,k . Let [drpq ]n×k denote these distances, and let Ip ·
denote the p-th row of the identity matrix of size n. �e distance

between a data point xp ∈ Xr and a cluster Crq is computed by

drpq =
l∑
j=1








(Ip ·)X D(vj ) −
1√

uq



1

ûTqX v̂j v̂Tj









2

. (2)

For each data point xp ∈ Xr (p = 1, · · · ,n), we record its closest

cluster and that distance. By sorting the data points in ascending or-

der by the distance to its closest cluster, we assign the �rst (1−βr )n
data points to their closest clusters to satisfy the second constraint

in (1). �en, we make αrn + βrn assignments by taking αrn + βrn



Algorithm 1 NEO-CC Algorithm

Input: X ∈ Rn×m , k , l , αr , αc , βr , βc , tmax
Output: Row clustering U ∈ {0, 1}n×k , Column clustering V ∈ {0, 1}m×l
1: Initialize U , V , and t = 0.

2: while not converged and t < tmax do
3: /* Update Row Clustering */

4: for each xp ∈ Xr do
5: for q = 1, · · · , k do
6: Compute drpq using (2).

7: end for
8: end for
9: Initialize w = 0, T = ∅, S = ∅, and

¯Cri = ∅, ˆCri = ∅ ∀i (i = 1, · · · , k ).
10: whilew < (n + αrn) do
11: if w < (n − βrn) then
12: Assign xri∗ to

¯Crj∗ such that (i∗, j∗) = argmin

i, j
dri j where {(i, j)} <

T, i < S.

13: S = S ∪ {i∗ }.
14: else
15: Assign xri∗ to

ˆCrj∗ such that (i∗, j∗) = argmin

i, j
dri j where {(i, j)} < T .

16: end if
17: T = {(i∗, j∗)} ∪ T .

18: w = w + 1.

19: end while
20: Update clusters Cri = ¯Cri ∪ ˆCri ∀i (i = 1, · · · , k ).
21: /* Update Column Clustering */

22: for each xp ∈ Xc do
23: for q = 1, · · · , l do
24: Compute dcpq using (3).

25: end for
26: end for
27: Initialize w = 0, T = ∅, S = ∅, and

¯Ccj = ∅, ˆCcj = ∅ ∀j (j = 1, · · · , l ).
28: whilew < (m + αcm) do
29: if w < (m − βcm) then
30: Assign xci∗ to

¯Ccj∗ such that (i∗, j∗) = argmin

i, j
dci j where {(i, j)} <

T, i < S.

31: S = S ∪ {i∗ }.
32: else
33: Assign xci∗ to

ˆCcj∗ such that (i∗, j∗) = argmin

i, j
dci j where {(i, j)} < T .

34: end if
35: T = {(i∗, j∗)} ∪ T .

36: w = w + 1.

37: end while
38: Update clusters Ccj = ¯Ccj ∪ ˆCcj ∀j (j = 1, · · · , l ).
39: t = t + 1.

40: end while

minimum distances among [drpq ]n×k . Note that, in total, we make

n + αrn assignments in U , which satis�es the �rst constraint in (1).

Similarly, we can also update V . Let I ·p denote the p-th column

of the identity matrix of sizem. �e distance between a data point

xp ∈ Xc and a column cluster Ccq is computed by

dcpq =
k∑
i=1








D(ui )X (I·p ) − 1√

vq


1

ûi ûTi X v̂q









2

. (3)

A�er computing the distances between every data point in Xc and

the column clusters using (3), V can be similarly updated.

Now, we show the monotonic decrease of the NEO-CC objective

in Algorithm 1 (�eorem 1) using the following lemma.

Lemma 1. Let us consider the function h(z) = ∑
i
πi ‖ai − czM ‖22

where ai ∈ R1×m , z ∈ R1×m , πi > 0 ∀i , c = 1√∑
i πi

, and M ∈

Rm×m such that MMT = M . Let z∗ denote the minimizer of h(z).
�en, z∗ is given by

(√∑
i πi

)
Mz∗T = M

( ∑
i
πiaTi

)
.

Proof. We can express h(z) as follows:

h(z) =
∑
i
πi

(
aiaTi − 2czM aTi + c

2zMMT zT
)
,

and the gradient is given by

∂h(z)
∂z

=
∑
i
πi

(
− 2cM aTi + 2c2MMT zT

)
.

By se�ing the gradient to zero, we get∑
i
πiM aTi = c

(∑
i
πi

)
MMT z∗T

= c
(∑

i
πi

)
M z∗T since MMT = M

By se�ing c =
1√∑
i πi

, we get(√∑
i
πi

)
M z∗T = M

(∑
i
πiaTi

)
. �

Theorem 1. Algorithm 1 monotonically decreases the NEO-CC
objective function de�ned in (1).

Proof. Let J (t ) denote the NEO-CC-M objective (1) at t -th iteration. Let

U denote the assignment matrix of the current row clustering C, and U ∗

denote the assignment matrix of the updated row clustering C∗ obtained

by line 20 in Algorithm 1.

J (t ) =
k∑
i=1

l∑
j=1




D(ui )X D(vj ) − ûi ûTi X v̂j v̂Tj



2

F

=

k∑
i=1

l∑
j=1

∑
xp ∈Ci






(Ip ·)X D(vj ) −
1√
‖ui ‖1

ûTi X v̂j v̂Tj






2

2

≥
k∑
i=1

l∑
j=1

∑
xp ∈C∗i






(Ip ·)X D(vj ) −
1√
‖ui ‖1

ûTi X v̂j v̂Tj






2

2

≥
k∑
i=1

l∑
j=1

∑
xp ∈C∗i






(Ip ·)X D(vj ) −
1√
‖u∗i ‖1

û∗Ti X v̂j v̂Tj






2

2

=

k∑
i=1

l∑
j=1




D(u∗i )X D(vj ) − û∗i û∗
T
i X v̂j v̂Tj




2

F

≥
k∑
i=1

l∑
j=1




D(u∗i )X D(v∗ j ) − û∗i û∗
T
i X v̂∗ j v̂∗

T
j




2

F

= J (t+1)

�e �rst inequality holds because we make assignments by line 12 & line

15, and the second inequality holds by Lemma 1 with ai = (Ip ·)X D(vj ),
M = v̂j v̂Tj , z∗ = û∗Ti X , and

√∑
i πi =

√
‖u∗i ‖1. �e last inequality

indicates that we can similarly show the decrease from V to V ∗. �

5 EXPERIMENTAL RESULTS
We compare the performance of our NEO-CC algorithm with

other state-of-the-art co-clustering and one-way clustering algo-

rithms: IPM [8], ROCC [4], MSSR [3], NEO-iter [13], and NEO-

lrsdp [7]. We repeat the experiments for 5 times on each dataset, and

use the default parameters for the baseline methods. We compute

F1 scores to compare the algorithmic clusters and the ground-truth

clusters [13]. Higher F1 score indicates be�er clusters.

We �rst test the clustering performance on user-movie ratings

datasets from MovieLens
1

where we know the genres of the movies

(e.g., action, romance, comedy, etc.). We can consider the genres

as the ground-truth clusters [1]. Since a movie usually belongs to

multiple genres, there exist overlaps among the clusters. We have

two di�erent data matrices – ML1 contains 44,269 ratings, and ML2

contains 28,335 ratings. In Table 1, we show the F1 scores (%) of

1
h�p://grouplens.org/datasets/movielens/

http://grouplens.org/datasets/movielens/


Table 1: F1 scores (%). �e NEO-CC algorithm achieves higher F1 scores than other methods.

IPM ROCC MSSR1 MSSR2 NEO-iter NEO-lrsdp NEO-CC

ML1 average 22.4 55.7 43.8 44.2 56.3 56.4 58.1

ML2

best 36.2 53.3 50.6 50.5 56.8 56.8 58.8
worst 18.6 53.3 50.2 48.2 56.8 56.8 58.1
average 26.7 53.3 50.5 49.4 56.8 56.8 58.4

Yeast

best N/A 15.0 17.4 19.3 36.6 39.1 40.7
worst N/A 12.8 16.4 18.0 35.6 39.0 36.2

average N/A 14.3 16.9 18.5 36.0 39.1 40.0

Facebook

best N/A 26.9 30.6 31.8 34.7 37.6 37.7
worst N/A 24.0 28.7 27.3 33.3 33.7 37.1
average N/A 25.2 29.7 29.7 33.9 35.9 37.3

Figure 3: F1 scores of the best baseline method (NEO-lrsdp)
and the NEO-CC method on the ML2 dataset.
each method (the best, the worst, and the average scores). On ML1

dataset, all the methods except IPM produce identical results for

the �ve trials. Figure 3 shows the F1 scores of the best baseline

method (NEO-lrsdp) and the NEO-CC algorithm for each trial on

the ML2 dataset. We see that the NEO-CC algorithm outperforms

all the baseline methods.

We get an yeast gene expression dataset from [6] where each

row represents a gene, and each column represents an expression

level under a particular biological condition. By clustering or co-

clustering this gene expression data, we can group genes with

similar functions [2]. Indeed, each gene can belong to multiple func-

tional classes, and we can treat each functional class as a ground-

truth cluster. �ere are 2,417 genes, 103 features, and 14 functional

classes. In Table 1, we see that the performance of MSSR is not good

because the dataset contains a large overlap among the clusters

(MSSR generates pairwise disjoint co-clusters). �e IPM method

failed to process this dataset. Note that the NEO-* methods signif-

icantly outperform the other methods (IPM, ROCC, MSSR1, and

MSSR2). We observed that among �ve trials, NEO-CC outperforms

NEO-lrsdp four times. It is interesting to see that the performance

of NEO-CC is even be�er than NEO-lrsdp because we know that

the NEO-lrsdp method involves much more expensive operations

than the NEO-CC method which is a simple iterative algorithm.

We expect that we can further improve the performance of the

NEO-CC algorithm by adapting an SDP-based approach.

On a social network, a community can be interpreted as a cluster.

Since an individual tends to belong to multiple communities, it is

likely that the communities are overlapped with each other. From

SNAP
2
, we get an ego network (which contains 171 nodes and 1,826

2
h�p://snap.stanford.edu/

undirected edges), the a�ributes of the nodes (63 a�ributes), and the

ground-truth communities (k = 14) on Facebook. By concatenat-

ing the adjacency matrix and the a�ribute matrix, we get the data

matrix. As can be seen in the last row of Table 1, overall, NEO-CC

shows the best performance (the IPM method failed to process this

dataset). Co-clustering enables us to perform an implicit dimension-

ality reduction, which leads to performing an implicit regularized

clustering. �is can be a explanation why the F1 score of NEO-CC

can be even higher than the NEO-lrsdp method.

6 CONCLUSIONS & FUTUREWORK
�e NEO-CC method provides a principled way to e�ectively

capture the underlying co-clustering structure of many di�erent

types of real-world data. We plan to investigate a low-rank semi-

de�nite programming for the NEO-CC method to develop a more

sophisticated algorithm and further improve the performance.
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