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Abstract

In this paper, we theoretically study the problem of binagssification in the
presence of random classification noise — the learnerddstéseeing the true la-
bels, sees labels that have independently been flipped aritle small probability.
Moreover, random label noise ¢$ass-conditionat— the flip probability depends
on the class. We provide two approaches to suitably modifygren surrogate
loss function. First, we provide a simple unbiased estimat@ny loss, and ob-
tain performance bounds for empirical risk minimizationtlire presence of iid
data with noisy labels. If the loss function satisfies a sergyimmetry condition,
we show that the method leads to an efficient algorithm forigogb minimiza-
tion. Second, by leveraging a reduction of risk minimizatimder noisy labels
to classification with weighted 0-1 loss, we suggest the fisesimple weighted
surrogate loss, for which we are able to obtain strong eggdirisk bounds. This
approach has a very remarkable consequence — methods upegtiite such
as biased SVM and weighted logistic regression are provatilse-tolerant. On
a synthetic non-separable dataset, our methods achiev88¥eaccuracy even
when 40% of the labels are corrupted, and are competitivenegpect to recently
proposed methods for dealing with label noise in severatherark datasets.

1 Introduction

Designing supervised learning algorithms that can leanmfilata sets with noisy labels is a problem
of great practical importance. Here, by noisy labels, werrad the setting where an adversary has
deliberately corrupted the labels [Biggio et al., 2011],ishhotherwise arise from some “clean”
distribution; learning from only positive and unlabeledalgElkan and Noto, 2008] can also be cast
in this setting. Given the importance of learning from sucisy labels, a great deal of practical
work has been done on the problem (see, for instance, theysarticle by Nettleton et al. [2010]).
The theoretical machine learning community has also inyaistd the problem of learning from
noisy labels. Soon after the introduction of the noise-fP&€ model, Angluin and Laird [1988]
proposed theandom classification noisRCN) model where each label is flipped independently
with some probabilityp € [0,1/2). It is known [Aslam and Decatur, 1996, Cesa-Bianchi et al.,
1999] that finiteness of the VC dimension characterizesbgaility in the RCN model. Similarly, in
the online mistake bound model, the parameter that chaizesdearnability without noise — the
Littestone dimension — continues to characterize leafityiven in the presence of random label
noise [Ben-David et al., 2009]. These results are for theadled ‘0-1” loss. Learning with convex
losses has been addressed only under limiting assumptiensdparability or uniform noise rates
[Manwani and Sastry, 2013].

In this paper, we consider risk minimization in the presesfagdass-conditionatandom label noise
(abbreviated CCN). The data consists of iid samples fromraterying “clean” distributionD.
The learning algorithm sees samples drawn from a noisyoisj, of D — where the noise rates
depend on the class label. To the best of our knowledge, gienesults in this setting have not been
obtained before. To this end, we develop two methods foaklyitmodifyingany given surrogate
loss functior¢, and show that minimizing the sample average of the modifiedyploss function



{ leads to provable risk bounds where the risk is calculatémusie original losg on the clean
distribution.

In our first approach, the modified or proxy loss is an unbigsginate of the loss function. The
idea of using unbiased estimators is well-known in stoébasgtimization [Nemirovski et al., 2009],
and regret bounds can be obtained for learning with noisgldain an online learning setting (See
Appendix B). Nonetheless, we bring out some important aspafcusing unbiased estimators of
loss functions for empirical risk minimization under CCN.gdarticular, we give a simple symmetry
condition on the loss (enjoyed, for instance, by the Hulogistic, and squared losses) to ensure that
the proxy loss is also convex. Hinge loss does not satisfisyinemetry condition, and thus leads
to a non-convex problem. We nonetheless provide a conveggate, leveraging the fact that the
non-convex hinge problem is “close” to a convex problem @rieen 6).

Our second approach is based on the fundamental obsertatibthe minimizer of the risk (i.e.
probability of misclassification) under the noisy disttiba differs from that of the clean distribu-
tion onlyin where it thresholdg(z) = P(Y = 1|z) to decide the label. In order to correct for the
threshold, we then propose a simple weighted loss funatibere the weights are label-dependent,
as the proxy loss function. Our analysis builds on the nodibconsistency of weighted loss func-
tions studied by Scott [2012]. This approach leads to a venyarkable result that appropriately
weighted losses like biased SVMs studied by Liu et al. [2@08]robust to CCN.

The main results and the contributions of the paper are suinatkbelow:

1. To the best of our knowledge, we are the first to provide gniaes for risk minimization under
random label noise in the general setting of convex suresgatithout any assumptions on the
true distribution.

2. We provide two different approaches to suitably modiyany given surrogate loss function,
that surprisingly lead to very similar risk bounds (TheoseBnand 11). These general results
include some existing results for random classificatiors@ais special cases.

3. We resolve an elusive theoretical gap in the understgrafipractical methods like biased SVM
and weighted logistic regression — they are provably nta$erant (Theorem 11).

4. Our proxy losses are easy to compute — both the methodbsfifidient algorithms.

5. Experiments on benchmark datasets show that the metheodstast even at high noise rates.

The outline of the paper is as follows. We introduce the grobsetting and terminology in Section
2. In Section 3, we give our first main result concerning thehome of unbiased estimators. In
Section 4, we give our second and third main results for tevtaighted loss functions. We present
experimental results on synthetic and benchmark datars&sdtion 5.

1.1 Related Work

Starting from the work of Bylander [1994], many noise totenzersions of the perceptron algorithm
have been developed. This includes the passive-aggrdasity of algorithms [Crammer et al.,
2006], confidence weighted learning [Dredze et al., 200808/ [Crammer et al., 2009] and the
NHERD algorithm [Crammer and Lee, 2010]. The survey artigld&hardon and Wachman [2007]
provides an overview of some of this literature. A Bayesippraach to the problem of noisy labels
is taken by Graepel and Herbrich [2000] and Lawrence an@dl&cpf[2001]. As Adaboost s very
sensitive to label noise, random label noise has also beesidered in the context of boosting. Long
and Servedio [2010] prove that any method based on a contexrt is inherently ill-suited to
random label noise. Freund [2009] proposes a boostingigigobased on a non-convex potential
that is empirically seen to be robust against random labiekeno

Stempfel and Ralaivola [2009] proposed the minimizatioranfunbiased proxy for the case of
the hinge loss. However the hinge loss leads to a non-comadtgm. Therefore, they proposed
heuristic minimization approaches for which no theorétizarantees were provided (We address
the issue in Section 3.1). Cesa-Bianchi et al. [2011] focuthe online learning algorithms where
they only need unbiased estimates of the gradient of thedqa®vide guarantees for learning with
noisy data. However, they consider a much harder noise nvdakdleinstances as well as labels
are noisy. Because of the harder noise model, they nedgssayuire multiple noisy copies per
clean example and the unbiased estimation schemes alsmbdaly complicated. In particular,
their techniques break down for non-smooth losses sucheakitige loss. In contrast, we show
that unbiased estimation is always possible in the moreglbersindom classification noise setting.
Manwani and Sastry [2013] consider whether empirical riskimization of the loss itself on the



noisy data is a good idea when the goal is to obtain small nsleuthe clean distribution. But
it holds promise only fof-1 and squared losses. Therefore, if empirical risk mininidrabver
noisy samples has to work, we necessarily have to changesbaibed to calculate the empirical
risk. More recently, Scott et al. [2013] study the problentiafssification under class-conditional
noise model. However, they approach the problem from ardiffieset of assumptions — the noise
rates arenot known, and the true distribution satisfies a certain “mutuaducibility” property.
Furthermore, they do not give any efficient algorithm for gineblem.

2 Problem Setup and Background

Let D be the underlying true distribution generatiil,Y) € X x {£1} pairs from whichn iid
samples(X;,Y1),...,(X,,Y,) are drawn. After injecting random classification noise €pen-
dently for each)) into these samples, corrupted samp|&s, }71), ooy (X, an) are obtained. The
class-conditional random noise model (CCN, for short) vegiby:

P(Y = 1Y = +1) = p41, P(Y = +1|Y = —1) = p_1, andpy1 + p_1 < 1

The corrupted samples are what the learning algorithm séeswill assume that the noise rates
p+1 andp_; are knowr to the learner. Let the distribution 6X,Y') be D,,. Instances are denoted
by x € X C R% Noisy labels are denoted by

Let f : X — R be some real-valued decision function. Trigk of f w.r.t. the 0-1 loss is given by
Rp(f) = E(x,v)~p [1{sign f(x))-v}]. The optimal decision function (called Bayes optimal) that
minimizesR over all real-valued decision functions is given py(z) = sign(n(xz) — 1/2) where
n(z) = P(Y = 1|x). We denote byR* the correspondinBayes riskunder the clean distribution
D,i.e.R* = Rp(f*). Let{(t,y) denote a loss function whetec R is a real-valued prediction and
y € {£1}isalabel. Le¥(t, ;) denote a suitably modifietfor use with noisy labels (obtained using
methods in Sections 3 and 4). It is helpful to summarize theetimportant quantities associated
with a decision functiory:

1. Empirical/-risk on the observed sampl&;(f) := L 7 /(f(X;), V).

T n

2. Asn grows, we expecﬁg(f) to be close to thé-risk under the noisy distributio® ,:
Ry p, (1) = Eix9yep, LX), 7))

3. (-risk under the “clean” distributio®: R, p(f) := E(x,yy~p [((f(X),Y)].
Typically, ¢ is a convex function that isalibratedwith respect to an underlying loss function such as
the 0-1 loss/ is said to beclassification-calibratedBartlett et al., 2006] if and only if there exists a
convey, invertible, nondecreasing transformatierfwith ¢, (0) = 0) such that),(Rp(f) — R*) <
R p(f)—miny Re p(f). Theinterpretation is that we can control the excess Oklbyscontrolling
the excesg-risk.

If fis notquantified in a minimization, then itis implicit th&t minimization is over all measurable
functions. Though most of our results apply to a generaltionclassF, we instantiate” to be the
set of hyperplanes of boundéd norm,WW = {w € R? : |w||s < W»} for certain specific results.
Proofs are provided in the Appendix A.

3 Method of Unbiased Estimators

Let F : X — R be a fixed class of real-valued decision functions, over Wwkhe empirical risk is
minimized. The method of unbiased estimators uses the ratisg to construct an unbiased estima-
tor £(t, y) for the loss{(t,y). However, in the experiments we will tune the noise rate patars
through cross-validation. The following key lemma tellshasv to construct unbiased estimators of
the loss from noisy labels.

Lemmal. Let/(¢,y) be any bounded loss function. Then, if we define,

g(t, y) — (1 - p—zl;)_z(;;yl)__ppyf(t, —v)

we have, for any,y, Ej; V(t,gj)w =L(t,y) .

1This is not necessary in practice. See Section 5.



We can try to learn a good predictor in the presence of lakeertny minimizing the sample average

f « argmin R;(f) .

_ feF

By unbiasedness df (Lemma 1), we know that, for any fixefl € F, the above sample average
converges taky, p(f) even though the former is computed using noisy labels wisettea latter
depends on the true labels. The following result gives agperdnce guarantee for this procedure in
terms of the Rademacher complexity of the function classThe main idea in the proof is to use
the contraction principle for Rademacher complexity torgkbf the dependence on the proxy loss
¢. The price to pay for this i%,, the Lipschitz constant of

Lemma2. Let/(t,y) be L-Lipschitz int (for everyy). Then, with probability at least — ¢,

5 log(1/6)
max |B:(f) = B p, ()l < 2L, R(F) +1[ —5—

whereR(F) := Ex, ., [sup;cr =€ f(X;)] is the Rademacher complexity of the function cl&ss

andL, < 2L/(1 — p41 — p—1) is the Lipschitz constant @f Note thate;’s are iid Rademacher

(symmetric Bernoulli) random variables.

The above lemma immediately leads to a performance bounfl¥iath respect to the clean distri-
bution D. Our first main result is stated in the theorem below.

Theorem 3 (Main Result 1) With probability at least — 4,

7 . log(1/9)
< —
Rep(f) < ?élgRé,D(f) +4L,R(F) +2 o
Furrt]r}%rq\ore, it is classification-calibratedhere exists a nondecreasing functi@imwith (,(0) = 0
such that,

. . : log(1/9)
Rp(f) - R* < Ce(?legRe,D(f) - mflnRz,D(f) +4L,R(F) + 2 o ) ,

The term on the right hand side involves both approximatioorethat is small if is large) and
estimation error (that is small if is small). However, by appropriately increasing the rictmef

the classF with sample size, we can ensure that the misclassificatiobgtnility off approaches
the Bayes risk of the true distribution. This is despite tinet that the method of unbiased estimators

computes the empirical minimizgron a sample from the noisy distribution. Getting the optimal
empirical minimizerf is efficient if ¢ is convex. Next, we address the issue of convexit§. of

3.1 Convex lossesand their estimators

Note that the los$ may not be convex even if we start with a convexAn example is provided
by the familiar hinge losgnin(t, ) = [1 — yt].. Stempfel and Ralaivola [2009] showed tligs is
not convex in general (of course, when; = p_; = 0, it is convex). Below we provide a simple
condition to ensure convexity &f

Lemma 4. Supposé(t,y) is convex and twice differentiable almost everywhere (ifor everyy)
and also satisfies the symmetry property

VtER, £'(t,y) =L"(t, ~y) .
Then/(t,y) is also convex ir.

Examples satisfying the conditions of the lemma above @&sdfuared loséq(t, y) = (t — y)?, the
logistic lossliog(t, y) = log(1 + exp(—ty)) and the Huber loss:
— 4yt if yt < —1
Cru(t,y) = { (t—y)* if —1<yt<1
0 if yt >1

Consider the case whefeturns out to be non-convex whens convex, as irfyin. In the online
learning setting (where the adversary chooses a sequeagaraples, and the prediction of a learner
at round: is based on the history af— 1 examples with independently flipped labels), we could
use a stochastic mirror descent type algorithm [Nemirogsal., 2009] to arrive at risk bounds (See
Appendix B) similar to Theorem 3. Then, we only need the etgrloss to be convex and therefore



Ihin does not present a problem. At first blush, it may appear tleatlovnot have much hope of
obtainingf in the iid setting efficiently. However, Lemma 2 provides aecl

We will now focus on the function clasd’ of hyperplanes. Even thoug/ﬁg(w) is non-convex, it
is uniformly close tofRz; ,, (w). SinceR; (w) = Ry, p(w), this shows thaR;(w) is uniformly
close to a convex function over € V. The following result shows that we can therefore approx-
imately minimizeF'(w) = R;(w) by minimizing the biconjugaté™*. Recall that the (Fenchel)
biconjugatef™** is the largest convex function that minorizés
Lemmab. LetF : W — R be a non-convex function defined on function cldésuch it ise-close
to a convex functiolr : W — R:

YweW, |[F(w)—-Gw)| <e
Then any minimizer of** is a 2e-approximate (global) minimizer df.

Now, the following theorem establishes bounds for the cdseng is non-convex, via the solution
obtained by minimizing the convex functidm*.

Theorem 6. Let/ be a loss, such as the hinge loss, for whicis non-convex. LeyV = {w :
[lwa] < Wa}l, let || X;]l2 < Xo almost surely, and le®.,,.ox be any (exact) minimizer of the
convex problem

IIéi}I/lv F**(w),
whereF**(w) is the (Fenchel) biconjugate of the functiéifw) = }A%Z(w). Then, with probability
atleastl — §, Wapprox IS @2e-minimizer ofﬁg(-) where

2LPX2W2 + 10g(1/5)

£ 2n

Therefore, with probability at leadt — 4,

ngD(VAVappmx) < min RLD(W) + 4e .
wew

Numerical or symbolic computation of the biconjugate of dtidimensional function is difficult,
in general, but can be done in special cases. It will be istarg to see if techniques from Compu-
tational Convex Analysis [Lucet, 2010] can be used to effityecompute the biconjugate above.

4 Method of label-dependent costs

We develop the method of label-dependent costs from two kegmvations. First, the Bayes clas-
sifier for noisy distribution, denoteft*, for the case1 # p_1, simply uses a threshold different
from1/2. Second/* is the minimizer of a “label-dependent 0-1 loss” on the ndiisyribution. The
framework we develop here generalizes known results foutfilerm noise rate setting,; = p_1
and offers a more fundamental insight into the problem. Tits¢ dibservation is formalized in the
lemma below.

Lemma 7. DenoteP(Y = 1|X) byn(X)and P(Y = 1|X) by#(X). The Bayes classifier under

the noisy distribution/* = argming By . p_ [Lisigns(x))27}) IS given by,

_ 1/2—p )
L—=pr1—pa

Interestingly, this “noisy” Bayes classifier can also beaifed as the minimizer of a weighted 0-1

loss; which as we will show, allows us to “correct” for thedbhold under the noisy distribution.

Let us first introduce the notion of “label-dependent” cdstsbinary classification. We can write
the 0-1 loss as a label-dependent loss as follows:

) = signti(e) ~ 1/2) = sign{ (o)

Lisign(r0#vy = Liv=ny oo <or + Liv=-n11 {70501
We realize that the classical 0-1 lossiisweighted Now, we could consider am-weighted version
of the 0-1 loss as:
Ua(t,y) = (1 — a)lgy—13 <oy + alyy——1311>0),
wherea € (0,1). In fact we see that minimization w.r.t. the 0-1 loss is eglémt to that w.r.t.
Ui2(f(X),Y). Itis not a coincidence that Bayes optinyal has a threshold 1/2. The following

lemma [Scott, 2012] shows that in fact for amyweighted 0-1 loss, the minimizer thresholgs;)
ata.



Lemma 8 (a-weighted Bayes optimal [Scott, 2012pefineU,,-risk under distributionD as
Ra,p(f) = Ex,y)~pUa(f(X),Y)].

Then,f%(z) = sign(n(xz) — o) minimizedJ,-risk.

Now consider the risk of w.r.t. thea-weighted 0-1 loss under noisy distributi@?),:

Ra,DP (f) = E(X,Y/)NDP [Ua(f(X)v Y/)]

At this juncture, we are interested in the following questi®oes there exist an € (0, 1) such
that the minimizer olU,-risk under noisy distributioD, has the same sign as that of the Bayes
optimal f*? We now present our second main result in the following theahat makes a stronger
statement — thé/,-risk under noisy distributiorD,, is linearly related to the 0-1 risk under the
clean distributionD. The corollary of the theorem answers the question in thenadtive.

Theorem 9 (Main Result 2) For the choices,
_1=pi1tpa andA, — 1 —pp =y
2 2
there exists a constaiity that is independent of such that, for all functiong,
Rop,(f) = A,Rp(f)+ Bx.

Corollary 10. The a*-weighted Bayes optimal classifier under noisy distributémincides with
that of 0-1 loss under clean distribution:

arg?inRa*pr(f) = arg}ninRD(f) = sign(n(z) — 1/2).

«

4.1 Proposed Proxy Surrogate L osses
Consider any surrogate loss functiggrand the following decomposition:

£t y) = Liy=1301(t) + Ly=—130-1(?)
where/; and/_, are partial losses af. Analogous to the 0-1 loss case, we can defingeighted
loss function (Eqn. (1)) and the correspondingveighted/-risk. Can we hope to minimize an
weighted/-risk with respect to noisy distributioP, and yet bound the excess 0-1 risk with respect
to the clean distributio®? Indeed, the* specified in Theorem 9 is precisely what we need. We are
ready to state our third main result, which relies on a gdizednotion of classification calibration
for a-weighted losses [Scott, 2012]:
Theorem 11 (Main Result 3) Consider the empirical risk minimization problem with noiabels:

. 1 < -
fo = argmin — Lo (f(X5),Y7).
fer n ;
Definel,, as ana-weighted margin loss function of the form:
la(t,y) = (1 — a)lyy=1)l(t) + alyy— 1) l(-1) 1)
wherel : R — [0, oo) is a convex loss function with Lipschitz constarsuch that it is classification-

calibrated (i.e. ¢ (0) < 0). Then, for the choices* and A, in Theorem 9, there exists a nonde-
creasing functior(,_, with ¢,_, (0) = 0, such that the following bound holds with probability at
leastl — o:

f log(1/6
Rp(for) = R* < 4,7¢,. (?22 Ree 0, (f) = min R, (f) + 4LR(F) +2 Ogén/ )).

Aside from bounding excess 0-1 risk under the clean digiohuthe importance of the above the-
orem lies in the fact that it prescribes an efficient algaonitior empirical minimization with noisy
labels:/,, is convex if¢ is convex. Thus for any surrogate loss function including fa* can be
efficiently computed using the method of label-dependestscdNote that the choice of* above

is quite intuitive. For instance, when.; < p4; (this occurs in settings such as Liu et al. [2003]
where there are only positive and unlabeled examples)< 1 — o* and therefore mistakes on
positives are penalized more than those on negatives. Takgsrntuitive sense since an observed
negative may well have been a positive but the other way ariianlikely. In practice we do not
need to known*, i.e. the noise rateg;; andp_;. The optimization problem involves just one
parameter that can be tuned by cross-validation (See &ex}tio
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5 Experiments

We show the robustness of the proposed algorithms to inogeestes of label noise on synthetic and
real-world datasets. We compare the performance of the taypased methods with state-of-the-art
methods for dealing with random classification noise. Waddiveach dataset (randomly) into 3
training and test sets. We use a cross-validation set tathengarameters specific to the algorithms.
Accuracy of a classification algorithm is defined as the foaodf examples in the test set classified
correctlywith respect to the clean distributiorFor given noise rateg,; andp_1, labels of the
training data are flipped accordingly and average accureey®train-test splits is computédFor
evaluation, we choose a representative algorithm basedanad the two proposed methods &gy

for the method of unbiased estimators and the widely-us&V®}[Liu et al., 2003] method (which
applies different costs on positives and negatives) fontathod of label-dependent costs.

5.1 Synthetic data

First, we use the synthetic 2D linearly separable datasetishn Figure 1(a). We observe from
experiments that our methods achieve over 90% accuracyvevenp.; = p_; = 0.4. Figure 1
shows the performance d@j,g on the dataset for different noise rates. Next, we use a 2D UCI
benchmark non-separable dataset (‘banana’). The datadetlassification results using C-SVM
(in fact, for uniform noise ratesy* = 1/2, so itis just the regular SVM) are shown in Figure 2. The
results for higher noise rates are impressive as obseroetdfigures 2(d) and 2(e). The ‘banana’
dataset has been used in previous research on classifiegttomoisy labels. In particular, the
Random Projection classifier [Stempfel and Ralaivola, 200at learns a kernel perceptron in the
presence of noisy labels achieves about 84% accurapyat= p_; = 0.3 as observed from
our experiments (as well as shown by Stempfel and Ralai&ila@7]), and the random hyperplane
sampling method [Stempfel et al., 2007] gets about the sameacy alp1,p-1) = (0.2,0.4) (as
reported by Stempfel et al. [2007]). Contrast these with\@AShat achieves about 90% accuracy
atpy1 = p—1 = 0.2 and over 88% accuracy at.; = p_; = 0.4.

(a) (b) (c) (d) (e)
Figure 1: Classification of linearly separable synthetitadset usingﬂog. The noise-free data is
shown in the leftmost panel. Plots (b) and (c) show trainiataaorrupted with noise ratés,; =
p—1 = p) 0.2 and 0.4 respectively. Plots (d) and (e) show the corretipg classification results.
The algorithm achieves 98.5% accuracy evetiénoise rate per class. (Best viewed in color).

I o1 R [

o 1 2

@ (b) (d) (e)
Figure 2: Classification of ‘banana’ data set using C-SVMe bise-free data is shown in (a). Plots
(b) and (c) show training data corrupted with noise rdtes = p_1 = p) 0.2 and 0.4 respectively.
Note that forp,1 = p_1, a* = 1/2 (i.e. C-SVM reduces to regular SVM). Plots (d) and (e) show
the corresponding classification results (Accuracies @ré% and 88.5% respectively). Even when
40% of the labels are corruptegi(; = p_1 = 0.4), the algorithm recovers the class structures as
observed from plot (e). Note that the accuracy of the methad=a0 is 90.8%.

5.2 Comparison with state-of-the-art methods on UCI benchmark

We compare our methods with three state-of-the-art metliodsiealing with random classi-
fication noise: Random Projection (RP) classifier [Stempfetl Ralaivola, 2007]), NHERD

2Note that training and cross-validation are done on theyrinisning data in our setting. To account for
randomness in the flips to simulate a given noise rate, weategmch experiment 3 times — independent
corruptions of the data set for same setting pf andp_1, and present the mean accuracy over the trials.



DATASET (d,n4,n_) Noise rates log C-SVM PAM NHERD RP
py1=p—1=0.2 70.12 67.85 69.34 64.90 69.38
Breast cancer p+1=0.3,p_1 =0.1 | 70.07 67.81 67.79 65.68 66.28
(9,77,186) p+1=p-1=04 67.79 67.79 67.05 56.50 54.19
p+1=p-1=02 76.04 66.41 69.53 73.18 75.00
Diabetes p+1 =0.3,p_1 =0.1 | 75.52 66.41 65.89 7474 67.71
(8,268, 500) py1=p-1=04 65.89 65.89 65.36 7109 62.76
p+1=p-1=02 87.80 94.31 96.22 78.49 84.02
Thyroid p+1=03,p_1=0.1] 80.34 9246 86.85 87.78 83.12
(5,65, 150) p+1=p-1=04 83.10 66.32 70.98 8595 57.96
py1=p-1=0.2 71.80 68.40 63.80 67.80 62.80
German p+1 =0.3,p-1 =0.1| 7140 68.40 67.80 67.80 67.40
(20, 300, 700) p+1=p-1=04 67.19 6840 67.80 54.80 59.79
p+1=p-1=02 82.96 61.48 69.63 8296 72.84
Heart p+1=0.3,p-1=0.1 | 84.44 57.04 62.22 81.48 79.26
(13,120, 150) py1=p-1=04 57.04 54.81 53.33 52.5968.15
p+1=p-1=02 82.45 9195 9290 77.76 65.29
Image p+1=03,p_1=0.1| 8255 89.26 89.55 79.39 70.66
(18,1188,898) p+1=p-1=04 63.47 63.47 73.15 69.61 64.72

Table 1: Comparative study of classification algorithms @1 benchmark datasets. Entries within
1% from the best in each row are in bold. All the methods exdgERD variants (which
are not kernelizable) use Gaussian kernel with widthAll. method-specific parameters are esti-
mated through cross-validatiofProposed methodg{y and C-SVM) are competitive across all the
datasets. We show the best performing NHERD variant (‘gtbfd ‘exact’) in each case.

[Crammer and Lee, 2010])p(oject and exact variants), and perceptron algorithm with mar-
gin (PAM) which was shown to be robust to label noise by Khardmd Wachman [2007].
We use the standard UCI classification datasets, prepetessd made available by Gunnar
Ratschlit t p: / / t heoval . cnp. uea. ac. uk/ mat | ab). For kernelized algorithms, we use
Gaussian kernel with width set to the best width obtainedumynyg it for a traditional SVM on
the noise-free data. Fdkg, we usep; andp_; that give the best accuracy in cross-validation. For
C-SVM, we fix one of the weights to 1, and tune the other. Tabddws the performance of the
methods for different settings of noise rates. C-SVM is cetitipe in 4 out of 6 datasets (Breast
cancer, Thyroid, German and Image), while relatively poorghe other two. On the other hand,
Y0g is competitive in all the data sets, and performs the besemften. When about 20% labels are
corrupted, uniformg.1 = p_1 = 0.2) and non-uniform case®(; = 0.3, p_; = 0.1) have similar
accuracies in all the data sets, for both C-SVM dpgl Overall, we observe that the proposed
methods are competitive and are able to tolerate moderhatgh@amounts of label noise in the data.
Finally, in domains where noise rates are approximatelywmmur methods can benefit from the
knowledge of noise rates. Our analysis shows that the methiadfairly robust to misspecification
of noise rates (See Appendix C for results).

6 Conclusionsand Future Work

We addressed the problem of risk minimization in the presericandom classification noise, and
obtained general results in the setting using the methodsloised estimators and weighted loss
functions. We have given efficient algorithms for both thetmels with provable guarantees for
learning under label noise. The proposed algorithms ang teaisnplement and the classification
performance is impressive even at high noise rates and ddivpwvith state-of-the-art methods on
benchmark data. The algorithms already give a new family ethmds that can be applied to the
positive-unlabeled learning problem [Elkan and Noto, 2008t the implications of the methods for
this setting should be carefully analysed. We could comsideder noise models such as label noise
depending on the example, and “nasty label noise” wherddabdlip are chosen adversarially.
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A Proofs

Proof of Lemma 1One could directly compute and see thag unbiased. But to give a little more
insight into what motivates the definition 4fconsider the conditions that unbiasedness imposes on
it. We should have, for every

E,e, [06.5)] = 0(t.y).
Considering the cases= +1 andy = —1 separately, gives the equations
(1 — py1)l(t,+1) + pyrb(t, —1) = £(t, +1)
(1= p_1)l(t, —1) + p_1£(t,+1) = £(t, —1) .
Solving these two equations féft, +1) and/(t, —1) gives
. (1= p_ )0t +1) = pial(t, ~1)

ot +1) = |
( ) 1- P+1 — P—-1

it —1) = L= )bt =1) = pa bt 1)
1- P+1 — P-1

O

Proof of Lemma 2By the basic Rademacher bound on the maximal deviation leetwieks and
empirical risks overf € F, we get

R ; log(1/0
Ifnea}( |Rl(f)_RZ,Dp(f)|SQ-D%(éo]-")_;_ %

where

n

R(lo F) := Ex, e, lsup lZeié(f(Xi),Yi)

feFr ni—]

2L/(1— p41 — p—1) and hence by the Lipschitz composition property of Rademaberages, we
have

If ¢ is L-Lipschitz then is L, Lipschitz for L, = (1 + |ps1 — p—1[)L/(1 — p11 — p—1) <

R(loF) <L, R(F). O

Proof of Theorem 3Let f* be the minimizer ofR, p(-) overF. We have

Ry.p(f) — Re,p(f7)
= Rip, (/) = Rip, ()
= Ry(f) = Ref*) + Ry (F) — Ry())
+ (R(f*) = Ry p, (f*)
<0+ 2max |Ri(f) = Ry (F)] -
We can now apply Lemma 2 to control the last quantity above thns obtain the first statement of

the theorem. Now, if is classification-calibrategthen from Theorem 1 of [Bartlett et al., 2006], we
know there exists a convex, invertible, nondecreasingtamationy, with ¢,(0) = 0 such that,

Ye(Rp(f) — R*) < Rep(f) — i?fRé,D(f)

Subtractingnin R, p(f) off either sides of the first inequality in the theorem stegetand real-
izing thaty, ! is nondecreasing as well, with, ' (0) = 0, we conclude:
log(1/6)

Rp(f) - R* < 1&[1(%123&13(][) —m}nR&D(f)-i-‘le%(]:)—i—? T) :



Proof of Lemma 4 Let us computé”(t, y) (recall that differentiation is w.r.t:) and show that it is
non-negative under the symmetry conditit, y) = ¢’ (¢, —y). We have

g//(t’ y) _ (1 — p—y)éu(tvy) — pyé”(tv _y)

L—=pr1—pa
(L—p-y)l"(t,y) — pyt"(t,y)

1—=py1—pa
(L= p_y —py)l"(t,y)
1—py1—pa
={"(t,y) >0,

since/ is convex int. O

Proof of Lemma 5SinceF > G — ¢ and F** is the largest convex function that minorizEswe
must haveF™* > G — e. This means thak™* + 2¢ > G +¢ > F. Thus,F' is sandwiched between
F** 4+ 2¢ and F**. The lemma follows directly from this. O

Proof of Theorem 6The first part of the theorem follows by combining Lemma 2 amtnima 5,
using the fact that ifjw||s < W3 for anyw and| X;|l. < X, then, R(W) < W Xs/\/n. The

second part follows by noting that Theorem 3 is true als@feminimizers of the empirical risk;
provided we ad@e to the right hand side. O

Proof of Lerpma 7 The first equality is true because the optimal bayes clasaifigerD , thresholds
7(X) = P(Y =1|X) at 1/2. Now,
A(X)=PY =1,Y=1X)+P(Y =1,Y = -1|X)
=PY =1Y =1)PY =1X)+PY =1]Y = -1)P(Y = —1|X)
=1 =pr)n(X) + p1(1 —n(X))

=1 =pp1—p-1)n(X)+p-1.

Therefore,
sign(ii(z) — 1/2) = Sign((1 — ps1 — p—1)(a) + p_1 — 1/2)
= sign(n(:c) - %).
o

Proof of Theorem 9Let us think of f as{+1}-valued since botl®’p andC,, p, depend only on
sign(f). We have,

Cp(f) = Ey [1{rx0#vy]
and
Co.p,(f) =Ey |(1 — o)1y _y 121y + al{?:_l}l{fw#—l}} -

Note thatRp (f) = Ex [Cp(f)], andRa. b, (f) = Ex [Ca,p,(f)]. Also note thaCp(f) = n(X)
if /(X)=—-1,andCp(f) =1— n(X) otherwise.
Similarly, Co.p,(f) = (1 = a)n(X) if f(X) = —1andCy,p,(f) = a(l —7(X)) otherwise. We
want to findA and B such that the following equations hold simultaneously:

(1—a)j(X) = An(X) + B

a(l—7(X)) = Al —n(X)) + B

Using the relation betweey( X') and7(X) in Lemma 7 and solving foA we get,

g A=pri—pi)nX)+p1-a
2n(X) -1 '

2



Choosinga = o* = 1”’“%, and simplifying, we get a constarit that depends only on the
noise rates:
1—pi1—p_
A=A, = — L PL
2
Consequently,
a*

5 (1= ps1 = p-1)n(X).
Taking expectation with respect £, we conclude:
Ro-p,(f) = AyRp(f) + Bx,
whereBx = Ex [B]. O

B=p_i(l-a")

Proof of Corollary 10. The proof is immediate from Theorem 9 observing tBat is independent
of f. O

Proof of Theorem 11From Corollary 4.1 in [Scott, 2012], we can infer tiatis o-CC for given
a € (0,1), ast is convex, classification-calibrated ahd0) < 0. Then, from Theorem 3.1 in [Scott,
2012], there exists aimvertible, non-decreasingonvex transformatioi,,, with _(0) = 0 such
that, for anyf and any distributiorD,

Ve, (Ra,n(f) = min Ra.p(f)) < Re, .p(f) — min Ry, p(f)

Fix distribution to beD,, and letf = f.. The RHS of the above inequality can then be controlled
similarly as in the proof of Theorem 3. It is easy to see thatltipschitz constant of,, is same as
that of¢, denotedL. With probability at least — ¢:

Ry,.p,(fa) = l}nei}_lRéa,Dp(f) <ALR(F) +2 W-
Now considetR, p,(f) —miny R, p,(f). Using the linear relationship betwe&n, p, andRp at
o* (Theorem 9), we geR~ p,(f) —miny Ro- p,(f) = A,(Rp(f) — R*). Bx vanishes because
it is constant for the distributio®,. Note thaty, ' is nondecreasing as well ang ' (0) = 0.
Subtractingminy R~ p,(f) from both sides of the second inequality above, the statenfehe
theorem follows: With probability at least— 4,

f log(1/6
Rp(far) = R* < A,y <¥£}3 Rar p,(f) = min Rap, () + ALR(F) + 2 Ogén/ )>'

O

B Onlinelearning

Consider the setting where an adversary chooses a sequange), . . ., (x., y») of examples. At
time 4, the learner has to make a prediction basedxong1), ..., (xi—1,%—1) andx; whereg;
are the noisy labels. But the learner's cumulative loss dsasethat of the best fixed predictor in
hindsight are both computed using the true lalpelsNote that if¢(¢, y) is convex int (for everyy),
and we choosg; € 94(t,y) andXs € 9L(t, —y), (Whered/ is the subdifferential w.r.t;) we have

Eg[g(t,9)] € 0L(t,y) 2)

where

1—p_y)A1 —py A
glt,y) = LN Pude ©
—P+1 T P-1

We show that Algorithm 1 indeed satisfies low regret (in exgion) on the original sequence
chosen by the adversary even though it only receives noisyores of the labels. We fix the function
class to be the sé¥ of bounded-norm hyperplanes.




Algorithm 1 Online learning using unbiased gradients

Choose learning rate > 0
W=A{w : [|w[y < Wy}
ITyy (-) = Euclidean projection ontyV
Initialize wg < 0
fori=1tondo
Receivex; € R¢
PrediCt<WZ‘,1, Xi>
Receive noisy labg};
Updatew; < Iy (w;—1 — v9({W;—1,%;) , 9:)x;) whereg(-, -) is defined in (3)
end for

Theorem 12. Let {(t,y) be convex and.-Lipschitz int (for everyy). Fix an arbitrary sequence
(X1,91), - -, (Xn,Yn)- If Algorithm 1 is run on noisy data sék;,71),. .., (xn, Jn) With learning
ratey = W>/(X2L,\/n) whereg; is noisy version ofj; with noise rateg_ 1, p_1, then we have

n

) — ; ; <
Hw||2<W2 Zl Wz laxl yz) €(<W7Xz> ayz)) > LpXZWQ\/ﬁ )

whereL, := (1+|p41—p-1])L/(1—p11 — p—1) and itis assumed thditx;|| < X, forall i € [n].

Proof. Let us use the abbreviatiap for g({w;_1,x;),%;)x; so that the update in Algorithm 1
becomeswv; < Iy (w;—1 — vg:). Itis well known [Zinkevich, 2003] that, for anw,

n n 9
¥ w
Z (giwi—1 —w) < 5 Z lgill* + % - (4)
=1

i=1

Since/ is L-Lipschitz, the\;, A\ appearing in the definition (3) aof(-, ) satisfy |\1], |A2] < L.
This implies|g(t,y)| < (1 + |p+1 — p—1)L/(1 = py1 — p-1) = L, an2d Denceﬂgiﬂ < Ly Xo.

n 2 .
Thus, we have, for anyw with [|[w| < W, >" | (g;, wi—1 — w) < % + VQV—j Choosing
v = (WQ/LPXQ)W, we getd " | (gi, wi—1 — > < L,X>Ws+/n. Note thatw,_; only depends

onyi.;—1. Hence

Eg. [(gis Wi—1 = W) [J1i-1] = (Eg, [9i | G1:-1] , Wio1 — W) > (W1, %), yi) —0((W, Xi) , yi)

becaus&y, [g; | 71:i—1] € Ow=w, . L({W,%;),y;) by (2) and the chain rule for differentiation, and
({w,x;),y;) is convex inw. Thus, for anyw with || w|s < W,

Egi...

Z€(<Wz—71,xi> %)] - Z€(<W7Xz‘> i) < LpXoWa/n.

Since the above inequality is true for amywith |w|2 < 1, we have

Eﬂl n

ZE((Wi_l,xi) ,yi)] — ‘ min Z£(<W,Xl> 73/1’) S LPXQWQ\/E.
i=1

Iwl2<W2 —
Observing that the minimum over is not random allows us to move it inside the expectatiomgjvi
us the theorem. O

C Experiments

C.1 Knowledge of noiserates

The proposed algorithms require the knowledge of noises yate andp_;. However, in practice,

we do not know the true value of noise rates, and thereforeeg@rtto cross-validating the values
in our experiments. We emphasize here that in case the tise retes are known, our methods
can benefit from that knowledge as observed from our expetsr{gesults not shown), whereas the
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Figure 3: Study of sensitivity of batct{g) and online (Hinge, Huber and Logistic) methods (Al-
gorithm 1) to specification of noise rates; andp_;. True noise ratep,; = p_1 = p are
misspecified agp1 +¢,p_1 +¢€) fore € {0.1,0.2,0.3,0.4}. The ratio between the average accu-
racy for a givere and the accuracy at= 0, i.e. when true noise rates are specified, is plotted for
different values of noise ratgs The ratio is computed for each of the 6 UCI data sets in Table 1
and the mean and the standard deviation of the ratios arenst®atio being equal to 1 for a given

e means that the performance of the algorithm, on averagealbared by misspecification of noise
rates up tae. As expected, the ratio decreases, i.e. the algorithmsmenvorse as increases.
Most of the ratios being close to 1 suggests that the propostidods are fairly robust with respect
to e-misspecification of noise rates.

competitive methodsannotas they do not involve noise rates. In some cases (and domai@s
may be able to approximately specify noise rates. This ratg#/our study presented in Figure 3.
True noise ratep;1 = p_1 = p are misspecified a1 t€,p_1 +€) fore € {0.1,0.2,0.3,0.4}.
The ratio between the average accuracy for a givand the accuracy at = 0, i.e. when true
noise rates are specified, is a measure of sensitivity oflfugithms toe-misspecification of noise
rates. We would want the ratio to be close to 1 for a gimemhich would suggest that the method
is fairly robust with respect to themisspecification. The results in Figure 3 show that the psepl
methods are robust temisspecification of noise rates, which in turn suggestsdhamethods can
find better use in applications where labels can be namsinoise rates are approximately known,
without resorting to ad-hoc cross-validation procedurethe noisy data.



