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Modifications to the data representation of an abstract data type (ADT) can require significant semantic
refactoring of the code. Motivated by this observation, this paper presents a new method to automate
semantic code refactoring tasks. Our method takes as input the original ADT implementation, a new data
representation, and a so-called relational representation invariant (relating the old and new data representations),
and automatically generates a new ADT implementation that is semantically equivalent to the original version.
Our method is based on counterexample-guided inductive synthesis (CEGIS) but leverages three key ideas
that allow it to handle real-world refactoring tasks. First, our approach reduces the underlying relational
synthesis problem to a set of (simpler) programming-by-example problems, one for each method in the ADT.
Second, it leverages symbolic reasoning techniques, based on logical abduction, to deduce code snippets that
should occur in the refactored version. Finally, it utilizes a notion of partial equivalence to make inductive
synthesis much more effective in this setting. We have implemented the proposed approach in a new tool
called Revamp for automatically refactoring Java classes and evaluated it on 30 Java class mined from Github.
Our evaluation shows that Revamp can correctly refactor the entire ADT in 97% of the cases and that it can
successfully re-implement 144 out of the 146 methods that require modifications.
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1 INTRODUCTION
Abstract data types (ADTs) separate the software interface from its underlying data representation,
allowing code modifications that are hidden from clients. However, even small changes to the
data representation can require substantial modifications to the underlying implementation of the
ADT. As an example, consider the code shown on the left-side of Figure 1, which is taken from the
BitmapTracker ADT in Glide [gli 2023], a popular image loading and caching library for Android.
The original implementation of this ADT uses two data structures: a set (pending) to keep track
of bitmaps that are pending deletion (represented by their hash code), along with a separate data
structure (cntr) to keep track of bitmaps and the number of times they have been acquired. Rather
than maintaining this information across two data structures, the developers decide to consolidate
them as a single hash map also named cntr. The new data structure associates each bitmap with
a newly defined InnerTracker object which has a field (pending) to keep track of whether the
bitmap is pending deletion and a field (refs) to store the number of times the bitmap has been
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acquired. As is evident from the “diff” in Figure 1, making this change also necessitates substantial
modifications to the code of the BitmapTracker ADT. More generally, such code refactorings can
be quite involved and sometimes even introduce subtle bugs and security vulnerabilities [cve 2003,
2005; ref 2009, 2022].
Motivated by this problem, the goal of this paper is to automate this semantic code refactoring

task for abstract data types. Given the original ADT implementation and a relational specification
relating the old and new data representations, our method automatically synthesizes the new
ADT implementation from its original version. Because such relational specifications can be easily
expressed as a simple boolean function (e.g., see Figure 2), our method can greatly simplify the
ADT refactoring task compared to manually changing the implementation. Furthermore, this
automated refactoring approach can eliminate subtle bugs that may be introduced during the
manual refactoring process.

To gain some intuition about the relational specifications required by our method, consider the
boolean check procedure shown in Figure 2. At a high level, this method describes the refactoring
task for the BitmapTracker ADT by providing a relational representation invariant (RRI), which
is similar to the standard notion of representation (rep) invariant [Delaware et al. 2015; Guttag
et al. 1978; Miltner et al. 2020]. Just as a rep invariant checks whether an ADT instance obeys key
data integrity constraints, an RRI checks key data integrity constraints between two alternative
representations of an ADT. For example, going back to our running BitmapTracker example, the
check function in Figure 2 states the following relationship between the original fields and new
one:
(1) The map (cntr.cntrs) in the original implementation and map (counter) in the new version

must have the same keys;
(2) For every (id, count) entry in the original map (cntr.cntrs), there should exist an entry
(id, tracker) in the new map (cntr) such that count = tracker.refs, and tracker.pending is true
if and only if pending contains id.

Given such a relational representation (expressed as a boolean function), the goal of our method
is to automatically generate the code shown on the right hand side of Figure 1 from its original
version on the left.

The key contribution of this paper is a novel program synthesis technique for solving this
problem. Despite being an instantiation of the popular counterexample-guided inductive synthesis
(CEGIS) paradigm at a high level, our synthesis approach utilizes three novel insights that allow
automating real-world ADT refactoring tasks:
• Idea #1: Specification strengthening:When the verifier fails to prove equivalence between
the original implementation and a candidate synthesis result, it can provide a counterexample in
the form of a disequality 𝑓 (𝐼 ) ≠ 𝑂 , meaning that the implementation of function 𝑓 should not
produce ADT instance𝑂 when executed on input 𝐼 . However, because this feedback is very weak,
the CEGIS loop can take many iterations to converge. Our approach addresses this problem by
utilizing the semantics of the RRI to strengthen the specification into equalities (i.e., input-output
examples) rather than disequalities.
• Idea #2: Mining code snippets via symbolic reasoning: Our approach leverages symbolic
reasoning techniques, based on logical abduction, to identify key building blocks that are likely to
be used in the refactored implementation. Because the identified code snippets can be complex
statements or expressions, symbolic reasoning can dramatically reduce the search space that the
synthesizer needs to explore.
• Idea #3: Exploiting partial equivalence: An inductive synthesizer typically enumerates many
incorrect programs before it finds the target implementation. In our context, these enumerated
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public class BitmapTrackerOrig { public class BitmapTrackerNew {
    public Set<Integer> pending;     public Map<Integer, InnerTracker> cntr;
    public BitmapReferenceCounter cntr;

    public static class BitMapReferenceCounter() {     public static class InnerTracker {
        public  Map<Integer, Integer>  cntrs = new H
ashMap<>();

        public int refs = 0;

        ....         public boolean pending = false;
        ...

    }     }

    public BitmapTrackerOrig() {     public BitmapTrackerNew() {
        this.cntr = new BitmapReferenceCounter();         this.cntr = new HashMap<>();
        this.pending = new HashSet<>();

    }     }

    public void acquireBitmap(Bitmap bitmap) {     public void acquireBitmap(Bitmap bitmap) {
        int hashCode = bitmap.hashCode();         int hashCode = bitmap.hashCode();
        pending.remove(hashCode);         InnerTracker tracker = cntr.get(hashCode);
        cntr.inc(hashCode);         if (tracker == null) {

            tracker = new InnerTracker();
        }
        tracker.acquire();
        cntr.put(bitmap.hashCode(), tracker);

    }     }

    public void releaseBitmap(Bitmap bitmap) {     public void releaseBitmap(Bitmap bitmap) {
        int hashCode = bitmap.hashCode();         int hashCode = bitmap.hashCode();
        if (cntr.dec(hashCode) == 0         InnerTracker tracker = cntr.get(hashCode);
               &&!pending.contains(hashCode)) {         if (tracker != null) {
            cntr.rem(hashCode);             if (tracker.release()) {

                cntr.remove(hashCode);
            }

        }         }
    }     }

    public void rejectBitmap(Bitmap bitmap) {     public void rejectBitmap(Bitmap bitmap) {
        int hashCode = bitmap.hashCode();         int hashCode = bitmap.hashCode();
        pending.remove(hashCode);         InnerTracker tracker = cntr.get(hashCode);
        if (cntr.get(hashCode) == 0) {         if (tracker != null) {
            cntr.rem(hashCode);             if (tracker.reject()) {

                cntr.remove(hashCode);
            }

        }         }
    }     }

    public void markPending(Bitmap bitmap) {     public void markPending(Bitmap bitmap) {
        int hashCode = bitmap.hashCode();         int hashCode = bitmap.hashCode();
        if (!cntr.cntrs.containsKey(hashCode))         InnerTracker tracker = cntr.get(hashCode);
            return;         if (tracker != null) {
        pending.add(hashCode);             tracker.markPending();

        }
    }     }

    ...     ...

} }
Fig. 1. Example ADT refactoring to motivating our technique

programs are often not completely equivalent to the original implementation, but they are partially
equivalent with respect to a subset of the ADT fields. Our other key insight is to leverage this

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.



28:4 Shankara Pailoor, Yuepeng Wang, and Işıl Dillig

1 public boolean check(BitmapTrackerOrig o, BitmapTrackerNew n) {

2 if (!o.cntr.cntrs.keySet ().equals(n.cntr.keySet ())

3 return false;

4 for(Entry c : o.cntr.cntrs) {

5 InnerTracker inner = n.cntr.get(c.getKey ());

6 if (inner.refs != c.getValue ()) return false;

7 if (inner.pending != pending.contains(c.getKey ()))

8 return false;}

9 return true;

10 }
Fig. 2. Relational representation invariant.
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Fig. 3. Overview of our approach

notion of partial equivalence to progressively build up larger programs from smaller ones that
are correct with respect to some ADT fields.
Figure 3 gives a schematic overview of our high-level approach. As shown in this figure, our

technical approach is an instance of CEGIS and incorporates an inductive synthesizer and a verifier.
In this context, the inductive synthesizer takes as input (1) a set of input-output examples 𝐸 (for
each method𝑚 in the ADT) and (2) a grammar defining its search space, and it outputs a new
method implementation𝑚′ satisfying all examples in 𝐸. The verifier is then tasked with checking
whether𝑚 and𝑚′ are equivalentmodulo the user-specified RRI. If verification succeeds,𝑚′ is added
to the refactored implementation of the ADT and the algorithm moves on to the next method. On
the other hand, if verification fails, the verifier outputs a counterexample to equivalence, which is
a pair of inputs 𝐼 , 𝐼 ′ for𝑚 and𝑚′ such that 𝐼 , 𝐼 ′ satisfy the RRI but𝑚(𝐼 ) and𝑚′ (𝐼 ′) do not satisfy
it. This counterexample is then provided as input to the symbolic reasoning engine, which is one
of the key novelties of our technique. In particular, the symbolic reasoning engine performs two
functions: First, it converts the counterexample to equivalence produced by the verifier to a concrete
input-output example for the target function by utilizing the semantics of the RRI (i.e., Idea #1).
This specification strengthening idea essentially allows converting a weak disequality of the form
𝑚′ (𝐼 ′) ≠ 𝑂1 to an equality𝑚′ (𝐼 ′) = 𝑂2, thereby allowing the CEGIS loop to make much faster
progress. Second, it uses the counterexample, together with the RRI and the implementation of𝑚,
to infer code snippets that are likely to be used in the refactored implementation (i.e., Idea #2). As
stated earlier, these inferred snippets are useful because they allow the inductive synthesizer to
leverage complex expressions as components rather than having to search for them from scratch.
The other novel aspect of our ADT refactoring algorithm is the inductive synthesis engine

depicted in Figure 4. Similar to many other inductive synthesizers, our method is based on enu-
merative search; however, it utilizes the notion of partial equivalence (i.e., Idea #3) to perform
bi-directional search [Alur et al. 2015; Lee 2021; Shi et al. 2019]. In more detail, the search engine
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performs top-down enumeration by maintaining a worklist of partial programs that are gradually
expanded to form complete programs. The key difference, however, is that, rather than discarding

complete programs that are inconsistent with the input-output examples, our approach retains

those programs that produce the intended output with respect to a subset of the ADT fields. To do so,
it injects these “partially equivalent" programs into the frontier of the search engine by combining
them with existing programs in the worklist (i.e., Code Assembler component in Figure 4). Hence,
this strategy combines top-down enumeration with bottom-up search and extends the idea of
partial satisfaction used in prior work [Lee 2021; Shi et al. 2019] to the program equivalence setting.

We have implemented our proposed approach in a tool called Revamp targeting Java programs,
and we use Revamp to perform semantic ADT refactoring tasks mined from GitHub commits.
Our benchmarks span 30 different ADTs and require re-implementing a total of 146 methods. Our
experiments show that Revamp can successfully refactor 29 of the 30 (97%) ADTs and reimplement
144 of these methods (99%). We also compare Revamp against other synthesis tools and show that
it significantly outperforms these baselines, both in terms of the number of tasks it can solve as
well as average synthesis time.

To summarize, this paper makes the following key contributions:
• We introduce the semantic ADT refactoring problem as the task of synthesizing the new ADT
implementation from its original version and a relational representation invariant.
• We propose a novel technique that combines symbolic reasoning (based on logical abduction)
with counterexample-guided inductive synthesis to derive the refactored ADT implementation.
• We show how to reduce the ADT refactoring problem to a set of programming-by-example (PBE)

tasks (one for each method of the ADT), and we present an effective inductive synthesis approach
that leverages the notion of partial equivalence.
• We perform an empirical evaluation of our approach on 30 real-world ADTs (spanning 146
refactored methods) mined from GitHub. Our results show that our tool, Revamp, can correctly
refactor 99% of the methods and successfully generate the entire ADT in 97% of the cases.

2 OVERVIEW
In this section, we give an overview of our technique through an illustrative example.

Refactoring task. Figure 5 presents the refactoring of a simple 2D Rectangle ADT. This abstract
data type exposes several methods that allow users to create, modify, and query information about
the rectangle such as scaling and flipping it or getting the minimum 𝑥 coordinate of any point on
the rectangle. The class RectOrig (upper left box) is the original implementation that represents
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1 public class RectOrig {
2   Point2D lc; // left corner 
3   double height, width;
4
5   public double getMinX() {..}
6   public double getMinY() {..}
7   ..
8   public RectOrig(Point2D lc, double height, width){..}
9
10  public void scaleAndFlip(double h, double w, 
11                           bool flipX, bool flipY) 
12  {
13    if (height - 2*h < 0 || width - 2*w < 0)
14      return;
15    lc.x = lc.x + w;
16    lc.y = lc.y + h;
17    height = height - 2*h;
18    width = width - 2*w;
19    if (flipX)
20      lc.x = -(lc.x + width);
21    if (flipY)
22      lc.y = -(lc.y + height);
23  }
23}

1 bool check(RectOrig o, RectNew r) {
2   if (o.height <= 0 || o.width <= 0)
3     return false;
4   return o.width = r.maxX - r.minX
5            && o.height = r.maxY - r.minY
6            && o.lc.x = r.minX
7            && o.lc.y = r.minY;
9 }

1 public class RectNew {
2   double minX, maxX; 
3   double minY, maxY;
4
5   public double getMinX() {..}
6   public double getMinY() {..}
7   ..
8   public RectNew(Point2D lc, double height, width){..}
9
10  public void scaleAndFlip(double h, double w, 
11                           bool flipX, bool flipY) 
12  {
13    if (maxY - minY - 2*h < 0 
14               || maxX - minX - 2*w < 0)
15      return;
16    maxX = maxX - w;
17    minX = minX + w;
18    maxY = maxY - h;
19    minY = minY + h;
20    if (flipX) {
21      double tmp = maxX;
22      maxX = -minX;
23      minX = -tmp;
24    }
25    if (flipY) {
26      double tmp = maxY;
27      maxY = -minY;
28      minY = -tmp;
29    }
30  }
31}

Original Implementation

Relational Representation Invariant

New Implementation

Fig. 5. Motivating example showing the original implementation (upper left), the RRI (the lower left), and the
refactored implementation (right).

the rectangle using three fields, namely the rectangle’s lower left corner (lc), height (height), and
width (width). Now, suppose that the developer wishes to change the data representation to instead
use four fields that store the minimum and maximum 𝑥 and 𝑦 coordinates of the rectangle, as
shown on the right side of Figure 5. As we can see by comparing the implementation of RectOrig
and RectNew, changing the data representation induces significant modifications to the code.

Using Revamp. Our tool, Revamp, is designed to automatically perform this refactoring task
given a relational representation invariant (RRI) provided by the user. The boolean function check
(bottom left of Figure 5) corresponds to exactly such an RRI and states the following relationship
between the fields of RectOrig and RectNew:
(1) The width (resp. height) of the rectangle should be equal to the difference between the maximum

and minimum 𝑥 (resp. 𝑦) coordinates.
(2) The 𝑥 (resp. 𝑦) coordinate of the left corner should be equal to the minX (resp. minY) coordinate.

Given such an RRI, Revamp synthesizes new implementations for all the methods of the rectangle
ADT. For example, Figure 5 shows the new implementation of the scaleAndFlip method that is
automatically synthesized by Revamp.

Our approach. We now give an overview of the salient aspects of our approach. Our solution
independently synthesizes each method of the ADT using the well-known CEGIS paradigm [Jha
et al. 2010; Solar-Lezama et al. 2005, 2006], but it leverages three key observations that we illustrate
through the running example of Figure 5.

Observation #1: Given a suitable RRI, we can reduce the ADT refactoring task to a set of

programming-by-example problems, one for each method of the ADT.

Suppose that, for a given method𝑚 of the original ADT, we attempt to synthesize a method
𝑚′ of the new ADT but find that𝑚′ is not equivalent to𝑚. In the CEGIS paradigm, we would ask
the verifier to provide a counterexample. In this case, a counterexample is a pair of input ADT

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.



Semantic Code Refactoring for Abstract Data Types 28:7

instances 𝐼 , 𝐼 ′ for𝑚 and𝑚′ respectively. Since the candidate implementation is wrong, we know
the following two facts:
(1) 𝐼 and 𝐼 ′ must satisfy the RRI; otherwise, the verifier output is not a valid counterexample;
(2) The output ADTs,𝑚(𝐼 ) and𝑚′ (𝐼 ′), do not satisfy the RRI.
Now, what can we learn from such a counterexample? Naively, we can simply learn that the

refactored implementation should not produce output 𝑂 ′ when executed on 𝐼 ′. In other words,
we can learn𝑚′ (𝐼 ′) ≠ 𝑂 ′. However, this is a very weak signal for the inductive synthesizer — it
simply states that the output must differ from 𝑂 ′, but, since an ADT typically has many fields, this
specification only rules out a tiny fraction of the behaviors that should be exhibited on input 𝐼 ′.
One of our key observations is that, under certain realistic assumptions about the RRI, we can

use the verifier’s output to learn not only what the target implementation should not produce on a
given input, but rather what it should produce. That is, rather than learning a disequality, we can
learn an equality, which corresponds to an input-output example for the target method and serves
as a much stronger signal for the inductive synthesizer.

To understand why we can do this, suppose that we have synthesized a wrong implementation
of scaleAndFlip and suppose that the synthesized code differs from the original version for the
following input ADT 𝐼 (for the original version):

𝐼 = {𝑙𝑐 .𝑥 = −1, 𝑙𝑐 .𝑦 = −1,𝑤𝑖𝑑𝑡ℎ = 2, ℎ𝑒𝑖𝑔ℎ𝑡 = 2} (1)

and input ADT 𝐼 ′ for the refactored version:

𝐼 ′ = {𝑚𝑖𝑛𝑋 = −1,𝑚𝑖𝑛𝑌 = −1,𝑚𝑎𝑥𝑋 = 1,𝑚𝑖𝑛𝑋 = 1} (2)

as well as the following function arguments:

𝑉 = {ℎ = 0.5,𝑤 = 0.5, flipX = false, flipY = false} (3)

Given this input ADT 𝐼 and arguments 𝑉 , the original scaleAndFlip implementation produces
the output ADT 𝑂 :

𝑂 = {𝑙𝑐 .𝑥 = −0.5, 𝑙𝑐 .𝑦 = −0.5,𝑤𝑖𝑑𝑡ℎ = 1, ℎ𝑒𝑖𝑔ℎ𝑡 = 1} (4)

Now, by considering this output 𝑂 in conjunction with the semantics of the RRI, we can determine
precisely what the refactored method should return. Specifically, because the RRI specifies that minX
and minY of the new rectangle must equal lc.x and lc.y of the original rectangle respectively, we
know the refactored implementation must produce an ADT where minX and minY are both equal
to −0.5. Similarly, because maxX and maxY in the new implementation are completely determined
by variables lc, height, and width in the original implementation, we can infer (using an SMT
solver) that𝑚𝑎𝑥𝑌 = 0.5 and𝑚𝑎𝑥𝑋 = 0.5. This observation allows us to obtain the following output
𝑂 ′ for the refactored version of scaleAndFlip:

𝑂 ′ = {𝑚𝑖𝑛𝑋 = −0.5,𝑚𝑖𝑛𝑌 = −0.5,𝑚𝑎𝑥𝑋 = 0.5,𝑚𝑎𝑥𝑌 = 0.5} (5)

Observation #2:We can use symbolic reasoning to learn useful code snippets that are likely to

be used in the refactored implementation.

Our second observation is that the semantics of the RRI is not only useful for specification
strengthening but also for learning code snippets that the inductive synthesizer should use. To gain
intuition, let us examine the execution path taken by the original scaleAndFlip method given the
input ADT 𝐼 and argument values 𝑉 from Equations 1 and 3. This input exercises the following
path 𝑃 in the original implementation:
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assume(height - 2*h >= 0);

assume(width - 2*w >= 0);

lc.x := lc.x + w;

lc.y := lc.y + h;

height := height - 2h;

width := width - 2w;

assume (!flipX);

assume (!flipY);

Now, we know from the RRI that lc.x is equal to minX and that lc.y is equal to minY. Hence,
it is fairly easy to deduce that there must be a corresponding execution path of the refactored
implementation that contains the statements minX := minX + w as well as minY := minY + h.

But what can we deduce about maxX and maxY of the refactored ADT? Unlike minX and minY, there
is no obvious mapping from maxX and maxY to one of the variables in the original implementation.
Nonetheless, we can use symbolic reasoning to infer how maxX and maxY should be updated in the
corresponding execution path 𝑃 ′ of the refactoring. To see how, observe that 𝑃 and 𝑃 ′ must satisfy
the following Hoare triple:

{ℎ𝑒𝑖𝑔ℎ𝑡 =𝑚𝑎𝑥𝑌 −𝑚𝑖𝑛𝑌 } 𝑃 ; 𝑃 ′ {ℎ𝑒𝑖𝑔ℎ𝑡 =𝑚𝑎𝑥𝑌 −𝑚𝑖𝑛𝑌 }

because the RRI stipulates that ℎ𝑒𝑖𝑔ℎ𝑡 is equal to𝑚𝑎𝑥𝑌 −𝑚𝑖𝑛𝑌 . Since we have already established
that 𝑃 ′ must contain the statement minY := minY + h per the discussion above, it becomes clear
that 𝑃 ′ should also contain the statement maxY := maxY+ h in order for the above Hoare triple to
be valid. Using similar reasoning, we can infer that 𝑃 ′ should also update maxX using the statement
maxX := maxX + w.

As illustrated through this example, we can symbolically deduce code snippets that the refactored
implementation should contain by considering the RRI in conjunction with the original implemen-
tation. In Section 4.4, we show how this kind of deduction can be performed using a combination
of symbolic execution and logical abduction.

Observation #3: We can leverage partial equivalence with respect to ADT fields to make

inductive synthesis more effective.

Consider the refactored implementation of scaleAndFlip, shown on the right side of Figure 5,
which performs multiple distinct updates to each of the four fields of the new ADT. Our key
observation here is that field updates are oftentimes independent of each other, meaning that the
new value of a field often does not depend on the values of several other fields. For example, in the
refactored code, the update on maxX is completely independent of the update to maxY. However,
the refactored implementation is only correct when the updates on all fields are correct. As a result,
a search-based synthesizer might discard candidate synthesis results even when it produces the
correct implementation when considering a subset of the fields.

To gain more intuition about this idea, consider a variant of the scaleAndFlip implementation
on the right side of Figure 5 with all updates to maxY and minY deleted. While this implementation
is not equivalent to the original version, it is equivalent when we only consider the values of fields
maxX and minX. We refer to this weaker notion of equivalence with respect to a subset of the fields
as partial equivalence, and we leverage this concept to make inductive synthesis more efficient by
combining top-down search with bottom-up synthesis.
For example, suppose we encounter a code snippet𝑚𝑎𝑥𝑋 :=𝑚𝑎𝑥𝑋 −𝑤 that correctly updates

the𝑚𝑎𝑥𝑋 field. Later, when we enumerate the partially equivalent program𝑚𝑎𝑥𝑌 :=𝑚𝑎𝑥𝑌 − ℎ,
we can combine it with𝑚𝑎𝑥𝑋 :=𝑚𝑎𝑥𝑋 −𝑤 to obtain a larger code snippet that correctly updates
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both fields. Because there are several reasonable ways to combine code snippets, our approach
considers several combinations, such as:

1 maxX := maxX - w;

2 maxY := maxY - h;

as well as
1 if (??) {

2 maxX := maxX - w;

3 } else {

4 maxY := maxY - h;

5 }

By identifying and combining code snippets that are partially equivalent to the original code, we
can often quickly build up the correct refactored implementation.

3 PROBLEM STATEMENT
We represent an abstract data type (ADT)A as a set ΣA of operations (methods) that can be invoked
on instances of that type. For example, a Stack ADT is represented using the signature Σ = {push,
pop, top, empty, constructor}. Every element𝑚 ∈ Σ has its own signatureA×𝑇 → A×𝑇 ′. That
is, every method takes as input an argument of type 𝑇 and instance of the ADT and returns an
output of type 𝑇 ′, along with a (possibly modified) instance of that ADT.

An implementation 𝐼A of an ADTA is a tuple (𝐹,𝑀) where 𝐹 is a set of fields (the data represen-
tation) and 𝑀 is a mapping from every element𝑚 ∈ ΣA to its concrete implementation𝑚𝐼 . We
write 𝑜 ∈ 𝐼A to denote instances of 𝐼A . Also, we use the notationA𝐹 to denote any implementation
of A with data representation 𝐹 , and we write 𝑜 ∈ A𝐹 to denote that 𝑜 is an instance of some
𝐼A = (𝐹, _). Since different implementations of an ADT can use different data representations, we
next introduce the notion of relational representation invariant (RRI):

Definition 3.1 (Relational Representation Invariant (RRI)). Let 𝐹 and 𝐹 ′ be two different
data representations of the same ADTA and let ∼ ⊆ A𝐹 ×A𝐹 ′ be a binary relation. We say that ∼
is a relational representation invariant between A𝐹 and A𝐹 ′ if it has the following properties:

∀𝑜 ∈ A𝐹 .∀𝑜1, 𝑜2 ∈ A𝐹 ′ . 𝑜 ∼ 𝑜1 ∧ 𝑜 ∼ 𝑜2 ⇒ 𝑜1 = 𝑜2 (6)

∀𝑜 ∈ A𝐹 .∃𝑜 ′ ∈ A𝐹 ′ . 𝑜 ∼ 𝑜 ′ (7)

Intuitively, Equations 6 and 7 (henceforth jointly referred to as the RRI property) state that
the binary relation should be precise enough so that, for any instance 𝑜 of A𝐹 , we can reconstruct
a unique instance 𝑜 ′ of A′

𝐹
satisfying 𝑜 ∼ 𝑜 ′. Note that this RRI property is a basic requirement

for being able to automate the refactoring task. Without such a property, there may be multiple
implementations of the new ADT that will satisfy the RRI but yield semantically different ADT
instances. In such a case, it is unclear which refactoring the programmer actually intended, so we
require the RRI to satisfy Equations 6 and 7.

Theorem 3.2. Let 𝐹 and 𝐹 ′ be two different data representations of the same ADT A and let ∼ be

a relational representation invariant between A𝐹 and A𝐹 ′ . Then for any instance 𝑜 ∈ A𝐹 there is a

unique 𝑜 ′ ∈ A𝐹 ′ such that 𝑜 ∼ 𝑜 ′.

Proof. From Equation 7, it follows there exists 𝑜 ′ such that 𝑜 ∼ 𝑜 ′. To show uniqueness, consider
an 𝑜 ′′ such that 𝑜 ∼ 𝑜 ′ and 𝑜 ∼ 𝑜 ′′. Then from equation 6, we have that 𝑜 ′ = 𝑜 ′′. □

Next, we define equivalence modulo an RRI:
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o ∼ o′ 

o′ , vAfter

o, v or, vr

o′ r, vr

Before
Input OutputmI

mI′ 

or ∼ o′ r

Fig. 6. Illustration of correctness of ADT refactoring. Objects in pink denote the version before refactoring,
and objects in green denote the version after refactoring.

Definition 3.3 (Input/output equivalence modulo RRI). Let 𝑜, 𝑜 ′ be a pair of ADT instances
over data representations 𝐹, 𝐹 ′ respectively, and let 𝑣, 𝑣 ′ be the arguments or return value of a
function. We say that (𝑜, 𝑣) is equivalent to (𝑜 ′, 𝑣 ′) modulo an RRI (∼), denoted (𝑜, 𝑣) ≃ (𝑜 ′, 𝑣 ′) iff
𝑜 ∼ 𝑜 ′ and 𝑣 = 𝑣 ′.

Definition 3.4 (Method equivalence modulo RRI). Let A be an ADT containing method
signature𝑚 : A ×𝑇 → A ×𝑇 ′, and let 𝐼 = (𝐹,𝑀) and 𝐼 ′ = (𝐹 ′, 𝑀 ′) be two implementations ofA.
We say that𝑚𝐼 is equivalent to𝑚𝐼 ′ modulo RRI ∼, denoted𝑚𝐼 ≃𝑚𝐼 ′ if:

∀I ∈ (𝐼 ×𝑇 ). ∀I′ ∈ (𝐼 ′ ×𝑇 ). I ≃ I′ ⇒𝑚𝐼 (I) ≃𝑚𝐼 ′ (I′)

In other words, two implementations of the same method are equivalent if they produce equiva-
lent outputs when executed on equivalent inputs (modulo the RRI).

Definition 3.5 (Correctness of ADT Refactoring). Let 𝐼 = (𝐹,𝑀) and 𝐼 ′ = (𝐹 ′, 𝑀 ′) be two
different implementations of the same ADT A, and let ∼ be an RRI between A𝐹 and A𝐹 ′ . Then,
we say that 𝐼 ′ is a correct refactoring of 𝐼 with respect to ∼, denoted 𝐼 ≃ 𝐼 ′, if, for every𝑚 ∈ ΣA ,
we have𝑚𝐼 ≃𝑚𝐼 ′ .

Intuitively, 𝐼 ′ is a correct refactoring of 𝐼 with respect to ∼ if invoking corresponding methods of
𝐼 , 𝐼 ′ on equivalent inputs (modulo ∼) results in outputs that are equivalent modulo the RRI. This
is illustrated schematically in Figure 6. Based on this notion of correctness, we can now formally
state our problem definition:

Definition 3.6 (ADT Refactoring Problem). Let 𝐼 = (𝐹,𝑀) be the original implementation of
an ADT A. Then, given a new data representation 𝐹 ′ of A and an RRI ∼, the ADT refactoring
problem is to synthesize a new 𝐼 ′ = (𝐹 ′, 𝑀 ′) such that 𝐼 ≃ 𝐼 ′.

4 ADT REFACTORING ALGORITHM
In this section, we describe our algorithm for solving the ADT refactoring problem stated in
Definition 3.6. Our top-level algorithm ismodular and constructs the refactoredADT by synthesizing
one method at a time. In what follows, we first introduce some useful definitions and then present
our method-level refactoring algorithm.

4.1 Preliminaries
Recall that each method of the ADT takes as input an ADT instance 𝑜 and arguments 𝑣 and returns
an ADT instance 𝑜 ′ and return values 𝑣 ′. We use the notation I = (𝑜, 𝑣) to denote the inputs to an
ADT method, and O = (𝑜𝑟 , 𝑣𝑟 ) to denote its outputs. Given an input or output 𝑉 = (𝑜, 𝑣), we also
write 𝑉 .𝑎𝑑𝑡 and 𝑉 .𝑣𝑎𝑙 to denote 𝑜 and 𝑣 respectively.

Definition 4.1 (IO Example). An input-output (IO) example 𝐸 for a method𝑚 is a pair (I,O)
where I denotes𝑚’s inputs and O denotes its outputs.
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1: procedure Refactor(𝑚𝐼 , 𝐹 ′, ∼, GM )
input: A method implementation𝑚𝐼 for the original ADT implementation 𝐼 = (𝐹,𝑀)
input: The data representation 𝐹 ′ for the new ADT implementation
input: A relational representation invariant ∼ as a boolean function
input: The meta-grammar GM presented in Figure 7
output: A refactored ADT implementation𝑚𝐼 ′ that is equivalent to𝑚𝐼 modulo ∼

2: G ← InitPCFG(GM ,𝑚𝐼 , 𝐹
′)

3: 𝑅 ← ∅ ⊲ Relational IO Examples
4: while True do
5: 𝑚𝐼 ′ ← Synthesize(𝑅.𝑛𝑒𝑤,G) ⊲ Inductive synthesis from IO examples
6: 𝑐𝑒𝑥, verified← Verify(𝑚𝐼 ,𝑚𝐼 ′ ,∼) ⊲ Get counterexample to equivalence
7: if verified then
8: return𝑚𝐼 ′

9: 𝑟 ← StrengthenSpec(𝑐𝑒𝑥,𝑚𝐼 ,𝑚𝐼 ′ ,∼) ⊲ Obtain IO example for refactoring
10: 𝑅 ← 𝑅 ∪ {𝑟 }
11: G ← InferSnippets(𝑟,𝑚𝐼 ,∼,G) ⊲ Learn useful code snippets and update grammar
12: return ⊥

Algorithm 1. Method refactoring procedure. The underlined statements are the main deviations from a
standard CEGIS loop.

Given an IO example 𝐸 (or set of IO examples), we write 𝐸.𝑖𝑛 to denote the inputs and 𝐸.𝑜𝑢𝑡 to
denote the outputs. Next, we define the notion of counterexample to equivalence, which plays a
central role in our refactoring procedure:

Definition 4.2 (Counterexample to equivalence). Let𝑚𝐼 and𝑚𝐼 ′ be the corresponding methods
for two different implementations of the same ADT ofA, and let ∼ be an RRI relating two different
data representations of A. A counterexample to equivalence is a pair of inputs I,I′ such that
(a) I ≃ I′ and (b)𝑚𝐼 (I) ; 𝑚𝐼 ′ (I′).

Intuitively, a counterexample to equivalence establishes that two method implementations are
not equivalent modulo the given RRI.

Definition 4.3 (Relational IO Example). A relational IO example for a method𝑚 and RRI ∼ is a
pair of IO examples (𝐸1, 𝐸2) such that 𝐸1 is a set of IO examples for𝑚’s original implementation,
𝐸2 is a set of IO examples for𝑚’s refactored implementation. Furthermore, we have 𝐸1.𝑖𝑛 ≃ 𝐸2.𝑖𝑛

and 𝐸1.𝑜𝑢𝑡 ≃ 𝐸2.𝑜𝑢𝑡 .

Intuitively, a relational IO example for amethod has pairs of inputs and outputs that are equivalent
modulo the RRI. Given a (set of) relational IO examples 𝑅, we use the notation 𝑅.𝑜𝑙𝑑 to denote the
IO examples for the original implementation and 𝑅.𝑛𝑒𝑤 to denote the IO examples for the new
(refactored) version.

4.2 Top-Level Procedure
In this section, we present our top-level algorithm, summarized in Algorithm 1, for refactoring an
ADT method. This algorithm takes as input (1) the original implementation𝑚𝐼 , (2) the new data
representation 𝐹 ′, (3) the user-specified RRI ∼, and (4) the meta-grammar GM presented in Figure 7
corresponding to a core subset of Java since our implementation targets Java. Refactor starts by
calling InitPCFG to instantiate the meta-grammar into a PCFG by adding productions specific to
the method being refactored and the new ADT. Internally, InitPCFG statically analyzes the method
being refactored and adds the following terminals: (1) all function calls (including constructors)
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Stmt 𝑆 → 𝐴 | 𝑆1; 𝑆2 | if(𝐵) 𝑆1 else 𝑆2 | while(𝐵) 𝑆 | return ®𝑣
| assert(𝐵) | for (𝑣 ∈ 𝐸){𝑆}

Atom 𝐴 → 𝐿 ← 𝐸 | 𝐸.𝑚(𝐸1, . . . , 𝐸𝑛) | new 𝐶
Expr 𝐸 → 𝑣 | 𝐸.𝑓 | 𝐸 [𝐸] | 𝐸1 ⊗ 𝐸1, ⊗ ∈ {+,−,×,÷,mod}
LHS 𝐿 → 𝑣 | 𝐿[𝐸] | 𝐿.𝑓
Pred 𝐵 → 𝐸 | ¬𝐵 | 𝐵1 ⊕ 𝐵2, ⊕ ∈ {≥, <,=}

Fig. 7. Java-like meta-grammar for method implementations. 𝐶 is the name of an ADT implementation (Java
class).

1: procedure StrengthenSpec(𝑐𝑒𝑥 ,𝑚𝐼 ,𝑚𝐼 ′ , RRI)
input: A counterexample to equivalence 𝑐𝑒𝑥 = (I,I′)
input: The original ADT implementation𝑚𝐼

input: The incorrect method implementation𝑚𝐼 ′

input: RRI, the relational representation invariant expressed as a boolean function
output: A relational IO example 𝑟

2: (𝑜𝑟 , 𝑣𝑟 ) ←𝑚𝐼 (I)
3: 𝑅𝑅𝐼 𝜕 ← (𝑅𝑅𝐼 [𝑜𝑟 /𝑎𝑟𝑔1]) ↓ (𝑟𝑒𝑡 = ⊤) ⊲ Restrict RRI’s first input to 𝑜𝑟 and return value to true
4: 𝑜′𝑟 ← Model(⟦𝑅𝑅𝐼 𝜕⟧) ⊲ Invoke SMT solver to find concrete output ADT for refactoring
5: 𝐸1 ← (I, (𝑜𝑟 , 𝑣𝑟 ))
6: 𝐸2 ← (I′, (𝑜′𝑟 , 𝑣𝑟 )) ⊲ Construct IO example for refactoring
7: return (𝐸1, 𝐸2) ⊲ Return relational IO example

Algorithm 2. Strengthens a counterexample to a relational IO example. We use the notation 𝑓 ↓ (𝑟𝑒𝑡 = 𝑣) to
only consider executions where 𝑓 returns value 𝑣 .

that are accessible from the new ADT, (2) all variables accessible from the method being refactored,
(3) all fields accessible from the ADT being refactored. It then assigns uniform probabilities for
all productions sharing the same non-terminal, but, as we discuss shortly, these probabilities and
productions are updated after learning code snippets via symbolic reasoning.

The main loop of the Refactor procedure (lines 4–11) is an instantiation of the CEGIS framework,
with key differences underlined in Algorithm 1. The algorithm internally maintains a set of relational
IO examples 𝑅 and, in each iteration, it attempts to find a candidate refactoring𝑚𝐼 ′ that is consistent
with IO examples 𝑅.𝑛𝑒𝑤 by calling the Synthesize procedure (line 4). It then calls Verify to check
whether the candidate refactoring𝑚𝐼 ′ is equivalent (modulo the RRI) to the original implementation
𝑚𝐼 and obtains a counterexample to equivalence, 𝑐𝑒𝑥 , otherwise. The novel part of the synthesis
procedure corresponds to lines 9–11 and involves two auxiliary procedures:

• StrengthenSpec: Given a counterexample to equivalence, the StrengthenSpec procedure is
used to obtain the corresponding relational IO example.
• InferSnippets: Given a new relational counterexample 𝑟 , InferSnippets (a) identifies a set of
useful code snippets, (b) adds these snippets as productions to the grammar, and (c) updates the
probabilities of each production in the PCFG.

In the subsequent sections, we explain the StrengthenSpec, InferSnippets, and Synthesize
procedures in more detail.
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4.3 Specification Strengthening
Our method for specification strengthening is presented in Algorithm 2. This procedure takes as
input a counterexample to equivalence (𝑐𝑒𝑥 = (I,I′)) between𝑚𝐼 and𝑚𝐼 ′ and infers an input-
output example for the target refactoring by utilizing the semantics of the RRI. In more detail, the
algorithm works as follows:
• First, it executes the reference implementation𝑚𝐼 on input I to obtain the new ADT instance 𝑜𝑟
and return value 𝑣𝑟 (line 2).
• Next, at line 3, it obtains a partially evaluated version 𝑅𝑅𝐼 𝜕 of the RRI by substituting its first
argument with ADT instance 𝑜𝑟 and restricting its return value to 𝑡𝑟𝑢𝑒 .1 Note that, because of
the RRI properties from Equations 6 and 7, 𝑅𝑅𝐼 𝜕 can always be simplified to straight-line code.
• Then, the algorithm converts 𝑅𝑅𝐼 𝜕 to a logical formula, ⟦𝑅𝑅𝐼 𝜕⟧, that encodes its semantics. Note
that there is only one free variable in this formula, which corresponds to the refactored version
of the ADT. Furthermore, because of the RRI property, we can show that the formula ⟦𝑅𝑅𝐼 𝜕⟧ has
a unique model 𝑜 ′𝑟 (line 4).
• Finally, since the output of the refactored method is given by (𝑜 ′𝑟 , 𝑣𝑟 ), StrengthenSpec constructs
an IO example for the refactored version and returns the corresponding relational IO example.
The remainder of this subsection states and proves the claims made in this discussion.

Theorem 4.4. Given a relational representation invariant RRI, expressed as a deterministic boolean

function, and a concrete instance 𝑜 for the original ADT, there is a unique path 𝑝𝑜 in 𝑅𝑅𝐼 such that for

any instance 𝑜 ′ for the new ADT, if 𝑅𝑅𝐼 returns true given 𝑜 and 𝑜 ′ as input, then 𝑅𝑅𝐼 executes 𝑝𝑜 .

Proof. From Theorem 3.2, we know that for any instance 𝑜 of the original ADT, there is a unique
instance 𝑜 ′ in the new ADT such that 𝑅𝑅𝐼 (𝑜, 𝑜 ′) returns true. Since 𝑅𝑅𝐼 is deterministic, there is
exactly one path, 𝑝𝑜 , that can be executed when evaluating 𝑅𝑅𝐼 on inputs 𝑜 and 𝑜 ′. □

We refer to 𝑝𝑜 as the satisfying path for 𝑜 , and it follows from this theorem that 𝑅𝑅𝐼 𝜕 (at line 3
of Algorithm 2) can be expressed as a straight-line program 𝑃𝑜 by converting path 𝑝𝑜 to its code
representation in the standard way [Dijkstra 1975]. Next, we define the logical encoding function
(⟦·⟧) used at line 4 of Algorithm 2.

Definition 4.5 (Logical encoding). Let𝑚 be a method that takes inputs 𝑥 and returns outputs 𝑦.
We say that a formula ⟦𝑚⟧ is a logical encoding of𝑚 iff, for any interpretationM of ⟦𝑚⟧, we have:

M |= ⟦𝑚⟧ iff 𝑚(M(𝑥)) =M(𝑦)

In other words, ⟦𝑚⟧ is a logical encoding of method𝑚 if the models of ⟦𝑚⟧ correspond precisely
to the input-output behavior of𝑚. Note that ⟦𝑚⟧ can always be computed precisely for loop-free
code using standard techniques [Dijkstra 1975].

Example 4.6. Consider the following simple RRI expressed as a boolean function between ADT
implementations 𝑂, 𝑁 where 𝑂 has an integer field 𝑥 and 𝑁 has an integer field 𝑦:

boolean rri(O o, N n) {

if (o.x > 0) return o.x == n.y + 1;

else return o.x == n.y - 1;

}

1Given 𝑅𝑅𝐼 with body 𝑆 followed by return statement return ret, we use the notation 𝑅𝑅𝐼 ↓ (𝑟𝑒𝑡 = ⊤) to indicate the
program 𝑆 ; assert(𝑟𝑒𝑡 = ⊤) ; return 𝑟𝑒𝑡 .
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1: procedure InferSnippets(𝑟 ,𝑚𝐼 , ∼, G)
input: A Relational IO Example 𝑟 = (𝐸1, 𝐸2)
input: Original method implementation𝑚𝐼 over
input 𝑉𝑜 and output 𝑉𝑜𝑟
input: An RRI ∼ over inputs 𝑉𝑜 ,𝑉𝑛
input: A PCFG G
output: An updated PCFG G′

2: G′ ← G
3: 𝑝∼ ← InducedPath(∼, 𝐸1 .𝑖𝑛, 𝐸2 .𝑖𝑛)
4: 𝑝′∼ ← InducedPath(∼, 𝐸1 .𝑜𝑢𝑡, 𝐸2 .𝑜𝑢𝑡)
5: 𝑝𝑚 ← InducedPath(𝑚𝐼 , 𝐸1 .𝑖𝑛)
6: 𝜙 ← ⟦𝑝∼⟧ ∧𝑉𝑜 .𝑣𝑎𝑙 = 𝑉𝑛 .𝑣𝑎𝑙

7: 𝜓 ← ⟦𝑝′∼⟧ ∧𝑉𝑜𝑟 .𝑣𝑎𝑙 = 𝑉𝑛𝑟 .𝑣𝑎𝑙

8: 𝜒 ← Abduce(𝜙 ∧ ⟦𝑝𝑚⟧∧? |= 𝜓,𝑉𝑛 ∪𝑉𝑛𝑟 )
9: S ← ∅
10: for all 𝑙 ∈ Literals(𝜒) do
11: S ← S ∪ Literal2Snippet(𝑙, Literals(𝜒))
12: return AddToGrammar(G′,S)

Algorithm 3. Infers new code snippets that can help
the synthesizer solve the IO example 𝑐 .

1: procedure AddToGrammar(G, S)
input: A PCFG G = (G𝑐 , 𝑝)
output: A new PCFG G′ = (G′𝑐 , 𝑝′) which in-
cludes the snippets S

2: G′𝑐 ← G𝑐 ; 𝑝′ ← 𝑝

3: for all 𝑆 ∈ S do
4: 𝑁𝑠 ← GetNonterminal(𝑆)
5: G′𝑐 .addProduction((𝑁𝑠 → 𝑆))
6: for all N ∈ nonTerminals(G𝑐 ) do
7: 𝑅N ← getProductions(G𝑐 ,N)
8: 𝑅S ← getAddedProductions(G𝑐 ,N)
9: 𝑝′ ← 𝑝′ [𝑟𝑆 → (1−𝜖N )

|𝑅𝑆 | , ∀𝑟𝑆 ∈ 𝑅𝑆 ]
10: 𝑝′ ← 𝑝′ [𝑟𝑑 →

𝜖N
|𝑅N |− |𝑅𝑆 | , ∀𝑟𝑑 ∈ 𝑅 \ 𝑅𝑆 ]

11: return (G′𝑐 , 𝑝′)

Algorithm 4. Adds code snippets S to PCFG G with
base grammar G𝑐 and probability function 𝑝 and up-
dates the probabilities. 𝜖N is a real-valued parameter
between 0 and 1 that is associated with nonterminal
N in the grammar.

Its logical encoding is the following formula (where 𝑟𝑒𝑡 denotes the return value of rri):
(𝑜.𝑥 > 0→ (ret = ⊤ ↔ (𝑜.𝑥 = 𝑛.𝑦 + 1)))
∧(𝑜.𝑥 ≤ 0→ (ret = ⊤ ↔ (𝑜.𝑥 = 𝑛.𝑦 − 1)))

We can show that the formula ⟦𝑅𝑅𝐼 𝜕⟧ constructed at line 4 of Algorithm 2 has a unique model:

Theorem 4.7. Let 𝑅𝑅𝐼 𝜕 be the partially evaluated function from line 3 of Algorithm 2. Then, there

is a unique model satisfying ⟦𝑅𝑅𝐼 𝜕⟧.

Proof. LetM1 andM2 be models of ⟦𝑅𝑅𝐼 𝜕⟧ which map input variable 𝑎𝑟𝑔2 to a concrete value.
Since they are both models of ⟦𝑅𝑅𝐼 𝜕⟧, we have that 𝑅𝑅𝐼 𝜕 (M1 (𝑎𝑟𝑔2)) = 𝑅𝑅𝐼 𝜕 (M2 (𝑎𝑟𝑔2)) = True.
From the definition of 𝑅𝑅𝐼 𝜕 , we have that 𝑅𝑅𝐼 𝜕 (M1 (𝑎𝑟𝑔2)) = 𝑅𝑅𝐼 (𝑜𝑟 ,M1 (𝑎𝑟𝑔2)) for a concrete
instance 𝑜𝑟 . Likewise, we have 𝑅𝑅𝐼 𝜕 (M2 (𝑎𝑟𝑔2)) = 𝑅𝑅𝐼 (𝑜𝑟 ,M2 (𝑎𝑟𝑔2)). Since 𝑅𝑅𝐼 (𝑜𝑟 ,M1 (𝑎𝑟𝑔2)) =
True and 𝑅𝑅𝐼 (𝑜𝑟 ,M2 (𝑎𝑟𝑔2)) = True, and 𝑅𝑅𝐼 expresses a relational representation invariant, we
can infer from Equation 6 thatM1 (𝑎𝑟𝑔2) =M2 (𝑎𝑟𝑔2). Thus,M1 =M2. □

Example 4.8. Consider the RRI from Example 4.6 and input instance 𝑜 = {𝑥 → 1}, Then, ⟦𝑅𝑅𝐼 𝜕⟧
is the formula 𝑛.𝑦 = 0 and the model returned for 𝑛 is {𝑦 → 0}.

4.4 Inferring Code Snippets
In this section, we describe the InferSnippets procedure that is used for identifying code snippets
that are likely to be useful for inductive synthesis. This procedure, presented in Algorithm 3, takes
as input a relational IO example 𝑟 = (𝐸1, 𝐸2), the original method implementation 𝑚𝐼 , the RRI
∼ (over old variables 𝑉𝑜 and new variables 𝑉𝑛) and PCFG G and returns a new PCFG G′ with
additional code snippets added as productions. At a high level, InferSnippets works as follows:
• First, it executes the RRI on the input examples 𝐸1.𝑖𝑛 and 𝐸2.𝑖𝑛 and obtains a straight-line program
𝑝∼ corresponding to the path taken when running the RRI on these inputs (line 3).
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• Next, it does the same but for output examples 𝐸1.𝑜𝑢𝑡 and 𝐸2.𝑜𝑢𝑡 to obtain another straight-line
program 𝑝′∼ that corresponds to the execution path of the RRI on 𝐸1.𝑜𝑢𝑡 and 𝐸2.𝑜𝑢𝑡 (line 4).
• At line 5, it obtains a straight-line program 𝑝𝑚 corresponding to the execution of the original
method𝑚 on input 𝐸1.𝑖𝑛.
• Lines 6–8 set up an abduction problem, with the goal of inferring a logical specification of
the refactored procedure over variables 𝑉𝑛,𝑉𝑛𝑟 . Recall that logical abduction is the problem of
inferring a missing hypothesis: Specifically, given a premise 𝜙 , desired conclusion𝜓 , and a set of
variables 𝑉 , logical abduction infers a missing (and consistent) hypothesis 𝜒 over variables 𝑉
such that: 𝜙 ∧ 𝜒 |= 𝜓 . To see what abduction has to do with our problem, recall that we would
like to find an implementation of𝑚𝐼 ′ satisfying the following Hoare triple:

{𝑉𝑜 ≃ 𝑉𝑛} 𝑉𝑜𝑟 :=𝑚𝐼 (𝑉𝑜 ); 𝑉𝑛𝑟 :=𝑚𝐼 ′ (𝑉𝑛) {𝑉𝑜𝑟 ≃ 𝑉𝑛𝑟 }

Essentially, formula 𝜙 at line 6 of Algorithm 3 corresponds to the precondition of the Hoare triple,
𝜓 from line 7 corresponds to the post-condition, and ⟦𝑝𝑚⟧ is the logical encoding of an execution
path for function𝑚𝐼 . Thus, to infer how𝑚𝐼 ′ should behave for the corresponding execution path,
we need to find a formula 𝜒 over variables 𝑉𝑛,𝑉𝑛𝑟 such that the following entailment holds:

𝜙 ∧ ⟦𝑝𝑚⟧ ∧ 𝜒 |= 𝜓

Finding such a 𝜒 is precisely an abduction problem; hence, formula 𝜒 at line 8 of the algorithm
provides a sufficient condition for correctness of𝑚𝐼 ′ for a specific execution path. Since there
are standard techniques for performing logical abduction [Albarghouthi et al. 2016; Dillig and
Dillig 2013; Dillig et al. 2012, 2013] based on quantifier elimination, we do not discuss the Abduce
procedure in detail here.
• Next, lines 9–11 of Algorithm 3 mine useful statements and expressions S from the logical
specification 𝜒 of𝑚𝐼 ′ . The basic idea is to translate literals of 𝜒 to suitable expressions/statements
in the source language via the call to Literal2Snippet at line 11. Since this Literal2Snippet
procedure is based on simple syntax-directed translation, we do not discuss it in detail and
provide more implementation details in Section 5.
• Finally, the algorithm adds the mined componentsS to the grammar and updates the probabilities
of the productions accordingly (line 12).

We now illustrate the InferSnippets procedure using a concrete example:

Example 4.9. Consider again the running example in Section 2. Suppose that the input to Infer-
Snippets is 𝐸1 := ((𝐼 ,𝑉 ),𝑂), 𝐸2 := ((𝐼 ′,𝑉 ),𝑂 ′) 2 where 𝐼 , 𝐼 ′, 𝑉 , 𝑂 , and 𝑂 ′ are given in Equations
1-5. Then, InferSnippets constructs the following logical encodings of 𝑝∼, 𝑝′∼ and 𝑝𝑚 :

⟦𝑝∼⟧ := ℎ𝑒𝑖𝑔ℎ𝑡 ≥ 0 ∧𝑤𝑖𝑑𝑡ℎ ≥ 0 ∧ 𝑙𝑐 .𝑥 =𝑚𝑖𝑛𝑋 ∧ 𝑙𝑐 .𝑦 =𝑚𝑖𝑛𝑌

∧ℎ𝑒𝑖𝑔ℎ𝑡 =𝑚𝑎𝑥𝑌 −𝑚𝑖𝑛𝑌 ∧𝑤𝑖𝑑𝑡ℎ =𝑚𝑎𝑥𝑋 −𝑚𝑖𝑛𝑋

⟦𝑝′∼⟧ := ℎ𝑒𝑖𝑔ℎ𝑡 ′ ≥ 0 ∧𝑤𝑖𝑑𝑡ℎ′ ≥ 0 ∧ 𝑙𝑐 .𝑥 ′ =𝑚𝑖𝑛𝑋 ′ ∧ 𝑙𝑐 .𝑦′ =𝑚𝑖𝑛𝑌 ′

∧ℎ𝑒𝑖𝑔ℎ𝑡 ′ =𝑚𝑎𝑥𝑌 ′ −𝑚𝑖𝑛𝑌 ′ ∧𝑤𝑖𝑑𝑡ℎ′ =𝑚𝑎𝑥𝑋 ′ −𝑚𝑖𝑛𝑋 ′

⟦𝑝𝑚⟧ := 𝑤𝑖𝑑𝑡ℎ − 2𝑤 ≥ 0 ∧ ℎ𝑒𝑖𝑔ℎ𝑡 − 2ℎ ≥ 0 ∧ ¬𝑓 𝑙𝑖𝑝𝑋
∧¬𝑓 𝑙𝑖𝑝𝑌 ∧ 𝑙𝑐 .𝑥 ′ = 𝑙𝑐 .𝑥 +𝑤 ∧ 𝑙𝑐 .𝑦′ = 𝑙𝑐 .𝑦 + ℎ
∧ℎ𝑒𝑖𝑔ℎ𝑡 ′ = ℎ𝑒𝑖𝑔ℎ𝑡 − 2ℎ ∧𝑤𝑖𝑑𝑡ℎ′ = 𝑤𝑖𝑑𝑡ℎ − 2𝑤

2The return values are omitted for 𝐸1 and 𝐸2 because ScaleAndFlip does not return a value.
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Since ScaleAndFlip does not return any additional values, InferSnippets sets 𝜙 = ⟦𝑝∼⟧ and
𝜓 = ⟦𝑝′∼⟧. Next it calls Abduce with 𝑉𝑛 = {𝑉 , 𝐼 ′} and 𝑉𝑛𝑟 = {𝑂 ′} which returns the following:

𝜒 =


𝑚𝑎𝑥𝑋 −𝑚𝑖𝑛𝑋 − 2𝑤 ≥ 0 ∧ 𝑚𝑎𝑥𝑌 −𝑚𝑖𝑛𝑌 − 2ℎ ≥ 0

∧ ¬𝑓 𝑙𝑖𝑝𝑋 ∧ ¬𝑓 𝑙𝑖𝑝𝑌 ∧ 𝑚𝑖𝑛𝑋 ′ =𝑚𝑖𝑛𝑋 +𝑤 ∧ 𝑚𝑎𝑥𝑋 ′ =𝑚𝑎𝑥𝑋 −𝑤
∧ 𝑚𝑖𝑛𝑌 ′ =𝑚𝑖𝑛𝑌 + ℎ ∧ 𝑚𝑎𝑥𝑌 ′ =𝑚𝑎𝑥𝑌 − ℎ ∧ 𝑚𝑎𝑥𝑋 −𝑚𝑖𝑛𝑋 ≥ 0
∧ 𝑚𝑎𝑥𝑌 −𝑚𝑖𝑛𝑌 ≥ 0

Finally, InferSnippets extracts the literals from 𝜒 and converts them to snippets via syntax-directed
translation. In particular, it will add the following snippets to the grammar:
(1) (Atomic (𝐴)): 𝑚𝑖𝑛𝑋 := 𝑚𝑖𝑛𝑋 + 𝑤 , 𝑚𝑖𝑛𝑌 := 𝑚𝑖𝑛𝑌 + ℎ, 𝑚𝑎𝑥𝑋 := 𝑚𝑎𝑥𝑋 − 𝑤 , and 𝑚𝑎𝑥𝑌 :=

𝑚𝑎𝑥𝑌 − ℎ
(2) (Boolean (𝐵)):𝑚𝑎𝑥𝑋 −𝑚𝑖𝑛𝑋 − 2𝑤 ≥ 0,𝑚𝑎𝑥𝑌 −𝑚𝑖𝑛𝑌 − 2ℎ > 0, ¬𝑓 𝑙𝑖𝑝𝑋 , ¬𝑓 𝑙𝑖𝑝𝑌 ,𝑚𝑎𝑥𝑋 −

𝑚𝑖𝑛𝑋 ≥ 0,𝑚𝑎𝑥𝑌 −𝑚𝑖𝑛𝑌 ≥ 0.

Next, we turn our attention to the AddToGrammar procedure invoked at line 12 of Algorithm 3
and summarized in Algorithm 4. This algorithm takes as input the current PCFG G along with the
generated code snippets S and produces a new PCFG G′ that includes S. For each code snippet 𝑆 ,
it identifies the corresponding nonterminal N in G such that N ⇒∗ 𝑆 in the base grammar (line
4) and adds the new production (N → 𝑆) to G (line 5) and also recomputes the probabilities of
the productions in G′𝑐 (lines 6 - 10). In particular, for each nonterminal N , it obtains all snippets
𝑅S added for N (line 8), and for each snippet 𝑟𝑆 , it sets its probability to be (1 − 𝜖N)/|𝑅S | (line
9). Hence, all snippets added to the grammar for N have the same probability. Likewise, for all
productions in the base grammar, the algorithm sets their probability to be 𝜖N/(|𝑅N | − |𝑅S |). The
parameter 𝜖N is a real value in the interval [0, 1] associated with nonterminal N . Intuitively, a
small value of 𝜖 will bias the search towards programs that use the added snippets.

4.5 Inductive Synthesis Algorithm
In this section, we present our inductive synthesis algorithm for finding a program that satisfies a
given set of input-output examples. As mentioned earlier, this algorithm leverages the notion of
partial equivalence:

Definition 4.10 (Partial equivalence). Let𝑚1 and𝑚2 be two different implementations of the
same ADT method for a data representation 𝐹 ′. We say that𝑚1 and𝑚2 are partially equivalent
modulo fields 𝐹 ⊆ 𝐹 ′, denoted𝑚1 ≡𝐹 𝑚2, iff:

∀I . ©«𝑚1 (I) = (𝑜𝑟 , 𝑣) ∧𝑚2 (I) = (𝑜 ′𝑟 , 𝑣) =⇒
∧
𝑓 ∈𝐹

𝑜𝑟 .𝑓 = 𝑜 ′𝑟 .𝑓
ª®¬ (8)

In other words, two implementations are equivalent modulo fields 𝐹 if they produce the correct
values for only those fields. In general, while we could attempt to verify partial equivalence for all
possible inputs, the goal of inductive synthesis is to find a program that satisfies a given finite set
of examples. Hence, when testing partial equivalence as part of the inductive synthesis procedure,
we restrict the domain of I in Equation 8 to only the provided input examples.

Our inductive synthesis algorithm is summarized in Algorithm 5. At a high level, it performs
top-down search over programs in G using the notion of partial equivalence to incorporate bottom-
up synthesis. As is standard in top-down synthesis [Feser et al. 2015; Gulwani et al. 2017], the
algorithm maintains a worklistW of partial programs 𝑃 where each partial program can be viewed
as a sequence of grammar symbols (both terminals and non-terminals) in G. In each iteration,
the algorithm chooses the “best" partial program 𝑃 in the work list (line 5), where SelectBest is a

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 28. Publication date: January 2024.



Semantic Code Refactoring for Abstract Data Types 28:17

1: procedure Synthesize(E, 𝐹 ′, G)
input: A set of IO examples E
input: Fields 𝐹 ′ for new ADT implementation
input: A PCFG G
output: A refactored ADT implementation𝑚𝐼 ′

2: W ← {?}
3: M ← ∅
4: whileW ≠ ∅ do
5: 𝑃 ← SelectBest(W)
6: if IsComplete(𝑃) then
7: if IsConsistent(𝑃, E) then
8: return 𝑃

9: 𝐹 ′≡ ← GetEqFields(𝑃, E)
10: if |𝐹 ′≡ | ≥ 𝛾 × |𝐹 | then
11: W ←W ∪ Combine(𝑃,M)
12: M[𝑃] ← 𝐹 ′≡
13: continue
14: else
15: P ← expand(𝑃,G)
16: W .addAll({𝑃 ′ | 𝑃 ′ ∈ P})
17: return ⊥

Algorithm 5. Inductive Synthesis procedure.

1: procedure Combine(𝑃 ,M, 𝐹 ′≡)
input: A program 𝑃 that is partially correct
input: A component mapM of programs that
partially satisfy the IO examples
input: A set of fields 𝐹 ′≡ that P got correct
across the IO examples
output: A set P of partial programs derived by
combining 𝑃 with another program inM

2: P ← ∅
3: for all 𝑃 ′ ∈ Domain(M) do
4: 𝐹≡𝑃 ′ ←M[𝑃 ′]
5: if 𝐹≡𝑃 ′ ⊄ 𝐹 ′≡ ∧ 𝐹 ′≡ ⊄ 𝐹≡𝑃 ′ then
6: P ← P ∪Merge(𝑃, 𝑃 ′)
7: return P

Algorithm 6. Bottom-up search procedure. Com-
bine generates new partial programs by combining
𝑃 with existing components inM. The Merge pro-
cedure used at line 6 is presented as inference rules
in Figure 8.

heuristic ranking function that scores programs according to the probability of that partial program
according to the PCFG as well as other factors like size.3 If the dequeued program contains a
non-terminalN (meaning that the call to IsComplete at line 6 returns false), the algorithm expands
N by replacing N with the right-hand-side of all grammar productions of the form N → 𝛼 and
adds the resulting partial programs to the worklist (lines 14–15). On the other hand, if 𝑃 is complete
(meaning it contains only terminal symbols), the algorithm checks whether 𝑃 is consistent with all
examples E (line 7). If so, 𝑃 is returned as a solution.

The novel part of our inductive synthesis algorithm corresponds to lines 8–12 in Algorithm 5. As
mentioned earlier, this part of the algorithm combines top-down search with bottom-up synthesis
by leveraging the notion of partial equivalence. In particular, line 8 of the algorithm checks whether
𝑃 satisfies the input-output examples for some subset of the fields 𝐹 ′≡ ⊂ 𝐹 ′. Specifically, for each
field 𝑓 ∈ 𝐹 ′≡, we have 𝑃 (I).𝑓 = O .𝑓 for each (I,O) ∈ E. Intuitively, if the fraction of such fields is
above a certain threshold 𝛾 (line 9), this program is considered a useful building block and added to
a mapM (line 11). Additionally, 𝑃 is combined with existing building blocks inM via the Combine
procedure (line 10), and all of the resulting programs are added to the worklist.

The Combine procedure is presented in Algorithm 6: given a complete program 𝑃 and previously
discovered componentsM, it generates new programs by combining 𝑃 with each 𝑃 ′ ∈ M via the
Merge procedure. Note that the algorithm only merges 𝑃 and 𝑃 ′ if one of them is not strictly better
than the other one (check at line 5 of Algorithm 6).

Finally, Figure 8 formalizes the Merge procedures using inference rules that derive judgments of
the form 𝑃1, 𝑃2 ⊢ \ , where \ is a set of new partial programs. According to the Seq rule, two code
snippets can be combined sequentially to obtain a larger snippet. The first conditional rule, If-1

3More implementation details about SelectBest are provided in Section 5.
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𝑃1, 𝑃2 ⊢ {𝑃1; 𝑃2}

Seq

𝑃1, 𝑃2 ⊢ {if(??) 𝑃1 else 𝑃2}

If-1

∀𝑖 ∈ [1, 2] . 𝑃𝑖 := if(𝑒) 𝑃 ′
𝑖
else 𝑃 ′′

𝑖
𝑃 ′1, 𝑃

′
2 ⊢ \1 𝑃 ′′1 , 𝑃

′′
2 ⊢ \2

𝑃1, 𝑃2 ⊢ {if(𝑒) 𝑆1 else 𝑆2 | (𝑆1, 𝑆2) ∈ \1 × \2}
If-2

∀𝑖 ∈ [1, 2] . 𝑃𝑖 := for(v ∈ 𝑒){ 𝑆𝑖 }
𝑆1, 𝑆2 ⊢ \

𝑃1, 𝑃2 ⊢ {for(v ∈ 𝑒){ 𝑆 } | 𝑆 ∈ \ }
For

Fig. 8. Representative rules describing how we combine code snippets

combines two snippets 𝑃1 and 𝑃2 by introducing a conditional and yields the partial program if
(??) 𝑃1 else 𝑃2. The second conditional rule If-2 combines two if statements that share the same
predicate 𝑒 . In particular, it generates a set of new if statements (with the same predicate 𝑒) but
where the true and false branches are obtained by recursively merging the corresponding branches.
The final For rule is similar to If-2 but for loops instead of conditionals.

4.6 Properties of Our Refactoring Technique
Assuming a sound Verify procedure, the soundness of our algorithm follows straightforwardly
from the check performed on line 6 of Refactor. Thus, we conclude this section by proving the
completeness of our end-to-end algorithm.

Theorem 4.11 (Completeness). If there is an implementation 𝑚𝐼 ′ such that 𝑚𝐼 ′ and 𝑚𝐼 are

equivalent modulo RRI ∼, then Refactor(𝑚𝐼 , 𝐹
′,∼,G) returns an𝑚′

𝐼 ′ such that𝑚′
𝐼 ′ is equivalent to

𝑚𝐼 modulo ∼.

5 IMPLEMENTATION
We have implemented the ideas presented in this paper as a new tool called Revamp, which takes
three inputs: (1) the original ADT, expressed as a Java class, (2) declaration of the new ADT, and (3)
an RRI expressed as a boolean Java function. Revamp additionally takes a time limit 𝑡 indicating
the maximum time for refactoring a method. Revamp is written in Java and internally uses JBMC
[Cordeiro et al. 2018] for verification and counterexample generation and the Z3 solver [de Moura
and Bjørner 2008] for determining logical satisfiability. Revamp also uses the Soot framework[Lam
et al. 2011] for identifying methods and variables that are in scope. In the rest of this section, we
describe important optimizations used by Revamp along with other relevant implementation details
omitted from Section 4.
Specifying RRIs As mentioned above, Revamp expects the user to express the intended RRI as a
boolean Java function taking two inputs: an instance of the original ADT and an instance of the
new ADT. In theory, the RRI should relate all the fields of the original to the fields of the new to
satisfy equations 6 and 7; however, in practice it can be cumbersome for users to write a complete
RRI since the original ADT may contain several fields many of which should remain unchanged by
the intended refactoring.
To help users write concise RRIs, Revamp allows them to specify an RRI over the subset of the

new and original ADT fields relevant to the refactoring task. Before synthesizing the refactored
implementation, Revamp statically analyzes the RRI to identify the relevant fields from the original
and new implementation. It then attempts to infer a one-to-one correspondence between the
unspecified fields in the original and new ADTs. Specifically, for every unspecified field in the
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original code, it expects to find a corresponding field in the new ADT with the same name and
type (and vice-versa). If no such correspondence can be found, it returns an error describing which
unspecified fields could not be matched.

After finding such a correspondence, Revamp then constructs an updated RRI asserting that the
values of the unspecified fields should be equal. The updated RRI looks like the code snippet below
where fields 𝑓1 through 𝑓𝑛 are the unspecified ones and ≡ is shorthand for deep equality checks:

static boolean updatedRRI(O o, N n) {

b := o.𝑓1 ≡ n.𝑓1 && ... && o.𝑓𝑛 ≡ n.𝑓𝑛;

return b && origRRI(o, n);

}

Validating RRIs Recall that the correctness of our refactoring technique relies on the fact that the
RRI satisfies equations 6 and 7. To help users check that their RRIs satisfy these equations, Revamp
includes two utilities. First, to check whether equation 6 holds for an RRI 𝑟𝑟𝑖 , Revamp encodes
Equation 6 as the following code snippet with assertions:

static void rri_check1 () {

o := nondetOrig ();

n1 := nondetNew (); n2 := nondetNew ();

Verifier.assume(rri(o, n1) && rri(o, n2));

assert(n1 ≡ n2);

}

Here, nondetOrig and nondetNew are Revamp-generated functions that construct arbitrary in-
stances of the new and original ADT. The third line in the function body introduces assume
statements that encode the antecedent of Equation 6. The final line checks that the consequent
of Equation 6 holds by asserting that the two instances must be equal. Given such a code snippet,
Revamp utilizes a verifier (specifically, JBMC [Cordeiro et al. 2018]) to check the assertion. If the
verifier finds a counterexample, Revamp presents this counterexample to the user to help them fix
the RRI.
Revamp also provides a utility to help users check whether their RRI satisfies Equation 7. In

principle, verifying Equation 7 requires solving a formula with quantifier alternation (∀∃) which
SMT solvers struggle with. To bypass this problem, Revamp instantiates the universal quantifier
with several concrete instances 𝑟1, . . . , 𝑟𝑛 of the old ADT and constructs the following code snippet:

static void rri_check2(r1, ..., rn) {

o := r1; n := nondetNew ();

assert(¬rri(o, n));

...

o := rn; n := nondetNew ();

assert(¬rri(o, n));

}

If the RRI satisfies Equation 7, then every assertion in the above code snippet should be violated.
Thus, Revamp uses a model checker to try to construct a counterexample for each of the assertions.

Computing Logical Encodings. Recall from Section 4.3 that Revamp needs to encode loop-free
functions as logical formulas. Given a method𝑚 with arguments 𝑉 , Revamp derives the logical
encoding of this method by computing the weakest precondition of the following code snippet
with respect to True:

𝑟 = 𝑂.𝑚(𝑉 )
assert(𝑂 ′ ≡ 𝑂 ∧ ret ≡ 𝑟 );
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Here,𝑂 ′ is a variable representing the ADT after calling𝑚 and 𝑟𝑒𝑡 is a variable denoting𝑚’s return
value. Thus, the weakest precondition of this code snippet describes the updated ADT instance 𝑂 ′
and return value 𝑟𝑒𝑡 in terms of fields of the input ADT.

When generating the weakest preconditions, we model most Java constructs in the standard way:
for example, we model references using an array-based encoding that has been popularized by ESC-
Java [Flanagan et al. 2002]. Specifically, we introduce an array for each field and model loads and
stores using select and update functions in the theory of arrays. However, some language constructs
like bit manipulation and non-linear arithmetic are not solver-friendly, especially for performing
quantifier-elimination, and so we encode those operations using uninterpreted functions.

Implementation of Verify fromAlgorithm 1. Revamp implements the Verify procedure from Al-
gorithm 1 by encoding the correctness check as a code snippet with assertions/assumptions and
calling a model checker (JBMC). In particular, given a method𝑚 from the original ADT, a candidate
refactored implementation𝑚′ of𝑚, and RRI 𝑟𝑟𝑖 , Revamp constructs the following code snippet:

static void harness_m () {

o := nondetOrig (); n := nondetNew ();

Verifier.assume(rri(o, n));

𝑣1 := nondet[𝑇1](); ...; 𝑣𝑛 := nondet[𝑇𝑛 ]()

𝑟1 := o.m(𝑣1 ,...,𝑣𝑛);

𝑟2 := n.m(𝑣1 ,...,𝑣𝑛);

assert(rri(o, n) && 𝑟1 ≡ 𝑟2);

}

This code snippet first constructs original and new ADT instances 𝑜 and 𝑛 that satisfy 𝑟𝑟𝑖 . It then
calls the original and refactored implementation with the same (arbitrary) arguments. Finally, it
asserts that the 𝑟𝑟𝑖 holds on 𝑜 and 𝑛 after the method calls and that the return values are the same.

Logical Abduction. Revamp solves the logical abduction problem presented in Section 4.4 by
performing quantifier elimination, similar to previous work in solving logical abduction problems
[Albarghouthi et al. 2016; Dillig et al. 2012, 2013]. One detail worth noting is that the formulas in our
setting are in the combined theory of uninterpreted functions, arrays, and integers, and this theory
does not admit quantifier elimination (i.e., there may not always be an equivalent quantifier-free
formula). However, we can still approximate quantifier elimination using the cover [Gulwani and
Musuvathi 2008] operation, which is a generalization of quantifier elimination. In particular, given
a formula ∃𝑉 .𝜙 (𝑉 ,𝑋 ) where 𝑋 ∩𝑉 = ∅, the cover of 𝜙 is a quantifier free formula𝜓 (𝑋 ) such that
(1) ∃𝑉 .𝜙 |= 𝜓

(2) For any 𝜑 (𝑋 ) such that ∃𝑉 .𝜙 |= 𝜑 we have𝜓 |= 𝜑 .
These conditions are sufficient for solving the logical abduction problem.

Translating Literals into Code Snippets. Recall from Section 4.4 that InferSnippets generates
code snippets by first solving a logical abduction problem and then translating each literal in the
solution into code snippets. In the vast majority of cases, the translation is straightforward. In
particular, Revamp translates literals of the form 𝐼𝑘 ⊕ 𝐼 𝑗 where ⊕ is a comparison operator and
𝐼𝑘 and 𝐼 𝑗 are logical expressions over input variables into their corresponding comparison code
snippets 𝑒𝑘 ⊕ 𝑒 𝑗 where 𝑒𝑘 and 𝑒 𝑗 are translations of 𝐼𝑘 and 𝐼 𝑗 respectively. Literals of the form𝑂 = 𝐼

where𝑂 is an expression solely over output variables is translated into assignments 𝑒𝑂 := 𝑒𝐼 where
𝑒𝑂 and 𝑒𝐼 are the translations of𝑂 and 𝐼 . Other literals such as𝑂𝑖 ⊕𝑂 𝑗 are translated into assertions
like assert(𝑒𝑂𝑖

⊕ 𝑒𝑂 𝑗
). There are two cases handled separately:

• Literals of the form 𝑂.𝑓 = 𝐼 where 𝑓 is not accessible from the new implementation cannot be
translated into assignments; these require the introduction of function calls. In this case, Revamp
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first attempts to recursively translate𝑂 and 𝐼 into expressions 𝐸𝑂 and 𝐸𝐼 . It then uses the SPARK
pointer analysis [Lhoták and Hendren 2003] within Soot to identify all accessible methods𝑚 that
may write to 𝑓 . For each𝑚, Revamp constructs a code snippet of the form𝑚(??1, .., ??𝑛) where
??𝑖 indicates an unknown argument.
• Expressions of the form 𝐼 .𝑓 where 𝑓 is not accessible cannot be directly translated into field
dereferences and must be accessed via a method call. In this case, Revamp translates 𝐼 into
snippets 𝐸𝐼 and then identifies all accessible methods𝑚 that may read 𝑓 and generates function
expressions with unknown arguments (as in the previous case).

Example 5.1. Consider the following literal that occurs in a formula:

𝑜 ′𝑟 .map.keys[0] = getComponent(arg1)

where map is a field in the new ADT of type Map and keys is a private field in the map implemen-
tation. Intuitively, this literal encodes an update to map’s keys. Revamp will recursively generate
the code snippets this.map and arg1.getComponent() and then identify the methods inMap which
can write to keys. Revamp finds that the only methods that can update the keys are put, remove,
and clear, so it returns the snippets ??1.put(??2, ??3), ??1.remove(??2) and ??1.clear() along with
this.map and arg1.getComponent().

SelectBest. Recall that the inductive synthesis algorithm utilizes a function called SelectBest for
choosing the most promising element in the worklist. Our implementation of SelectBest prioritizes
programs that use the inferred code snippets as well as those that have been obtained by combining
partially equivalent implementations. To prioritize programs that use the inferred snippets, we set
𝜖N to be 0.01 for all nonterminalsN ; this gives all productions that were not added by InferSnippet
a low probability. To prioritize combined partially equivalent programs, Revamp associates each
program 𝑃 with an integer 𝑁𝑃 which indicates the number of fields we expect the program to
update correctly across the IO examples. Whenever Revamp combines programs 𝑃1 and 𝑃2 that
satisfy fields 𝐹 ′1 and 𝐹 ′2, it associates every resulting combination 𝑃 with 𝑁𝑃 = |𝐹 ′1 ∪ 𝐹 ′2 |. Revamp
then assigns each program the following score:

𝑆𝑐𝑜𝑟𝑒 (𝑃) := 𝑀𝑖𝑛(𝑀, 𝑁𝑃 ) · 𝑃𝑟G (𝑃)

and SelectBest selects the program with the highest score. The extra parameter𝑀 is effectively an
upper bound on 𝑁𝑃 that prevents the synthesizer from generating large programs that overfit the
I/O examples. We set𝑀 to be 10 in our experimental evaluations.

6 EVALUATION
We evaluated Revamp with the goal of answering the following research questions:
• (RQ1) Usefulness: Can Revamp automate real-world ADT refactoring tasks?
• (RQ2) Comparison to Existing Tools: How does Revamp compare against state-of-the-art Java
synthesizers and large language models such as ChatGPT?
• (RQ3) Ablation: How impactful are Revamp’s key ideas?

Benchmarks. To evaluate Revamp on real-world ADT refactoring tasks, we wrote a GitHub
crawler that looks for candidate Java projects where the data representation has been changed in
between commits. Among the results returned by the crawler, we manually inspected the results
in order of popularity and retained the first 30 classes that (a) indeed change the underlying data
representation, and (b) require modifying more than 10 lines of code. Nearly all of our benchmarks
come from widely-used, large projects like Netty [net 2022], Elessandra [ele 2022], Cassandra [cas
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2022]. Moreover, the refactorings require changing an average of 50 lines of code and modifying
34% of the ADT methods.

Writing RRIs. To evaluate Revamp on these benchmarks, we had to manually write relational
representation invariants for each benchmark. Before doing so, we first tried to understand the
behavior of the benchmark as well as the developer’s intentions when refactoring the data represen-
tation. For the most part, we were able to get a correct understanding of the code base (both original
and new implementations) by examining the diff from the git commit as well as the source code of
the original implementation; however we sometimes (roughly half of the time) also executed some
methods of the original and new ADTs on inputs (1-2) we crafted to confirm the methods returned
the result (and modified the new ADT fields) we expected.
After getting a comprehensive mental model of the code base and the developer’s intentions

for the refactoring task, we then wrote the RRI for the benchmark; overall, writing the RRIs took
less than 5 minutes on average. If we had executed the original and new ADT methods during
our examination of the benchmark, we would then utilize those examples (inputs and observed
outputs) to confirm that the RRI we had written was consistent with them. We also used Revamp’s
RRI checker to validate that properties (6) and (7) held for the RRIs.
We recall two cases where we made mistakes writing the RRI and in both cases we ended up

catching the mistakes using the examples and Revamp’s checker. In particular, using examples
helped catch one simple mistake where, in our first attempt to write the RRI for the StreamCacheSer-
vice benchmark, we confused two subfields of the same type and used one in place of the other in
the RRI. But when we sanity checked the RRI against our examples, the RRI did not hold. Next,
Revamp’s checker found that the RRI we had written for the Zookeeper benchmark violated prop-
erty (6). In that refactoring task, the original ADT had a HashMap m1 and the new ADT had a
HashMap m2 such that every entry in m1 had a corresponding entry in m2 and vice versa. Our
original RRI overlooked the bidirectional relationship and only asserted that every entry in m1 had
a corresponding entry in m2. The checker returned a counterexample where, in one case, the keys
of m2 were a strict superset of the keys in m1, indicating we had missed the reverse check in the
RRI necessary to satisfy (6).

Overall, we estimate that the lead author, the one who wrote the RRIs for the benchmarks, spent
30 minutes per benchmark (15 hours total) including writing and validating the correctness of the
RRI (with less than 5 minutes on average writing the RRI). They had 8.5 years of programming
experience with 5 years of experience writing Java code and 1 year of professional experience in
Java at the time. We further estimate that 80-90% of the author’s time was spent understanding the
behavior of the original ADT and developer-intended refactoring with the remaining time spent
writing and validating the RRIs.

Experimental Setup.All experiments involving Revamp and other Java synthesizers are conducted
on a Google Cloud [gce 2013] e2-standard-8 machine with a Debian 11 OS, 64 GB of RAM, and
128GB of hard disk space. For all experiments, we use a time limit of 15 minutes for refactoring
each ADT method.

6.1 Main Results
To answer our first research question, we report the number of ADT methods that Revamp is able to
successfully refactor as well as the time to perform each refactoring. The result of this experiment is
presented in Table 1. The first two columns report the GitHub project the benchmark belongs to and
the Java class being refactored. The columns # Old Fields and # New Fields describe the number
of fields in the original and new data representations that are relevant to the refactoring task. The
next two columns together describe the average size of the initial PCFG across the functions being
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Table 1. Main experimental results.⊥ indicates time out (> 15 minutes). The Cassandra benchmark is written
as Stream[In/Out]Session to indicate that the original refactoring spanned two very similar classes. Rather
than consider them as separate benchmarks, we consider it as one larger task. The columns labeled # Init.
Prods and # Final Prods list the average number of productions in the grammar at the start and by the end of
synthesis respectively. The column labeled “Total Funcs” shows the total number of methods in the class, and
the column labeled “Rel. Funcs” shows the number of relevant methods that require modifications. The Diff
column shows the number of lines in the diff produced by DiffChecker [DiffChecker 2021] and the RRI size
column shows the size of the RRI in LOC.

Project Class # Old # New # Init. # Final Total Rel. RRI Diff TimeFields Fields Prods Prods Funcs Funcs Size
bisq-networks MathUtils 1 2 244.3 443.3 7 3 1 11 8.1
cassandra Stream[In/Out]Session 4 4 282.4 371.5 24 12 8.5 66 158.4
elessandra FieldData 1 2 204.8 355.2 6 5 9 39 30.2
elessandra FieldMapper 1 3 266 344.8 10 6 14 55 153.2
elessandra MemoryTranslog 1 3 167.8 305.5 9 5 9 41 43.2
elessandra WeightFunction 2 1 226.5 262.2 2 2 1 24 88.4
falcon CLIParser 1 3 325.2 552.2 8 5 15 55 148.2
falcon EntityProxyUtil 1 2 285.5 388.1 15 6 18 75 234.9

game-of-life EndlessGrid 1 2 215 319.5 14 2 11 7 13.9
glide BitmapTracker 2 1 225.5 335.1 8 6 8 88 283.7

graylog2-server StreamCacheService 1 3 316.4 552.2 9 5 10 45 101.7
guava SingletonImmutableMap 1 2 134.7 197.2 11 6 3 63 181.3
guice StackTraceElements 1 2 324.3 442.1 5 4 15 33 116
hadoop IncrementalBlockReportManager 1 2 337.1 544.2 12 3 13 38 464.1
hbase DataBlockEncoding 2 2 383 499 13 3 14 64 609.9

javaparser Node 1 1 133 168 42 2 3 15 14.5
jdbi Bindings 2 3 253.8 410.7 9 5 14 38 138.8

jenkins-ci GitLabConnectionConfig 1 1 352 552.2 11 5 9 43 101
jmist Box2 3 4 197.1 233.3 12 12 5 104 257
junit BlockJunit4ClassRunner 1 2 233.8 462.9 8 5 17 50 868.2
netty DefaultChannelPipeline 3 4 586.3 733.3 64 6 16 45 86.6
netty SpdySession 1 3 270.2 366.2 24 5 9 63 192.6

osmand GeocodingLookupService 1 2 391.3 662.9 14 3 11 33 ⊥
pixeldungeon Level 1 9 397.8 588.8 12 3 17 85 988.8

pravega StreamSegmentContainerMetadata 1 3 532.5 882.2 13 6 13 54 118
wicket AsynchronousPageStore 1 2 319.5 488.3 7 4 9 22 275.7
wicket RequestAdapter 1 2 188 255.2 9 3 8 21 77.8
wicket TagIdentifier 1 1 260.7 387 10 3 7 72 117
Xodus PersistentSequentialDictionary 1 2 263.3 355.2 13 7 13 68 875.5

Zookeeper NettyServerCnxnFactory 1 1 171.3 299.3 25 4 9 37 146
Averages - 1.4 2.5 282.9 425.3 14.2 4.9 9.8 48.8 237.7

refactored and the size of the grammar in the final iteration of the CEGIS loop. The difference
between the two indicates the number of components Revamp added during synthesis. The next
four columns describe the number of functions in the ADT, the number which required refactoring,
the size of the RRI in LOC, and the overall size of the refactoring measured as a diff between the
original and new ADT implementations. Finally, the last column states the time (in seconds) taken
by Revamp to refactor the entire ADT.
The key takeaway from this experiment is that Revamp is able to successfully refactor 29 out

of 30 benchmarks and 144 out of 146 functions across all the ADTs. For each of the refactored
methods, we also manually inspected the result and verified that the resulting code is equivalent to
the manually refactored version in all but one case, where the programmer written code is actually
buggy (explained in more detail below).

There is one benchmark, namely GeocodingLookupService, that Revamp fails to solve. This ADT
contains three methods that require refactoring, but Revamp fails to synthesize two of these three
methods within the 15 minute time limit.
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Case Study: AsynchronousPageStore. One of our benchmarks, namely the AsynchronousPage-
Store class from the Wicket project[wic 2023], is an interesting case study because the manually-
performed refactoring introduces a subtle bug. The original version of this class maintains a queue
of PendingAdd tasks where each task has a unique identifier called a key. The new data represen-
tation includes an additional hash map called map which tracks each task in the queue by its key.
Hence, whenever a task is added or removed from the queue, map also needs to be suitably updated.
However, the manual re-implementation of the run method fails to correctly update map in an edge
case where an auxiliary procedure called by run throws an exception. This refactoring created a
memory leak because some entries from the HashMap would never get removed in the exception
cases. On the other hand, the new implementation synthesized by Revamp handles this edge case
correctly and fixes the memory leak in the manual refactoring.

Result 1: Revamp is able to refactor the entire ADT for 97% of the classes and synthesize 99%
of all method implementations. Furthermore, the automatic refactoring performed by Revamp
does not contain a subtle bug introduced when manually refactoring one of the benchmarks.

6.2 Comparison against Baseline Tools
To answer our second research question, we compared Revamp against two relevant baselines.
While there is no existing technique that directly addresses our problem, we adapted three tools to
our setting:
• JSketch: Our first baseline is JSketch [Jeon et al. 2015], a generic synthesis framework that is
an adaptation of Sketch [Solar-Lezama et al. 2006] to synthesis tasks in Java. To use JSketch,
we first manually created harnesses for all 146 methods that required refactoring. Specifically,
for every method Revamp was able to refactor, we supplied the I/O examples generated by
Revamp as test cases for JSketch. For methods that Revamp failed to refactor, we supplied test
cases manually. Subsequently, we used the initial grammar from Revamp and constructed a
corresponding JSketch generator for each nonterminal in our grammar (statement generator,
expression generator, etc.). Moreover, for each method in the original ADT requiring refactoring,
we wrote the corresponding declaration in the new ADT and populated the method’s body with
a call to the statement generator. Finally, once JSketch produced a program consistent with all
examples, we used JBMC to verify its correctness.
• Volt: Our second baseline is Volt [Pailoor et al. 2021], a state-of-the-art CEGIS-based synthesizer
for Java. While Volt primarily targets data structure refinements, its underlying synthesis algo-
rithm is fairly general and performs enumerative search with SMT-based pruning. As such, we
replaced our method refactoring procedure with Volt’s synthesis algorithm.
• ChatGPT: Our third baseline is ChatGPT [OpenAI 2021]4, a state-of-the-art large language
model (LLM), which has shown proficiency at many coding tasks including code synthesis. To use
ChatGPT, we provided a suitable prompt (see Appendix B for details) and attempted to compile
the generated code. For cases where compilation was successful, we also attempted to verify
equivalence using JBMC. We provide more details on the prompting strategies we experimented
with, the exact prompt used in our evaluation, and a representative interaction with ChatGPT in
Appendix B in the supplementary material.

Results. The results of this comparison are summarized in Table 2. Here, the column labeled “#
Bench. Solved” shows how many of the 30 ADTs were correctly refactored by each tool. Note that
we consider a benchmark to be “solved” if the tool is able to correctly refactor all ADT methods

4We evaluated on the May 26, 2023 version of the web application using GPT 3.5
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Table 2. Comparison between Revamp and baseline tools including JSketch, Volt, and ChatGPT. The column
Synth Time describes the average time taken by the tool in seconds when it succesfully refactors a method.

Tool # Bench. Solved # Funcs Refactored Synth Time (s)

JSketch 4/30 (13%) 44/146 (30%) 168.3
Volt 8/30 (27%) 83/146 (57%) 132.4

ChatGPT 7/30 (23%) 92/146 (63%) -
Revamp 29/30 (97%) 144/146 (99%) 42.83

Table 3. Synthetic tasks to evaluate how well ChatGPT performs on unseen benchmarks

Name # Funcs # Solved (ChatGPT) # Solved (Revamp)
Counters 2 1 2

Mercury Timekeeping 2 0 2
Point Summation 2 0 2
Piecewise Function 2 1 2
Incremental Average 2 0 2

that require refactoring. To give a more fine-grained view of the results, the next column labeled
“# Funcs Refactored” shows the number of ADT methods that were correctly refactored. Finally,
the last column labeled “Synth Time” provides the average running time of each tool across all
successfully refactored methods in seconds.
The first observation about Table 2 is that the other baselines solve less than a third of the

benchmarks solved by Revamp. In particular, JSketch can only solve 4 out of 30 benchmarks and
correctly refactors only 44 out of the 146 methods. Volt solves 8 of the benchmarks and correctly
refactors 83 methods, more than twice the number of methods as JSketch but 60 less than Revamp.
ChatGPT, on the other hand, is able to completely solve 7 benchmarks and refactors 92 of the
functions, the most among the three baselines. However, upon closer inspection, we found that,
in many cases, the ChatGPT result matches the human-refactored version on GitHub verbatim,
including the same helper functions and local variables names. When we attempted to change
the variable and field names slightly, ChatGPT ignored these changes and simply regenerated
the (incorrect) version found on GitHub in some cases. These results indicate that there is cross-
contamination between training and test data, as ChatGPT has likely been trained on the same
GitHub benchmarks.

ChatGPT’s Performance on Unseen Benchmarks. To alleviate these concerns about ChatGPT,
we performed another experiment on five manually-crafted ADT refactoring tasks described below:
• Counters: The original ADT consists of a single field called map which maps integers to integers.
It consists of two methods add and remove which inserts a tuple and removes an entry from the
map respectively. The refactored ADT has two additional fields evens and odds which track the
number of odd and even keys in map. The refactored implementation needs to change add and
remove to update evens and odds correctly.
• Mercury Timekeeping: The original ADT consists of a single field ts which tracks the number
of seconds elapsed. It consists of two methods set and add_s which sets and increments the
timer. The refactored ADT expresses the time elapsed in terms of years, days, hours, minutes
and seconds; however the years and days units are in terms of Mercury years and days.
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Fig. 9. Ablation results.

• Point Sum: The original ADT consists of two integer fields x and y representing a 2D point and
two methods moveY and moveX, both of which take an integer argument v and increase x and y
by v respectively. The new ADT consists of two integer fields sum and diff and the RRI specifies
that sum = y + x and diff = y − x.
• Piecewise: The original ADT implementation consists of an integer field x and the new im-
plementation has an integer field y and the RRI specifies that y = 𝑓 (x) where 𝑓 is a piecewise
linear function. The original implementation consists of two methods: piecewise and add. The
former expresses another piecewise linear function 𝑔(𝑥) and the latter takes as input an integer
parameter v and increments x by v.
• Incremental Average: The original ADT consists of a List of integers called vs and contains
two methods set and add which appends a list of elements to vs and adds an element v to vs.
The new implementation contains an integer field called avg, and the RRI specifies that avg
should equal the (rounded-down) average of the elements in vs.

We provide the code of these benchmarks along with our interaction with ChatGPT in the supple-
mentary material.
The results of this experiment are presented in Table 3. For this benchmark set, ChatGPT was

not able to solve any of the benchmarks and could correctly refactor only 2 out of the 10 methods.
In contrast, Revamp is able to correctly refactor all benchmarks. Upon closer inspection of these
results, we observe that ChatGPT struggles to reason about edge cases. For example, in the Counters
task, it correctly increments the counters in the remove method but incorrectly increments them in
add because of an edge case (namely, when the key is already in the map).

Result 2: Revamp is able to solve more than 3x the number of the benchmarks and refactor 62
more functions than the next closest baselines.

6.3 Ablation Study
In this section, we present the results of an ablation study that is designed to assess the relative
impact of our key ideas. In particular, we consider three variants of Revamp:
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• Revamp-NoIO-RRI is a variant of Revamp that does not infer relational IO examples given a
counterexample to equivalence. It instead requires the output of the inductive synthesizer to
satisfy the RRI. This variant also cannot infer code snippets using abductive reasoning, as that
procedure relies on input-output examples but will combine programs as long as they satisfy the
RRI on a subset of the inputs.
• Revamp-NoInfer is a variant that is identical to Revamp except it does not infer additional code
snippets using abductive reasoning. It still constructs IO examples and uses partial equivalence
to combine programs during synthesis.
• Revamp-NoPartial only differs from Revamp in that it does not use partial equivalence to
determine if code snippets should be combined. Instead, it only combines code snippets that
completely satisfy an IO example.

The results of this ablation study are presented in Figure 9. Compared to Revamp-NoIO-RRI,
and Revamp-NoInfer, Revamp is able to successfully refactor nearly 80 more methods. Finally,
Revamp is able to refactor 16 more methods than Revamp-NoInfer, and among the benchmarks
that Revamp-NoInfer can solve, Revamp does so nearly 4.2× faster.

Result 3: Each of our three key ideas outlined in Section 2 have a significant impact on
Revamp’s performance.

7 RELATEDWORK
Data structure verification and synthesis. There is a line of work on verifying, repairing, and
synthesizing data structure implementations. Demsky and Rinard [Demsky and Rinard 2003a,b,
2005] study runtime error detection and repair of data structures based on boolean constraints, and
Lam et al. [Lam et al. 2005a,b] perform static analysis to verify data structure consistency. More
recently, there has been a line of work to synthesize data structure methods via deductive synthesis
[Delaware et al. 2015; Hawkins et al. 2011, 2012a,b; Itzhaky et al. 2021; Qiu and Solar-Lezama 2017].
Fiat [Delaware et al. 2015] performs deductive synthesis to generate SQL-like query and insertion
operations through steps of refinement. RelC [Hawkins et al. 2011, 2012a,b] views a data represen-
tation as a set of primitive data structures (e.g., List, Set, Map) and synthesizes operations from a
relational algebra description and functional dependencies. Similarly, Cozy [Loncaric et al. 2018,
2016] synthesizes efficient implementations of complex collection data structures from high-level
specifications. By contrast, Revamp does not restrict ADT implementations to only use primitive
data structures. Furthermore, Revamp focuses on refactoring existing ADT implementations in-
stead of synthesizing an implementation from a high-level description. Among this line of work,
Volt [Pailoor et al. 2021] is the most closely related to Revamp. In particular, given a data structure,
a new set of auxiliary fields, and an integrity constraint, Volt can automatically refine the data
structure in a way that satisfies the specified integrity constraint. However, Revamp studies a more
general semantic code refactoring problem for ADTs, where the relationship between two versions
of ADTs are specified using relational representation invariants. In particular, Volt is designed to
only synthesize updates to existing code whereas Revamp handles a broader class of refactorings
which can include updates, reads, additions, and deletions of an ADT implementation.

Quantifier elimination in synthesis. Recall that Revamp uses quantifier elimination to solve
the logical abduction problem introduced in Section 4.4. However, we note that Revamp is not the
first work to use quantifier elimination in the context of program synthesis. Comfusy [Kuncak
et al. 2010a,b, 2012] and AE-VAL [Fedyukovich et al. 2019] apply quantifier-elimination within
a deductive synthesizer to incrementally rewrite a logical specification over integer and rational
arithmetic into straight-line code. Unlike Revamp, both procedures are fully deductive and operate
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on a restricted language expressing loop-free arithmetic code. As such, these techniques are not
directly applicable in our setting. Unlike these approaches, Revamp uses quantifier elimination
within a CEGIS-loop to learn new snippets that will be useful for synthesis from previous failed
attempts.

Constraint-based program synthesis. Constraint-based program synthesis has been studied
extensively and applied to many scenarios, such as writing bit-manipulating programs [Gulwani
and Venkatesan 2009; Jha et al. 2010] and generating Datalog programs [Albarghouthi et al. 2017] for
program analysis. Several frameworks are developed for general constraint-based program synthesis,
including Sketch [Solar-Lezama et al. 2008, 2006], JSketch [Jeon et al. 2015], Rosette [Torlak and
Bodík 2014], and CVC5 [Barbosa et al. 2022]. Revamp does not reduce the ADT code refactoring
problem into a constraint-solving problem directly. Instead, Revamp learns new code snippets to be
used in synthesis by solving a logical abduction problem.

Relational program synthesis. Revamp is also related to a line of work [Hu and D’Antoni
2017; Miltner et al. 2018, 2019; Srivastava et al. 2011; Wang et al. 2018] on relational program
synthesis, where the goal is to synthesize programs based on relational specifications that relate
multiple programs or multiple runs of a program. For example, Relish [Wang et al. 2018] leverages
hierarchical finite tree automata to synthesize comparators, string encoders and decoders. Genic [Hu
and D’Antoni 2017] and PINS [Srivastava et al. 2011] study the program inversion problem [Dijkstra
1978] using symbolic extended finite transducers and path-based inductive synthesis, respectively.
At a high level, Revamp can be viewed as solving a new relational program synthesis problem
specified by the relational representation invariant between two ADTs. As discussed in Section 1,
the synthesis problem is challenging for existing techniques due to the complexity of the new data
representation and the large search space of the new ADT implementation. Revamp makes the
synthesis feasible by using symbolic reasoning to identifying code snippets likely to be used by the
refactored implementation and a notion of partial equivalence to quickly combine code snippets
into larger programs.

Strengthening specifications in synthesis. There is a line of related work which also strengthens
specifications during synthesis by generating I/O examples. In particular, Toshokan [Huang and
Qiu 2022] is a synthesis framework for Java that allows users to synthesize code involving library
functions without providing models or axioms for the libraries. Instead, Toshokan iteratively builds
a model of the library on-the-fly by running the actual library function on the counterexample
inputs generated in each iteration of its CEGIS loop to recover specific input-output examples.
Like Toshokan, JDial [Hu et al. 2019] also iteratively strengthens models of external functions by
executing the concrete library function on unseen inputs during synthesis. However, both of these
approaches are specific to strengthening the models of external functions and so cannot be used to
strengthen the overall synthesis specification in our setting.

Automatic program refactoring. Another line of work related to Revamp is automatic program
refactoring [Altidor and Smaragdakis 2014; Ge et al. 2012; Kataoka et al. 2001; Tip et al. 2011;
Wang et al. 2020; Yaghmazadeh et al. 2018]. Given that the refactoring process can be tedious,
sub-optimal, and error-prone, researchers have studied automatic refactoring approaches in vari-
ous scenarios, such as optimizing database applications [Cheung et al. 2013], evolving database
schemas [Wang et al. 2019, 2020; Yaghmazadeh et al. 2018], and improving gas efficiency of smart
contracts [Chen et al. 2022]. To facilitate automatic refactoring, prior work has leveraged different
kinds of specifications, including invariants [Kataoka et al. 2001], type constraints [Tip et al. 2011],
inner-class equivalence predicates [Samak et al. 2019], and integrity constraints [Pailoor et al. 2021].
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Unlike prior work, Revamp introduces a new way to specify ADT refactorings using relational
representation invariants and uses the RRIs to construct I/O examples for each method.

8 CONCLUSION
We introduced the semantic ADT refactoring problem, which requires generating a new imple-
mentation of an ADT for a new data representation. We also introduced a novel technique, based
on inductive synthesis, for solving this problem. Our algorithm takes as input the old ADT imple-
mentation, a new data representation, and a relational representation invariant and automatically
synthesizes the new implementation of each ADT method.

We have implemented our ideas as a new tool called Revamp for refactoring Java classes given a
suitable relational representation invariant expressed as a boolean function. We evaluated Revamp
on 30 ADT refactoring tasks that collectively require refactoring over 140 methods. Revamp is able
to successfully refactor 97% of the benchmarks (i.e., classes) and 99% of the method implementations.
Furthermore, while the manual refactoring introduces a subtle bug in one of the benchmarks, the
Revamp-synthesized implementation does not suffer from this problem. We also compared Revamp
against several baselines (JSketch, Volt, and ChatGPT) and showed that they are far inferior to
Revamp in terms of the percentage of classes/methods they can correctly refactor. Finally, we
also presented several ablation studies and demonstrated that the three key ideas underlying our
approach are all important for its real-world practicality.
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