
135

Automated Policy Synthesis for System Call Sandboxing

SHANKARA PAILOOR, University of Texas at Austin, USA
XINYU WANG, University of Michigan, USA
HOVAV SHACHAM, University of Texas at Austin, USA
ISIL DILLIG, University of Texas at Austin, USA

System call whitelisting is a powerful sandboxing approach that can significantly reduce the capabilities
of an attacker if an application is compromised. Given a policy that specifies which system calls can be
invoked with what arguments, a sandboxing framework terminates any execution that violates the policy.
While this mechanism greatly reduces the attack surface of a system, manually constructing these policies is
time-consuming and error-prone. As a result, many applications —including those that take untrusted user
input— opt not to use a system call sandbox.

Motivated by this problem, we propose a technique for automatically constructing system call whitelisting
policies for a given application and policy DSL. Our method combines static code analysis and program
synthesis to construct sound and precise policies that never erroneously terminate the application, while
restricting the program’s system call usage as much as possible. We have implemented our approach in a
tool called Abhaya and experimentally evaluate it 674 Linux and OpenBSD applications by automatically
synthesizing Seccomp-bpf and Pledge policies. Our experimental results indicate that Abhaya can efficiently
generate useful and precise sandboxes for real-world applications.
CCS Concepts: • Security and privacy→ Trust frameworks.

Additional Key Words and Phrases: Security, Sandboxing, Abstract Interpretation, Program Synthesis
ACM Reference Format:
Shankara Pailoor, Xinyu Wang, Hovav Shacham, and Isil Dillig. 2020. Automated Policy Synthesis for System
Call Sandboxing. Proc. ACM Program. Lang. 4, OOPSLA, Article 135 (November 2020), 26 pages. https://doi.
org/10.1145/3428203

1 INTRODUCTION

A “sandbox” is a security mechanism that separates applications from the rest of the system and
prevents vulnerabilities in one component from compromising others. While there are different
types of sandboxing mechanisms, a common approach is to restrict what system calls (syscalls) an
application can make. Because attackers typically compromise a system by invoking syscalls in a
way that normal applications do not [Provos 2003; Provos et al. 2003; Saltzer and Schroeder 1975],
such syscall sandboxing mechanisms provide an effective way for mitigating the capability of an
attacker [Krohn et al. 2005; Laurén et al. 2017]. For this reason, there are several frameworks, such as
Seccomp-bpf [Edge 2015], Pledge [Pal 2018], and SELinux [Smalley 2002], that allow programmers
to construct syscall sandboxes. Specifically, given a user-provided sandboxing policy that whitelists
Authors’ addresses: Shankara Pailoor, University of Texas at Austin, Austin, Texas, USA, spailoor@cs.utexas.edu; Xinyu
Wang, University of Michigan, Ann Arbor, Michigan, USA, xwangsd@umichigan.edu; Hovav Shacham, University of
Texas at Austin, Austin, Texas, USA, hovav@cs.utexas.edu; Isil Dillig, University of Texas at Austin, Austin, Texas, USA,
isil@cs.utexas.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
2475-1421/2020/11-ART135
https://doi.org/10.1145/3428203

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 135. Publication date: November 2020.

https://doi.org/10.1145/3428203
https://doi.org/10.1145/3428203
https://doi.org/10.1145/3428203

135:2 Shankara Pailoor, Xinyu Wang, Hovav Shacham, and Isil Dillig

certain syscall usage patterns, such frameworks enforce this policy at run-time by terminating
executions that do not conform to the policy.
Despite their potential to substantially mitigate damage, programmers rarely write syscall

sandboxing policies in practice. For example, consider the Unix utility strings which looks for
printable sequences in binary files. As recently as 2014, the GNU version of this utility had a memory
vulnerability that allowed attackers to take complete control of the user’s account [Zalewski 2014].
Had this utility been equipped with a syscall sandbox that restricted access to the file system and
network, the damage from this vulnerability would not have been nearly as severe. Unfortunately,
this phenomenon is not restricted to just the strings utility: among the top one thousand debian
packages that we inspected, we found that only six of them used a syscall sandbox.
In practice, developers do not leverage syscall sandboxing capabilities because manually con-

structing these policies is both difficult and error-prone. First, in order to write a useful policy, the
developer needs to identify all the syscalls (and their argument values) that could be invoked by
the program including code in third party libraries. Second, building a sandbox is not a one-time
effort, as the policy may need to be updated whenever the application is modified. Third, different
operating systems expose different policy languages that vary greatly in both syntax and semantics,
making it especially difficult for cross-platform applications to build and maintain their sandboxes.
Finally, since sandboxes are constructed manually, they inevitably contain bugs and may end up
terminating legitimate executions of a program [chr 2013, 2015, 2016, 2017a,b].

In this paper, we present a technique for automatically synthesizing syscall sandboxing policies
for C/C++ programs. Given a program 𝑃 and a sandboxing policy language 𝐿, our technique
automatically constructs a policy 𝜓 in 𝐿 that over-approximates the necessary syscall behavior
in 𝑃 as tightly as possible. At a high-level, our approach consists of two phases, namely, syscall
analysis and policy synthesis. In the first syscall analysis phase, we perform abstract interpretation
on 𝑃 to compute a so-called syscall invariant Φ that over-approximates syscall usage patterns of 𝑃
for well-defined executions. However, since this syscall invariant is, in general, not expressible in
the given policy language 𝐿, the goal of the second policy synthesis phase is to find a best policy
in 𝐿 that over-approximates 𝑃 as tightly as possible. Since the synthesizer is parametrized by a
policy language 𝐿, this approach allows us to generate policies for multiple syscall sandboxing
environments with different policy languages.
We have implemented our approach in a tool called Abhaya and used it to generate policies

for two policy DSLs (i.e., Seccomp-bpf and Pledge) across 674 C/C++ programs. For the most-
downloaded debian packages, Seccomp-bpf policies that are automatically synthesized by Abhaya
can block nearly all known privilege escalation vulnerabilities for the Linux kernel in the past 5
years. Moreover, we compared Abhaya’s automatically synthesized policies against hand-crafted
ones for both Seccomp-bpf and Pledge and show that (a) Abhaya-generated policies are competitive
with developer-written ones, and (b) in some cases, the policies inferred byAbhaya reveal developer-
confirmed bugs in the original manually-written policies.

In summary, this paper makes the following contributions:

• We introduce the policy synthesis problem for automatically constructing syscall sandboxes.
• We present a precise and scalable interprocedural static analysis for automatically computing
syscall invariants.
• We describe a new optimal program synthesis algorithm for finding a best policy that over-
approximates the computed syscall invariants.
• We conduct an evaluation on hundreds of applications and show that Abhaya is able to generate
useful policies that are both competitive with developer-written policies as well as effective at
blocking real-world attacks.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 135. Publication date: November 2020.

135:3

1 #include <stdio.h>

2
3 int main(int argc , char **

argv)

4 {

5 char c;

6 const char *infile =

argv [1];

7 FILE *fp = fopen(infile ,

"re");

8 if (fp == 0)

9 return 0;

10 while ((c = getc(fp)) !=

EOF) {

11 if ((putchar(c)) ==

EOF)

12 break;

13 }

14 return 0;

15 }

1 FILE * fopen(const char *file , const

char *mode) {

2 FILE *fp = __new_fp (); char c;

3 int f, o, m = 0, i = 0;

4 switch ((c = mode[i++])) {

5 case 'r': m = 0x0; break;

6 case 'w': m = 0x1; break;

7 ... }

8 while ((c = mode[i++]) != '\0') {

9 switch (c) {

10 case 'e': o = 0x10000; break;

11 ...

12 default: o = 0; break; }

13 }

14 if ((f = open(file , m | o, 0x0)) <

0) ...

15 ...

16 }

Fig. 1. Motivating example

Pledge group Description
inet Allows usage of select networks syscalls if they operate in the inet or inet6 domain.

rpath Only allows read-only effects on the filesystem

wpath Allows syscall usage patterns that may cause write effects on the filesystem

stdio Allows syscall usage patterns that are required for libc stdio to work

cpath Allows syscall usage patterns that may create new files or directories in the filesystem

tmppath Allows system calls such as create, read, or write to do operations in /tmp directory

Table 1. Sample Pledge group descriptions

Threat Model. We assume the existence of an attacker who wants to take over a target system by
exploiting a benign but vulnerable application that runs on the system. In particular, the attacker
first takes control of the application by crafting inputs that trigger some undefined behavior, such
as buffer overflow or double free. Then, she tries to gain privileges through the invocation of system
calls and compromises the rest of the system.

2 MOTIVATING EXAMPLE

In this section, we motivate the policy synthesis problem and provide a high-level overview of our
solution with the aid of the code shown in Figure 1. This example involves a cat-like program that
reads a file and then prints its contents to the console character by character. The programmer
wants to write a policy in the Pledge sandboxing framework for OpenBSD to secure the application
against potential exploits.
Specifically, a Pledge policy consists of a set of pre-defined groups where each group specifies

which syscalls can be invoked with what arguments. Given a policy with groups 𝑔1, ··, 𝑔𝑛 , the
Pledge framework terminates the application if it attempts to execute a syscall that is not allowed
by any of these 𝑔𝑖 ’s. To give the reader some intuition, Table 1 shows a subset of the 35 groups
exposed by the Pledge framework along with a brief description. For instance, the inet group
allows the program to invoke the socket syscall but only when its first argument is 𝐴𝐹_𝐼𝑁𝐸𝑇 or

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 135. Publication date: November 2020.

135:4 Shankara Pailoor, Xinyu Wang, Hovav Shacham, and Isil Dillig

𝐴𝐹_𝐼𝑁𝐸𝑇6. As another example, groups rpath and wpath both allow the open syscall, but rpath
allows opening the file in read-only mode (indicated by the second argument), whereas wpath
allows both reading from and writing to the file.
Going back to Figure 1, a suitable Pledge policy for this program would be {stdio, rpath}

because both groups are necessary for the application to function correctly. To see why, let us
focus on the main function. Here, stdio is necessary because the application needs to write to the
console (putchar, line 11) and read from a file (getc, line 10). Likewise, rpath is necessary because
the application needs to open a file (line 7). Observe that failing to include rpath in the policy
would prevent the application from functioning correctly, whereas including additional groups
(e.g., wpath) would allow the application to have access to more resources than it needs, thereby
enlarging the program’s attack surface.

2.1 Current Practice

Before explaining our solution, we briefly discuss how developers currently construct syscall policies.
To manually construct a Pledge policy, the developer first needs to identify all the resources (i.e.,
syscalls and their arguments) required by the application; then, she needs to map them to a set of
Pledge groups that whitelist the required functionality. Furthermore, this policy should be “tight”
in that it should not include more groups than necessary.

However, manually constructing such a Pledge policy is non-trivial. First, since library functions
are opaque to the developer, it is challenging to determine which syscalls the application makes,
let alone their argument values. For instance, even the tiny program in Figure 1 calls several libc
functions that may use syscalls in ways one may not expect, e.g., getc transitively invokes syscalls
mmap, brk, and sysctl to improve performance. Furthermore, even if the developer can accurately
perform this first task, it is non-trivial to map this information to the tightest Pledge policy. For
instance, one may be tempted to think that the policy {stdio} is sufficient because stdio permits
all the neccessary resouces required by the application (e.g open files). However, it is not sufficient
because stdio only allows opening specific files whereas the application needs to be able to open
any file.

2.2 Our Approach

We now explain how our approach generates the desired Pledge policy for this example. As
mentioned in Section 1, our approach consists of two phases. In the first syscall analysis phase, we
perform static analysis to compute an over-approximation of the resources required by the program.
In the policy synthesis phase, we map the output of the analysis to an optimal Pledge policy. In the
remainder of this section, we motivate various design choices behind our analysis and synthesis
techniques in light of the running example.
2.2.1 Sycall Analysis Phase. The goal of the syscall analysis phase is to compute the set of system
calls the program can invoke, along with predicates that constrain their argument values (see
Table 2). There are five key observations that guide our analysis design:

Observation #1: Integer-valued syscall arguments often serve as important flags and crucially
affect policy choice. For example, the second argument of the open syscall is an integer indicating
whether the file is opened in read or write mode. In order to choose the right Pledge groups that
grant necessary permissions, we need to infer values of this argument.

Observation #2: While each individual argument of a syscall is important for determining a
suitable policy, relationships between them are typically not. In particular, we have observed that
argument values of syscalls are often independent of one another.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 135. Publication date: November 2020.

135:5

Syscall Predicate
open 𝑎𝑟𝑔2 = 0𝑥10000 ∧ 𝑎𝑟𝑔3 = 0
brk 𝑎𝑟𝑔1 = 0
mmap (𝑎𝑟𝑔3 = 3 ∨ 𝑎𝑟𝑔3 = 0) ∧ 𝑎𝑟𝑔4 = 4098 ∧ (𝑎𝑟𝑔5 = −1) ∧ 𝑎𝑟𝑔6 = 0

read, fstat 𝑡𝑟𝑢𝑒

write 𝑡𝑟𝑢𝑒

sysctl (𝑎𝑟𝑔1 [0] = 2 ∧ 𝑎𝑟𝑔1 [1] = 12) ∧ (𝑎𝑟𝑔2 = 2)
Table 2. Syscall information produced by static analysis

Observation #3: It is important for the analysis to support some type of disjunctive reasoning. For
instance, in our running example, the second argument of open (line 14 in fopen function) depends
on variable m, whose value differs along different execution paths after the switch statement.
Observation #4: There are many cases where important syscall arguments depend on values of

array elements. For instance, in our running example, the second argument of open is dependent
on the mode array. Thus, it is important for our static analysis to reason about array elements.
Observation #5: Since most syscalls are invoked in library functions with complex implementa-

tions, it is crucial for the analysis to be both interprocedural and scalable.
Motivated by these observations, we designed a (top-down) summary-based interprocedural

static analysis that focuses on tracking values of integer-typed variables and single-level arrays.
Specifically, observations #1 and #3 lead us to use a disjunctive numeric abstract domain, while
observation #2 indicates that a relational abstract domain might be an overkill. In combination
with observation #4, this leads us to use the reduced product [Cousot et al. 2011] of the array expan-
sion [Feautrier 1988] and disjunctive interval domains [Sankaranarayanan et al. 2006] to achieve
precise reasoning for both array contents and integer variables. Finally, to perform scalable interpro-
cedural analysis (as motivated by observation #5), our method uses procedure summaries [Das et al.
2002; Mangal et al. 2014; Zhang et al. 2014] to summarize the relevant behavior of each procedure
and avoids re-analyzing functions under similar calling contexts.

2.2.2 Policy Synthesis Phase. Given the syscall usage information produced by our static analysis,
the goal of the policy synthesis phase is to construct a sandboxing policy that over-approximates
this information as tightly as possible. For our running example in Figure 1, the output of the
synthesizer should be a Pledge policy that minimizes the program’s system call usage while granting
access to all resources listed in Table 2. Furthermore, since our technique should not be specialized
to Pledge, our synthesis algorithm should be able to generate policies for a broad class of syscall
whitelisting policy DSLs.

In more detail, our synthesis algorithm takes as input a policy DSL 𝐿 and a syscall invariant Φ
which summarizes the program’s syscall usage (e.g., information from Table 2) as a logical formula.
Then, the goal of the synthesizer is to generate a program𝜓 in 𝐿 such that Φ⇒ ⟦𝜓⟧ is valid (i.e.,𝜓
should allow all resources required by the program). Furthermore, since we want to find a “tightest”
policy expressible in 𝐿, the synthesis output should guarantee that𝜓 is not weaker than any other
policy𝜓 ′ satisfying Φ⇒ ⟦𝜓 ′⟧.
Going back to our example in Figure 1, the Pledge policy𝜓1 ≡ {stdio} is not a valid synthesis

result because𝜓1 does not allow some operations (e.g., opening files) needed by the program. On
the other hand, the policy𝜓2 ≡ {stdio, cpath} is also not a valid synthesis result because there
exists a tighter policy𝜓 ≡ {stdio, rpath} (such that ⟦𝜓⟧ ⇒ ⟦𝜓2⟧) and𝜓 does allow all legitimate
executions of this program.

As illustrated by the discussion above, this is an optimal synthesis problem that requires finding
a “best” program that satisfies the specification. However, since the search space over all possible

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 135. Publication date: November 2020.

135:6 Shankara Pailoor, Xinyu Wang, Hovav Shacham, and Isil Dillig

policies in 𝐿 is very large, solving this optimal synthesis problem is computationally challenging.
For instance, in the case of Pledge, the search space consists of 235 different policies. Our algorithm
addresses this challenge by utilizing domain-specific automated reasoning techniques to prune
the search space. In particular, instead of searching through all 235 possible policies, we can solve
this optimal synthesis problem by considering only 64 different Pledge policies for our running
example.

3 SYSCALL WHITELISTING POLICIES

In order to formalize our problem, we define a program state 𝜎 to be a pair (𝑝𝑐, 𝜈) where 𝑝𝑐 is a
program counter and 𝜈 is a valuation that maps program variables to values. Given program 𝑃 , we
write (𝑝𝑐, 𝜈) ⇓ (𝑝𝑐 ′, 𝜈 ′) to indicate that 𝑃 is in state (𝑝𝑐 ′, 𝜈 ′) after executing instruction 𝑃 [𝑝𝑐] on
valuation 𝜈 . Then, a program trace 𝜏 is a sequence of states, 𝜎1, ··, 𝜎𝑛 , such that 𝜎𝑖 ⇓ 𝜎𝑖+1 and 𝜎1 is
an initial state of 𝑃 . We also write 𝜂 (𝜏) to denote the set of states in 𝜏 .
In this paper, we consider programs written in C-like languages whose semantics may be

undefined in certain cases, such as when the program accesses an array out of bounds. Thus, given
an input 𝜈 of 𝑃 , we say that 𝜈 is a valid input for 𝑃 if it does not result in undefined behavior. We
also say that a trace 𝜏 of program 𝑃 is legitimate if it corresponds to an execution of 𝑃 on some
valid input 𝜈 .

3.1 Feasible Syscall States

Because this paper is concerned with system call whitelisting, we need a way to characterize the
program’s syscall usage. To simplify presentation, we assume that programs make system calls
using a special instruction 𝑠𝑦𝑠𝑐𝑎𝑙𝑙 (𝑓 , 𝑥1, ··, 𝑥𝑛).

Definition 3.1. (Syscall projection) Given a trace 𝜏 of program 𝑃 , the syscall projection of 𝜏 ,
denoted 𝜋 (𝜏), yields the set of all states 𝜎 = (𝑝𝑐, 𝜈) ∈ 𝜂 (𝜏) such that 𝑃 [𝑝𝑐] is a syscall instruction
(i.e., 𝑃 [𝑝𝑐] = 𝑠𝑦𝑠𝑐𝑎𝑙𝑙 (𝑓 , 𝑥1, ··, 𝑥𝑛)).

Definition 3.2. (Feasible syscall states)Given program 𝑃 , we say (𝑓 , 𝑣1, ··, 𝑣𝑛) is a feasible syscall
state of 𝑃 if there exists a legitimate execution 𝜏 of 𝑃 such that 𝜋 (𝜏) contains a state (𝑝𝑐, 𝜈) where
𝑃 [𝑝𝑐] = 𝑠𝑦𝑠𝑐𝑎𝑙𝑙 (𝑓 , 𝑥1, ··, 𝑥𝑛) and for all 𝑖 ∈ [1, 𝑛], we have 𝜈 (𝑥𝑖) = 𝑣𝑖 .

Hence, feasible syscall states characterize all legitimate syscall usage patterns of a given program.

3.2 Syscall Policies

Syscall sandboxing frameworks provide a policy language that whitelists the application’s feasible
syscall states. While we do not fix a specific language in which such policies are written, we use
the notation ⟦𝜓⟧ to denote the set of all syscall states whitelisted (i.e., allowed) by𝜓 according to
the semantics of the underlying policy DSL.

Example 3.3. Consider the policy𝜓 = {𝑟𝑝𝑎𝑡ℎ} in the Pledge framework. Based on the semantics
of the rpath group, we have ∀𝑥,𝑦. (𝑜𝑝𝑒𝑛, 𝑥, 0, 𝑦) ∈ ⟦𝜓⟧ because rpath allows opening a file in read-
only mode and value 0 for the second argument of open indicates read-only permission. However,
∀𝑥,𝑦.(𝑜𝑝𝑒𝑛, 𝑥, 1, 𝑦) ∉ ⟦𝜓⟧ since rpath does not allow opening files in write mode.

Given a policy𝜓 and input program 𝑃 , we need to reason about whether𝜓 is “correct” respect to
𝑃 . Thus, we introduce the following notions of soundness and completeness.
Definition 3.4. (Sound policy) Given a program 𝑃 and policy 𝜓 , we say that 𝜓 is sound with

respect to 𝑃 if ⟦𝜓⟧ contains all feasible syscall states of 𝑃 .

In other words, a sound policy for 𝑃 does not terminate any legitimate executions of 𝑃 .

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 135. Publication date: November 2020.

135:7

Prog 𝑃 := 𝐷∗, 𝐹+
Func 𝐹 := (𝑣𝑜𝑢𝑡) proc f(𝑣𝑖𝑛){𝐷∗, 𝑆+}
Decl 𝐷 := 𝜏 𝑥, 𝜏 ∈ {int, ptr}
Stmt 𝑆 := 𝑥 = 𝑒 | 𝑥 [𝑖] = 𝑦 | 𝑥 = 𝑦 [𝑖] | 𝑥 = alloc(𝑦) | 𝑆1; 𝑆2

| if(𝐶) then 𝑆1 else 𝑆2 | ®𝑟 = call (𝑓 , 𝑥1, · · · , 𝑥𝑘)
| ®𝑟 = syscall (𝑓 , 𝑥1, · · · , 𝑥𝑘)

Pred 𝐶 := 𝑒 |¬𝑝 | 𝑝1 ∧ 𝑝2 | 𝑝1 ∨ 𝑝2 | 𝑒1 ⊕ 𝑒2
Expr 𝐸 := 𝑐 | 𝑥 | 𝑒1 ⊗ 𝑒2

Fig. 2. Programming language where ⊕ and ⊗ denote logical and arithmetic operators respectively.

Definition 3.5. (Complete policy) Given a program 𝑃 and a policy𝜓 , we say that𝜓 is complete

with respect to 𝑃 if ⟦𝜓⟧ contains only feasible syscall states of 𝑃 .

That is, a complete policy only allows executions with legitimate syscall usage patterns. Ideally,
the policy should be both sound and complete, so that is allows exactly those program executions
with legitimate syscall usage patterns. However, policy languages intentionally restrict which
syscall states can be whitelisted in order to minimize run-time overhead. Thus, in general, it is not
possible to write policies that are both sound and complete.
As a result, we define a policy to be correct as long as it is sound according to Definition 3.4,

because a policy that terminates legitimate executions would be disastrous in practice. However,
not every correct policy is useful for mitigating attacks (e.g., consider a sound policy that allows all
syscall states). Thus, in practice, we would like policies that are not only sound but also as complete
as possible.

4 SYSCALL ANALYSIS

In this section, we describe our analysis for computing an over-approximation of a program’s
feasible syscall states. Specifically, our analysis computes a so-called syscall invariant, which maps
each system call invoked by the application to a formula describing possible values of its arguments.

Definition 4.1. A syscall invariant Υ for a program 𝑃 is a mapping from each syscall 𝑓 to a
formula Φ over variables ®𝑎 (denoting 𝑓 ’s arguments) such that, for every feasible syscall state
𝜎 = (𝑓 , 𝑣1, ··, 𝑣𝑛) of 𝑃 , we have 𝐼𝜎 |= Φ where 𝐼𝜎 is an interpretation that maps each 𝑎𝑖 to 𝑣𝑖 .

4.1 Programming Language

We describe our static analysis using the simple imperative language shown in Figure 2. Here,
statements include standard constructs like assignments, loads, stores, conditionals, and memory
allocation. Because our main focus is to reason about feasible syscall states, we differentiate syscall
statements that invoke a system call from regular call statements that invoke other procedures.
Note that we omit pointers and structs because they can be modeled using arrays [Gurfinkel and
Navas 2017; Rakamarić and Hu 2009; Venet 2004]. Similarly, we also omit loops because they can
be emulated using tail-recursion. Furthermore, to simplify presentation, we assume that functions
are side-effect free: note that many existing static analysis infrastructures [Gurfinkel et al. 2015;
Rakamarić and Emmi 2014] transform programs to such a form using a pre-processing step.

4.2 The ArrayVal Abstract Domain

As mentioned in Section 2, our static analysis is based on the reduced product [Cousot et al. 2011]
of the disjunctive interval [Sankaranarayanan et al. 2006] and array expansion domains [Feautrier
1988]. In the remainder of this section, we refer to this abstract domain as ArrayVal, which uses

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 135. Publication date: November 2020.

135:8 Shankara Pailoor, Xinyu Wang, Hovav Shacham, and Isil Dillig

array smashing [Blanchet et al. 2002] for unbounded arrays and precise, per-element reasoning for
fixed-length arrays. However, because this domain doesn’t have a standard implementation, we
define both the abstract domain and its transformers in more detail.

Definition 4.2. (ArrayVal Domain) Abstract values in the ArrayVal domain include ⊥,⊤, and
tuples (𝐴, 𝐹) where 𝐴 = ⟨𝑣1, ··, 𝑣𝑛⟩ is an array of disjunctive intervals 𝑣𝑖 , and 𝐹 keeps track of
whether the array is smashed or expanded. Specifically, 𝐹 can take one of three values, namely
collapsed (𝐶), expanded (𝐸), or scalar (𝑆).

For instance, consider the abstract value (⟨[1, 2] ∨ [4, 4]⟩,𝐶) for a variable 𝑥 . This indicates that
𝑥 is an array of unknown length where the value of each array element is 1, 2 or 4. As another
example, (⟨𝑣1, ··, 𝑣𝑛⟩, 𝐸) means that 𝑥 is an array with 𝑛 elements where the value of the 𝑖-th element
belongs to interval 𝑣𝑖 . As a final example, the value (⟨[1,∞]⟩, 𝑆) for 𝑥 indicates that 𝑥 is a positive
integer.
In order to describe our analysis, we lift the standard numeric operators from the disjunctive

interval domain to our ArrayVal domain. In particular, let 𝑜𝑝𝑁 and 𝑙𝑜𝑝𝑁 respectively denote the
arithmetic and logical operators for the disjunctive interval domain. Then, the arithmetic operator
𝑜𝑝𝐴 over 𝛼1, 𝛼2 is defined as (⟨𝑣1⟩, 𝑆) 𝑜𝑝𝐴 (⟨𝑣2⟩, 𝑆) = (⟨𝑣1 𝑜𝑝𝑁 𝑣2⟩, 𝑆), and the logical operator
𝑙𝑜𝑝𝐴 is defined as (⟨𝑣1⟩, 𝑆) 𝑙𝑜𝑝𝐴 (⟨𝑣2⟩, 𝑆) = (⟨𝑣1 𝑙𝑜𝑝𝑁 𝑣2⟩, 𝑆). Furthermore, as standard in abstract
interpretation, we also define the join and widening operators:

Definition 4.3. Let ⊔𝑁 and ∇𝑁 denote the join and widening operators for the disjunctive interval
domain, respectively. Then the join and widening operators, ⊔𝐴, ∇𝐴, for the ArrayVal domain, are
defined as follows:
• (⟨𝑣1⟩,𝐶) ⊗𝐴 (⟨𝑣2⟩,𝐶) = (⟨𝑣1 ⊗𝑁 𝑣2⟩,𝐶)
• (®𝑣, 𝐸) ⊗𝐴 (®𝑣 ′, 𝐸) = (⟨𝑣1 ⊗𝑁 𝑣 ′1, ··, 𝑣𝑛 ⊗𝑁 𝑣 ′𝑛⟩, 𝐸), |®𝑣 | = |®𝑣 ′ |
• (®𝑣, 𝐸) ⊗𝐴 (®𝑣 ′, 𝐸) = (⟨𝑣1 ⊗𝑁 · · ⊗𝑁 𝑣𝑛 ⊗𝑁 𝑣 ′1 ⊗ · · ⊗𝑁 𝑣 ′𝑚⟩,𝐶) where |®𝑣 | = 𝑛, |®𝑣 ′ | =𝑚, and 𝑛 ≠𝑚

• (⟨𝑣1, ··, 𝑣𝑛⟩, 𝐸) ⊗𝐴 (⟨𝑣⟩,𝐶) = ([𝑣1 ⊗𝑁 · · ⊗𝑁 𝑣𝑛 ⊗𝑁 𝑣],𝐶)
• (⟨𝑣1⟩, 𝑆) ⊗𝐴 (⟨𝑣2⟩, 𝑆) = (⟨𝑣1 ⊗𝑁 𝑣2⟩, 𝑆)
where ⊗𝐴 ∈ {⊔𝐴,∇𝐴} and ⊗𝑁 ∈ {⊔𝑁 ,∇𝑁 }.

Example 4.4. If𝛼1 = (⟨[1, 2], [3, 4]⟩, 𝐸) and𝛼2 = (⟨[6, 7]⟩,𝐶) then𝛼1⊔𝐴𝛼2 = (⟨[1, 4] ∨ [6, 7]⟩,𝐶)

We write 𝑎[𝑗] to denote the disjunctive interval at index 𝑗 of 𝑎. If 𝑎 is collapsed, then 𝑎[𝑗] is just
a singleton value. If it is expanded but 𝑗 is out-of-bounds, then 𝑎[𝑗] is ⊥. We also use the notation
𝑏 = 𝑎⟨ 𝑗 ◁ 𝛼⟩ to indicate that 𝑏 is identical to 𝑎 except that index 𝑗 has been updated to 𝛼 . Finally,
given an abstract value 𝑣 for variable 𝑥 , we assume the existence of a function Enc(𝑥, 𝑣) that gives
a logical encoding of the possible values of 𝑥 .

4.3 Intraprocedural Transformers

In this section, we describe our intraprocedural rules shown in Figure 3 using judgments of the
form Γ, Υ ⊢ 𝑆 ⇝ Γ

′
, Υ′. Here 𝑆 is a statement, Γ : 𝑉 → 𝐴# is an abstract store mapping variables

to abstract values, Υ is a syscall invariant, 𝛾 refers to the concretization function for 𝐴𝑟𝑟𝑎𝑦𝑉𝑎𝑙
domain, and Γ′ and Υ′ denote the new abstract store and syscall invariant after analyzing statement
𝑆 . When describing our analysis, we assume the existence of a pointer analysis oracle that can
answer aliasing queries. Specifically, given an expression 𝑒 , aliases(𝑒) returns all program variables
𝑣 that may alias 𝑒 .

In the remainder of this section we describe our abstract transformers in detail.
Assignments. We use three different abstract transformers to handle different types of assignment

statements: Var Assign, Const Assign and Arithmetic. The key idea behind all three is to set the

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 135. Publication date: November 2020.

135:9

Γ
′
= Γ [𝑥 ← Γ(𝑦)]

Γ, Υ ⊢ 𝑥 = 𝑦 ⇝ Γ′, Υ

Var Assign

Γ
′
= Γ [𝑥 ← (⟨[𝑐, 𝑐]⟩, 𝑆)]
Γ, Υ ⊢ 𝑥 = 𝑐 ⇝ Γ′, Υ

Const Assign

𝑥 : int 𝑦 : int
Γ
′
= Γ [𝑧 ← Γ(𝑥) op𝐴 Γ(𝑦)]

Γ, Υ ⊢ 𝑧 = 𝑥 op 𝑦 ⇝ Γ′, Υ

Arithmetic

𝑝 : ptr
𝛼
′
𝑝 =

⊔
𝑗 ∈𝛾 (Γ (𝑖)) Γ(𝑝)⟨ 𝑗 ◁ 𝛼𝑥 ⟩

Γ, Υ ⊢ 𝑢𝑝𝑑𝑎𝑡𝑒 (𝑝, 𝑖, 𝛼𝑥) ⇝ Γ [𝑝 ← 𝛼
′
𝑝], Υ

Update

𝑥 : int {𝑝1, · · · , 𝑝𝑛} = 𝑎𝑙𝑖𝑎𝑠𝑒𝑠 (𝑝)\{𝑝}
Γ0, Υ ⊢ 𝑢𝑝𝑑𝑎𝑡𝑒 (𝑝1, 𝑖,⊤) ⇝ Γ1

· · ·
Γ0, Υ ⊢ 𝑢𝑝𝑑𝑎𝑡𝑒 (𝑝𝑛, 𝑖,⊤) ⇝ Γ𝑛⊔𝑛
𝑖=0 Γ𝑖 , Υ ⊢ 𝑢𝑝𝑑𝑎𝑡𝑒 (𝑝, 𝑖,⊤) ⇝ Γ

′

Γ0, Υ ⊢ 𝑝 [𝑖] = 𝑥 ⇝ Γ′, Υ

Store (Ptr)

𝑥 : int {𝑝1, · · · , 𝑝𝑛} = 𝑎𝑙𝑖𝑎𝑠𝑒𝑠 (𝑝)\{𝑝}
Γ0, Υ ⊢ 𝑢𝑝𝑑𝑎𝑡𝑒 (𝑝1, 𝑖, Γ(𝑥)) ⇝ Γ1

· · ·
Γ0, Υ ⊢ 𝑢𝑝𝑑𝑎𝑡𝑒 (𝑝𝑛, 𝑖, Γ(𝑥)) ⇝ Γ𝑛⊔𝑛
𝑖=0 Γ𝑖 , Υ ⊢ 𝑢𝑝𝑑𝑎𝑡𝑒 (𝑝, 𝑖, Γ(𝑥)) ⇝ Γ

′

Γ0, Υ ⊢ 𝑝 [𝑖] = 𝑥 ⇝ Γ′, Υ

Store (Int)

Φ =
∧𝑛

𝑖=1 𝐸𝑛𝑐 (𝑥𝑖 , Γ(𝑥𝑖)))
Υ′ = Υ[𝑓 ← Υ(𝑓) ∨ Φ]

Γ′ = Γ [𝑟𝑖 ← ⊤ | 𝑖 ∈ [1, |®𝑟 |]]
Γ, Υ ⊢ ®𝑟 = 𝑠𝑦𝑠𝑐𝑎𝑙𝑙 (𝑓 , 𝑥1, · · · 𝑥𝑛) ⇝ Γ′, Υ′

Syscall

𝑥 : int 𝛼𝑦 =
⊔

𝑙 ∈𝛾 (Γ (𝑥)) (

𝑙-times︷ ︸︸ ︷
[⊤, · · · ,⊤], 𝐸)

Γ, Υ ⊢ 𝑦 = 𝑎𝑙𝑙𝑜𝑐 (𝑥) ⇝ Γ [𝑦 ← 𝛼𝑦], Υ

Alloc

𝛼𝑥 =
⊔

𝑐∈𝛾 (Γ (𝑖)) Γ(𝑝) [𝑐]
Γ, Υ, ⊢ 𝑥 = 𝑝 [𝑖] ⇝ Γ [𝑥 ← 𝛼𝑥], Υ

Load

Γ, Υ ⊢ 𝑆1 ⇝ Γ1, Υ1
Γ1, Υ1 ⊢ 𝑆2 ⇝ Γ2, Υ2

Γ, Υ ⊢ 𝑆1; 𝑆2 ⇝ Γ2, Υ2

Composition

𝑥 : 𝑖𝑛𝑡 𝑦 : 𝑖𝑛𝑡
Γ′ = Γ [𝑥 ← Γ(𝑦) lop𝐴 Γ(𝑥)]

Γ, Υ ⊢ 𝑎𝑠𝑠𝑢𝑚𝑒 (𝑥 lop 𝑦) ⇝, Γ′, Υ′,

Assume

Γ, Υ ⊢ assume(𝐶); 𝑆1 ⇝ Γ1, Υ1
Γ, Υ1 ⊢ assume(¬𝐶); 𝑆2 ⇝ Γ2, Υ2

Γ′ = Γ1 ⊔ Γ2 Υ′ = Υ1 ∪ Υ2
Γ, Υ ⊢ if(𝐶) 𝑆1 else 𝑆2 ⇝, Γ′, Υ′,

If-Else

Fig. 3. Intraprocedural transformers.Wewrite Γ1⊔Γ2 to denote [𝑥 ← Γ1 (𝑥)⊔𝐴Γ2 (𝑥) | 𝑥 ∈ dom(Γ1)∪dom(Γ2)]

abstract value of the variable on the left hand side to be the same as the abstract value of the
expression on the right hand side.

Store operations. In our analysis, we treat array writes differently depending on whether it is a
write to an integer or pointer array. In particular, because we leverage a separate pointer analysis

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 135. Publication date: November 2020.

135:10 Shankara Pailoor, Xinyu Wang, Hovav Shacham, and Isil Dillig

to resolve aliasing queries, our analysis does not reason precisely about writes to pointer arrays
and considers 𝑝 [𝑖] to be ⊤ as described in the Store (Ptr) rule. On the other hand, since we do want
to reason precisely about the contents of integer arrays, the Store (Int) rule computes a precise
new abstract value for 𝑝 [𝑖] (and the aliases of 𝑝). In particular, we first retrieve all aliases of 𝑝 and
invoke the update rule (see below) to obtain the abstract value for each alias 𝑝𝑖 of 𝑝 . However,
because the pointer analysis provides may-alias information, we then join all the updated abstract
states and finally invoke 𝑢𝑝𝑑𝑎𝑡𝑒 on 𝑝 to obtain the new abstract store Γ′.

Update operation. The Update rule describes how we update the abstract value for variables upon
an array store. First, we obtain the concrete values for index 𝑖 by calling 𝛾 (Γ(𝑖)). Each 𝑗 ∈ 𝛾 (𝑖)
corresponds to an index in the abstract value that could be updated. Since any of these indexes
may be updated, we perform a strong update for each index independently and then take the join
of each update as our new abstract value.

Load. The Load rule first identifies all the concrete values for the index 𝑖 (i.e., 𝛾 (Γ(𝑖))). Each of
these values corresponds to an index in the concrete array from which we may load. As such, we
load the value from each index independently and set abstract value 𝛼𝑥 to be the join of the loaded
values.

Syscalls. Since the main point of our static analysis is to compute feasible syscall states of the
program, the Syscall rule looks up the values of each syscall argument in the abstract store and lifts
it to a logical formula Φ. In particular, note that Φ is expressed as a conjunction of the formulas built
for each argument 𝑥𝑖 since, for any feasible syscall state (𝑠, 𝑣1, · · · , 𝑣𝑛) produced at this callsite, each
𝑣𝑖 will satisfy 𝐸𝑛𝑐 (𝑥𝑖 , Γ). Therefore, (𝑥1 → 𝑣1, . . . , 𝑥𝑛 → 𝑣𝑛) will be a model for Φ which means
Φ over-approximates all feasible syscall states generated at this call site. After computing Φ, we
update the syscall invariant for 𝑓 to include both the new syscall state Φ as well as Υ(𝑓). Finally,
because we do not analyze the underlying implementation of syscalls in the operating system, our
analysis sets the new value of the return value and each modified memory location to ⊤.
Allocation. The Alloc transformer creates the initial abstract value for an array variable 𝑦 at its

allocation site. Specifically, for each possible value 𝑙 of 𝑥 (i.e., allocation size), it creates an array of
length 𝑙 (with all elements initialized to ⊤) and sets the value of 𝑦 in the abstract store to be the
join of all of these values.

Assume. The Assume transformer generates the abstract value Γ(𝑦) lop𝐴 Γ(𝑥) corresponding to
the concrete operation 𝑦 lop 𝑥 and updates the abstract store to map 𝑥 to this new abstract value.

Composition, IfElse. The Composition and If-Else rules recursively apply the other transformers.
We handle a composite statement 𝑆1; 𝑆2 by first analyzing 𝑆1 to produce a new abstract store Γ1 and
syscall invariant Υ1. We then use our new store and invariant to analyze 𝑆2. Likewise, we handle
an If-Else statement by analyzing the bodies of the if and else branches independently. However,
when analyzing the if body we first assume the conditional is true and when we analyze the else
body we first assume the conditional is false.

4.4 Interprocedural Transformers

To achieve a good balance between precision and scalability, our interprocedural analysis adopts a
top-down summary-based approach [Mangal et al. 2014] to achieve context-sensitivity. In particular,
each summary maps the initial abstraction on function entry to the resulting abstraction after
analyzing the function body. Thus, we can reuse summaries in calling contexts where the initial
abstract state matches an existing one.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 135. Publication date: November 2020.

135:11

𝐶𝑓 = 𝑐𝑡𝑥 (Γ, 𝑥1, · · · , 𝑥𝑛) (𝑓 ,𝐶𝑓) ∈ 𝐷𝑜𝑚(Σ)
Γ
′
= Γ [𝑟𝑖 ← Σ(𝑓 ,𝐶𝑓) [𝑜𝑢𝑡𝑖] | 𝑖 ∈ [1, |®𝑟 |]]

Σ, Γ, Υ ⊢ ®𝑟 = call 𝑓 (𝑥1, · · · 𝑥𝑛) ⇝ Σ, Γ′, Υ

Summary Match

𝐶𝑓 = 𝑐𝑡𝑥 (Γ, 𝑥1, · · · , 𝑥𝑛) (𝑓 ,𝐶𝑓) ∉ 𝐷𝑜𝑚(Σ)
𝑀𝑎𝑥𝑆𝑢𝑚𝑚(Σ, 𝑓) 𝐶𝑘 = 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝑀𝑎𝑡𝑐ℎ(Σ, 𝑓 ,𝐶𝑓) 𝐶𝑘 ≠ ⊥

Γ
′
= Γ [𝑟𝑖 ← Σ(𝑓 ,𝐶𝑘) [𝑜𝑢𝑡𝑖] | 𝑖 ∈ [1, |®𝑟 |]]

Σ, Γ, Υ ⊢ ®𝑟 = call 𝑓 (𝑥1, · · · 𝑥𝑛) ⇝ Σ, Γ′, Υ

Max Summaries - Closest Match

𝐶𝑓 = 𝑐𝑡𝑥 (Γ, 𝑥1, · · · , 𝑥𝑛) (𝑓 ,𝐶𝑓) ∉ 𝐷𝑜𝑚(Σ) 𝑀𝑎𝑥𝑆𝑢𝑚𝑚(Σ, 𝑓)
𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝑀𝑎𝑡𝑐ℎ(Σ, 𝑓 ,𝐶𝑓) = ⊥ 𝐶𝑘 = 𝑐ℎ𝑜𝑜𝑠𝑒𝑆𝑢𝑚𝑚𝑎𝑟𝑦 (Σ, 𝑓)

𝐶 ′ = 𝐶𝑘∇𝐶𝑓 Σ
′
= Σ[(𝑓 ,𝐶 ′) ← Γ⊥] Γ

′
= Γ [𝑟𝑖 ← ⊥ | 𝑖 ∈ [1, |®𝑟 |]]

Σ, Γ, Υ ⊢ ®𝑟 = call 𝑓 (𝑥1, · · · , 𝑥𝑛) ⇝ Σ′, Γ′

Max Summaries - No Closest Match

𝐶𝑓 = 𝑐𝑡𝑥 (Γ, 𝑥1, · · · , 𝑥𝑛)
(𝑓 ,𝐶𝑓) ∉ 𝐷𝑜𝑚(Σ) ¬𝑀𝑎𝑥𝑆𝑢𝑚𝑚(Σ, 𝑓)

Σ
′
= Σ[(𝑓 ,𝐶𝑓) ← Γ⊥] Γ

′
= Γ [𝑟𝑖 ← ⊥ | 𝑖 ∈ [1, |®𝑟 |]]

Σ, Γ, Υ ⊢ ®𝑟 = call 𝑓 (𝑥1, · · · , 𝑥𝑛) ⇝ Σ′, Γ′

New Summary

𝑆 = {𝐶𝑖 | (𝑓 ,𝐶𝑖) ∈ 𝐷𝑜𝑚(Σ)}
∃𝐶𝑘 ∈ 𝑆. 𝐶 ⊑ 𝐶𝑘

∀𝐶 𝑗 ≠ 𝐶𝑘 . 𝐶 ⊑ 𝐶 𝑗 =⇒ 𝐶 𝑗 @ 𝐶𝑘

⊢ 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝑀𝑎𝑡𝑐ℎ(Σ, 𝑓 ,𝐶) ⇝ 𝐶𝑘

ClosestMatch-1

𝑆 = {𝐶𝑖 | (𝑓 ,𝐶𝑖) ∈ 𝐷𝑜𝑚(Σ)}
∀𝐶𝑘 ∈ 𝑆.𝐶 @ 𝐶𝑘

⊢ 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝑀𝑎𝑡𝑐ℎ(Σ, 𝑓 ,𝐶) ⇝ ⊥
ClosestMatch-2

𝐶𝑛𝑒𝑤 = {((𝑖𝑛𝑖 , Γ(𝑥𝑖)) | 𝑖 ∈ [1, 𝑛]}
⊢ 𝑐𝑡𝑥 (Γ, 𝑥1, · · · , 𝑥𝑛) ⇝ 𝐶𝑛𝑒𝑤

Ctx
Fig. 4. Interprocedural transformers. Given two contexts 𝐶1, 𝐶2 we say 𝐶1 ⊑ 𝐶2 if for every 𝑥 ∈ 𝑑𝑜𝑚(𝐶1),
𝐶1 (𝑥) ⊑ 𝐶2 (𝑥) 𝑀𝑎𝑥𝑆𝑢𝑚𝑚(Σ, 𝑓) returns true if we have created the the maximum number of summaries
allowed for 𝑓 . Γ⊥ is an abstract state that maps all variables to⊥, and 𝑐ℎ𝑜𝑜𝑠𝑒𝑆𝑢𝑚𝑚𝑎𝑟𝑦 (Σ, 𝑓) selects an existing
summary for 𝑓 . The notation 𝐶1 = 𝐶2∇𝐶3 means 𝐶1 (𝑥) = 𝐶2 (𝑥)∇𝐶3 (𝑥) for all 𝑥 ∈ 𝑑𝑜𝑚(𝐶2) ∩ 𝑑𝑜𝑚(𝐶3)

Figure 4 summarizes our inter-procedural transformers, which belong to one of two classes: (a)
those that reuse summaries and (b) those that create new summaries. However, because the lattice
associated with our abstract domain has infinite height, we cannot create new summaries for every
calling context. To guarantee termination, our analysis is parametrized by a value 𝑁 that controls
when we apply widening. The idea is that, if we have already created 𝑁 summaries for a procedure
𝑓 , we apply widening to generate a coarser summary that can be reused in more calling contexts.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 135. Publication date: November 2020.

135:12 Shankara Pailoor, Xinyu Wang, Hovav Shacham, and Isil Dillig

Our interprocedural transformers are formalized using judgments of the form Σ, Γ, Υ ⊢ 𝑆 ⇝
Σ
′
, Γ′, Υ where Σ is a summary environment that maps each tuple (𝑓 ,𝐶) to abstract states. Here,

𝑓 denotes a procedure, and 𝐶 is a context that maps formals to abstract values. The idea is to
reuse summary Σ(𝑓 ,𝐶) at 𝑓 ’s call sites with matching abstract state 𝐶 . The first two rules, labeled
Summary Match and Max Summaries-Closest Match allow us to reuse existing summaries and we
now describe them in more detail.

SummaryMatch. Wheneverwe analyze a callsite, we first generate a context𝐶𝑓 = 𝑐𝑡𝑥 (Γ, 𝑥1, · · · , 𝑥𝑛)
for the site and check whether that context is already in that environment. If it is (i.e., (𝑓 ,𝐶𝑓) ∈
𝐷𝑜𝑚(Σ)), then we reuse the summary Σ(𝑓 ,𝐶𝑓) to update the abstract store Γ at the callsite.

Max Summaries - Closest Match. If context𝐶𝑓 is not in the domain, we then checkwhetherwe have
exceeded the maximum number of summaries for this function by calling𝑀𝑎𝑥𝑆𝑢𝑚𝑚𝑎𝑟𝑖𝑒𝑠 (Σ, 𝑓). If
we have exceeded the threshold, we try to find a summary that over-approximates this context by
using a helper rule called ClosestMatch, which finds the most precise context𝐶𝑘 over-approximating
𝐶𝑓 . If such a summary exists (i.e. 𝐶𝑘 ≠ ⊥), we use Σ(𝑓 ,𝐶𝑘) to update the abstract store at this call
site.
The next two rules, New Summary and Max Summaries, No Closest Match, create “placeholder”

summaries (with the output abstraction initialized to ⊥) when we cannot find a suitable summary
for callee 𝑓 . We describe them below in more detail:

New Summary. If context 𝐶𝑓 is not in the environment (i.e., (𝑓 ,𝐶𝑓) ∉ 𝐷𝑜𝑚(Σ)), and we have
not exceeded the maximum number of summaries for 𝑓 (i.e., ¬𝑀𝑎𝑥𝑆𝑢𝑚𝑚𝑎𝑟𝑖𝑒𝑠 (Σ, 𝑓)) then we (1)
create a placeholder summary Γ⊥ with all values initialized to ⊥, (2) update the environment to
map (𝑓 ,𝐶𝑓) to the placeholder summary i.e. Σ′ = Σ[(𝑓 ,𝐶𝑓) ← Γ⊥] and (3) use the placeholder
summary to set the abstract values for the return variables to ⊥ and proceed with the analysis.

Max Summaries, No Closest Match. If (1) the 𝐶𝑓 is not in the environment, (2) we have already
generated the maximum number of summaries allowed (i.e., ¬𝑀𝑎𝑥𝑆𝑢𝑚𝑚𝑎𝑟𝑖𝑒𝑠 (Σ, 𝑓)) and (3) there
is no summary that over-approximates 𝐶𝑓 (i.e., 𝐶𝑘 = ⊥), then we arbitrarily choose an existing
summary 𝐶𝑘 and generate a new summary 𝐶 ′ = 𝐶𝑘∇𝐶𝑓 . This guarantees that (a) there will be
a re-usable summary for 𝑓 when we analyze this call site next time, and (b) the analysis will
eventually terminate.

4.5 Analysis Algorithm

To ensure the correctness of our analysis, we perform a fixed-point computation as shown in
Algorithm 1. This algorithm starts by constructing an initial summary Γ𝑚𝑎𝑖𝑛 for𝑚𝑎𝑖𝑛 (line 2). Then,
in each iteration of the loop (lines 5–12), we remove a single entry from the worklist (line 6) and
call a subroutine named 𝑎𝑛𝑎𝑙𝑦𝑧𝑒 (line 7) that produces a new environment Σ′ and syscall invariant
Υ′ using the abstract transformers described earlier. If 𝑎𝑛𝑎𝑙𝑦𝑧𝑒 changes Σ (line 9), we then add to
the worklist all contexts that need to be re-analyzed, including all summaries that changed as well
as all of their dependencies (i.e., immediate callers).

Theorem 4.5 (Soundness). Let 𝑃 be the input program and Υ be a set of syscall formulas produced

by Analyze(𝑃). Then Υ is a syscall invariant for 𝑃 .

5 POLICY SYNTHESIS

In this section, we describe our synthesis algorithm for converting a syscall invariant to an optimal
policy in a given domain-specific policy language.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 135. Publication date: November 2020.

135:13

1: procedure Analyze(𝑃)
input: A program 𝑃 in our input language
output: A syscall invariant Υ

2: 𝐶𝑚𝑎𝑖𝑛 = (𝑎𝑟𝑔𝑐 → ⊤, 𝑎𝑟𝑔𝑣 → ⊤)
3: Υ = {}; Σ = {(𝑚𝑎𝑖𝑛,𝐶𝑚𝑎𝑖𝑛) → Γ⊥}
4: worklist := {(𝑚𝑎𝑖𝑛,𝐶𝑚𝑎𝑖𝑛)}
5: while worklist ≠ ∅ do
6: (𝑓 ,𝐶𝑓) := worklist.remove();
7: Σ

′
, Υ′ = 𝑎𝑛𝑎𝑙𝑦𝑧𝑒 (𝑓𝑏𝑜𝑑𝑦,𝐶𝑓 , Σ, {})

8: Υ = Υ ∪ Υ′
9: if Σ′ ≠ Σ then
10: 𝑛𝑒𝑤𝑆𝑢𝑚𝑚𝑠 = Σ′\Σ
11: worklist = worklist ∪ 𝑛𝑒𝑤𝑆𝑢𝑚𝑚𝑠 ∪ 𝑑𝑒𝑝𝑠 (𝑛𝑒𝑤𝑆𝑢𝑚𝑚𝑠)
12: Σ = Σ

′

13: return Υ;
Algorithm 1. Fixed-point algorithm.

5.1 Optimal Policy Synthesis Problem

Despite differences among syscall sandboxing frameworks, almost all policy languages that we know
of (e.g., AppArmor [Murray 2019], SeLinux[McCarty 2004], Seccomp-bpf [Edge 2015], Pledge [Pal
2018]) express a policy as a set of capabilities {𝐶1, ··,𝐶𝑛}, where each capability belongs to one of
the following two classes:
• A group 𝑔, which denotes a pre-defined set of whitelisted syscall states.
• A guarded system call, (𝑓 , 𝑏), where 𝑓 is a syscall and 𝑏 is a user-defined predicate over the
syscall arguments.

For instance, as discussed in Section 2, a Pledge policy consists of a set of groups and is therefore
a more restricted version of this model. On the other hand, the Seccomp-bpf framework does not
define any groups, but allows users to write their own predicates over integer-valued arguments.
Finally, policy languages of SeLinux and AppArmor allow a combination of groups and custom
predicates.

Based on this observation, we assume a family of syscall whitelisting DSLs that can be expressed
using the meta-grammar of Figure 5. Note that Figure 5 does not restrict the pre-defined set of
groups (i.e., DSL constants) or the concrete operators. However, inspired by existing policy DSLs,
we restrict atomic predicates to be of the form 𝑥 ⊕ 𝑐 , where 𝑥 is a syscall argument, 𝑐 is a constant,
and ⊕ is a comparator.
Given policy language 𝐿 and semantics ⟦𝑔⟧ 1 for each group in 𝐿, we assume the following

semantics of the whitelisting framework: For a policy𝜓 consisting of groups G and guarded syscalls
S, the framework allows invoking a syscall 𝑓 ′ with arguments 𝑣1, ··, 𝑣𝑛 if one of these conditions
holds:
(1) ∃ 𝑔 ∈ G. 𝐼𝑔 |= ⟦𝑔⟧ where 𝐼𝑔 = [𝑓 ↦→ 𝑓 ′, 𝑥1 ↦→ 𝑣1, ··, 𝑥𝑛 ↦→ 𝑣𝑛]
(2) ∃ (𝑓 , 𝑏) ∈ S. 𝐼𝑣 |= 𝑏 where 𝐼𝑣 = [𝑥1 ↦→ 𝑣1, ··, 𝑥𝑛 ↦→ 𝑣𝑛]

In the remainder of this section, we write Φ(𝜓) to represent a formula whose satisfying assign-
ments correspond to all syscall states allowed by policy𝜓 . Similarly, given syscall invariants Υ, we

1Here, ⟦𝑔⟧ is a formula whose satisfying assignments correspond to syscall states allowed by group 𝑔.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 135. Publication date: November 2020.

135:14 Shankara Pailoor, Xinyu Wang, Hovav Shacham, and Isil Dillig

𝜓 :=
{
𝐶, ··,𝐶

}
𝐶 := (𝑓 , 𝑏) | 𝑔
𝑏 := false | true | 𝑥 ⊕ 𝑐 | □(𝑏, . . . , 𝑏)

Fig. 5. Meta-grammar of policy languages. Here, 𝑓 is a system call, 𝑔 is a group, 𝑥 is a syscall argument, and
𝑐 is an integer constant. ⊕ denotes a comparison operator (e.g., equality, less than), and □ denotes an n-ary
boolean operator (such as ¬,∧,∨).

write Φ(Υ) to denote the formula:

Φ(Υ) =
∨
(𝑓𝑖 ,I𝑖) ∈Υ

(
(𝑓 = 𝑓𝑖) ∧ I𝑖

)
Definition 5.1. (Optimal policy synthesis) Given a policy language 𝐿 and syscall invariant

Υ =
{
(𝑓1,I1), ··, (𝑓𝑛,I𝑛)

}
, the optimal policy synthesis problem is to find a policy𝜓 ∈ 𝐿 such that (1)

Φ(Υ) ⇒ Φ(𝜓), and (2) there is no other policy𝜓 ′ ∈ 𝐿 such that Φ(𝜓 ′) ⇎ Φ(𝜓) and Φ(𝜓 ′) ⇒ Φ(𝜓).

We refer to any policy satisfying (1) as a sound policy, but only those policies that satisfy both
(1) and (2) are optimal.

5.2 Synthesis Algorithm

Our algorithm for synthesizing an optimal policy is described in Algorithm 2. The Synthesize
procedure takes as input a syscall invariant Υ and policy language 𝐿, and returns a policy𝜓 satisfying
the two conditions from Definition 5.1. 2

At a high level, Algorithm 2 performs top-down search over policy templates, which are policies
with unknown groups (denoted ?𝑔), unknown predicates (denoted ?𝑏), or unknown (integer)
constants (indicated as ?𝑐). Here, a hole ?𝑔 can be instantiated with any single group 𝑔𝑖 provided
by the policy DSL; hole ?𝑏 can be instantiated with any guard 𝑏 in 𝐿 (up to some size), and a hole
?𝑐 can be instantiated with any integer constant 𝑐 (also up to some bound).

In more detail, Algorithm 2 maintains a worklist𝑊 , which initially contains all guarded syscalls
of the form (𝑓𝑖 , ?𝑏𝑖) as well as 𝑘 groups ?𝑔1, ··, ?

𝑔

𝑘
for each possible value of 𝑘 . Thus, templates in the

initial worklist (from line 3) can generate any policy allowed by the DSL. The main loop (lines
4-16) expands the worklist𝑊 and populates set Π until𝑊 becomes empty, at which point Π is
guaranteed to contain all optimal policies. During each iteration, we dequeue a template 𝜒 (line 5)
and consider the following four cases:

No unknowns: If 𝜒 has no unknowns (i.e., 𝜒 is a concrete policy, line 6) and is sound, we add 𝜒 to
set Π.

Unknown groups: If 𝜒 has at least one hole ?𝑔 representing an unknown group, we replace it with
a concrete group 𝑔 ∈ G (lines 8-10) if 𝜒 [𝑔/?𝑔] is not suboptimal. In particular, we only consider
group 𝑔 if it adds new capabilities required by Υ that are not captured by existing capabilities 𝜓 .
This is illustrated schematically in Figure 6a.

Unknown predicate: If 𝜒 has at least one hole ?𝑏 (line 11), we create new policy templates by
replacing an unknown predicate in 𝜒 with new predicates (lines 12-14). Specifically, lines 12 and 13
add to the worklist all expansions of 𝜒 where ?𝑏 is concretized using an atomic predicate. On the
other hand, line 14 adds all expansions of 𝜒 where ?𝑏 is replaced with boolean combinations of
other (fresh) unknowns.
2As standard in synthesis literature [Polozov and Gulwani 2015; Solar-Lezama 2008], we consider policies up to a certain size
(by bounding the set of predicates and constants). Thus, the technique described here solves a bounded optimal synthesis
problem, where the goal is to find an optimal policy within a finite search space.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 135. Publication date: November 2020.

135:15

1: procedure Synthesize(Υ, 𝐿)
input: a syscall invariant Υ =

{
(𝑓1,I1), ··, (𝑓𝑛,I𝑛)

}
.

input: a policy DSL 𝐿 with groups G, a set of comparison operators O, and a set of logical
operators B
output: an optimal policy𝜓 .

2: Π := ∅; 𝜒0 :=
{
(𝑓𝑖 , ?𝑏) | (𝑓𝑖 ,I𝑖) ∈ Υ

}
;

3: 𝑊 :=
{
𝜒0
}
∪
{
𝜒0 ∪ {?𝑔1, ··, ?

𝑔

𝑘
}
�� 0 ≤ 𝑘 ≤ |G|

}
;

4: while𝑊 ≠ ∅ do
5: 𝜒 :=𝑊 .remove();
6: if 𝜒 has no unknowns then ⊲ 𝜒 is a concrete policy.
7: if Φ(Υ) ⇒ Φ(𝜒) then Π := Π ∪ {𝜒};
8: else if 𝜒 has unknown group ?𝑔 then
9: 𝜓 :=

{
𝐶𝑖 ∈ 𝜒

��
capability 𝐶𝑖 does not have unknowns

}
;

10: 𝑊 :=𝑊 ∪
{
𝜒 [𝑔/?𝑔]

�� 𝑔 ∈ G, 𝑆𝐴𝑇 (⟦𝑔⟧ ∧ ¬Φ(𝜓) ∧ Φ(Υ)) };
11: else if 𝜒 has unknown predicate ?𝑏 then
12: 𝑊 :=𝑊 ∪

{
𝜒 [true/?𝑏]

}
∪
{
𝜒 [false/?𝑏]

}
13: 𝑊 :=𝑊 ∪

{
𝜒 [𝑥𝑖 ⊕ ?𝑐/?𝑏]

�� ⊕ ∈ O, 𝑥𝑖 is a syscall arg};
14: 𝑊 :=𝑊 ∪

{
𝜒 [𝑒/?𝑏]

�� 𝑒 ∈ {
□(?𝑏1, · · · , ?𝑏𝑛−1),□ ∈ B

}}
;

15: else
16: Π := Π ∪ Solve(𝜒, Υ);
17: return SelectOptimal(Π);

Algorithm 2. Optimal policy synthesis algorithm.

Unknown constant: Finally, if 𝜒 contains only unknown constants (line 15), we invoke the Solve
procedure (discussed later) to instantiate these unknowns with concrete integers.

At the end of the main loop, Π is guaranteed to contain all optimal policies; thus, line 17 selects
one optimal policy (which may not be unique) and returns it as the solution.

5.2.1 Solving Policy Templates. In this section, we describe our Solve procedure for finding com-
pletions of a policy template with (only) unknown constants. Given a template 𝜒 and a syscall
invariant Υ, Solve returns a set of policies Π such that every optimal completion of 𝜒 is in Π. From
a high-level, this is a typical ∃∀ problem where the goal is to find values of the unknowns that
make the following formula valid:

∃?𝑐1, ··, ?𝑐𝑛 .∀®𝑥 . Φ
(
Υ(®𝑥)

)
⇒ Φ

(
𝜒 (®𝑥, ?𝑐1, ··, ?𝑐𝑛)

)
That is, we want an instantiation 𝑐1, ··, 𝑐𝑛 of the unknowns ?𝑐1, ··, ?𝑐𝑛 such that the resulting policy
𝜓 [®?𝑐\®𝑐] allows all feasible syscall states allowed by Υ (i.e., models of Φ(Υ)).

At a high-level, the Solve algorithm (see Algorithm 3) follows the counterexample-guided inductive

synthesis (CEGIS) principle and consists of induction and validation steps. Given a set of “test cases”
(each of which is a value assignment 𝜎𝑥 for ®𝑥), we first induce a candidate solution 𝜎𝑐 (i.e., values of
all unknown integers), such that Φ

(
Υ[𝜎𝑥]

)
⇒ Φ

(
𝜒 [𝜎𝑥 , 𝜎𝑐]

)
holds for each 𝜎𝑥 in the test set. Then,

we validate if 𝜒 [𝜎𝑐] is sound by checking whether ∀®𝑥 . Φ(Υ) ⇒ Φ
(
𝜒 [𝜎𝑐]

)
holds. If 𝜒 [𝜎𝑐] is not

sound, we obtain a counterexample 𝜎𝑥 that is added as a new “test case”. On the other hand, if 𝜒 [𝜎𝑐]
is sound, we cannot return 𝜒 [𝜎𝑐] as a solution because we want to find an optimal policy. Thus,

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 135. Publication date: November 2020.

135:16 Shankara Pailoor, Xinyu Wang, Hovav Shacham, and Isil Dillig

Φ(Υ) Jg′K

JgK Φ(ψ)

Jg′′K

(a) Pruning groups

Φ(Υ)

Φ(ψ)

σx

Φ(ψ′)

Φ(ψ′′)

(b) Pruning unsound policies with
Cegis

Φ(Υ)

Φ(ψ)

Φ(ψ′) Φ(ψ′′)

(c) Pruning suboptimal policies

Fig. 6. In all three diagrams, circles/ellipses represent formulas and points represent interpretations. (a)
Illustration of the satisfiability check at line 10 of Algorithm 2. Here, only 𝑔 passes the satisfiability check. (b)
Illustration of line 6 in Algorithm 3. Given unsound policy𝜓 and test case 𝜎𝑥 , we prune policy𝜓 ′ since 𝜎𝑥 is
not a model of𝜓 ′. However, we cannot prune the unsound policy𝜓 ′′ as 𝜎𝑥 is a model of𝜓 ′′. (c) Illustration
of how Algorithm 3 prunes suboptimal policies𝜓 ′ and𝜓 ′′ given a sound policy𝜓 .

1: procedure Solve(𝜒, Υ)
input: a policy template 𝜒 with only unknown integers.
input: a syscall invariant Υ.
output: a set Π containing all optimal completions of 𝜒 .

2: 𝜃 :=
∧

?𝑐 ∈Unknowns(𝜒) (MIN ≤ ?𝑐 ≤ MAX); Π := ∅;
3: while SAT(𝜃) do
4: 𝜓 := 𝜒 [Model(𝜃)];
5: if Φ(Υ) ⇏ Φ(𝜓) then ⊲ 𝜓 is not sound.
6: 𝜎𝑥 := Model

(
Φ(Υ) ∧ ¬Φ(𝜓)

)
;

7: 𝜃 := 𝜃 ∧ Φ
(
𝜒 [𝜎𝑥]

)
;

8: else ⊲ 𝜓 is sound.
9: Π := Π ∪ {𝜓 };
10: 𝜃 := 𝜃 ∧ ∃®𝑥 .

(
Φ(𝜓) ∧ ¬Φ(𝜒)

)
;

11: return Π;
Algorithm 3. Algorithm to solve unknown constants.

our Solve algorithm exhaustively explores the search space but uses a novel pruning techinuqe
that avoids instantiating the template with constants guaranteed to produce suboptimal policies.
In more detail, Algorithm 3 encodes the search space as an SMT formula 𝜃 , which initially

includes all possible integers (line 2). In each loop iteration (lines 3-10), we sample a model 𝜎𝑐 of
𝜃 and check if this model corresponds to a sound policy𝜓 (line 5). If this is not the case, we find
values of 𝜎𝑥 of ®𝑥 that prove that𝜓 is not sound (line 6) and strengthen 𝜃 by insisting that any model
of 𝜃 should satisfy 𝜒 [𝜎𝑥] (line 7). This is illustrated schematically in Figure 6b.
If 𝜓 is a sound policy, we not only add 𝜓 to Π but also strengthen 𝜃 to prune policies that are

guaranteed to be suboptimal. In particular, any instantiation 𝜎𝑐 of 𝜒 such that Φ(𝜓) ⇒ Φ(𝜒 [𝜎𝑐])
(i.e., UNSAT(Φ(𝜓) ∧ ¬Φ(𝜒 [𝜎𝑐])) is guaranteed to be sub-optimal. Thus, we only want to search
for assignments 𝜎𝑐 such that Φ(𝜓) ∧ ¬Φ(𝜒) is satisfiable. To restrict our search space to such
assignments, we then strengthen 𝜃 by conjoining it with ∃®𝑥 . Φ(𝜓) ∧ ¬Φ(𝜒). Figure 6c provides a
schematic illustration of this discussion.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 135. Publication date: November 2020.

135:17

Example 5.2. Consider the syscall invariant:

Υ =
{
(pipe, 𝑥1 [0] = 0 ∧ 𝑥1 [1] = 0 ∧ 50 ≤ 𝑥2 ≤ 52)

}
and policy template 𝜒 =

{
(pipe, 𝑥2 < ?𝑐

}
. Here, the only optimal policy is obtained by instantiating

?𝑐 with 53. Now, we illustrate how the Solve procedure works on this example. Let us assume the
integer constant ?𝑐 is chosen from [0, 100]; thus, Solve starts with the constraint 𝜃0 ≡ 0 ≤ ?𝑐 ≤ 100.
Iteration 1: Because 𝜃0 is satisfiable, we obtain a model of 𝜃0 where ?𝑐 is assigned to 0. This

corresponds to the policy𝜓1 ≡
{
(pipe, 𝑥2 < 0)

}
, which is clearly not sound (i.e., Φ(Υ) ⇒ Φ(𝜓1) is

not valid). Therefore, we enter the branch at line 5 and obtain a model 𝜎𝑥 where 𝜎𝑥 (𝑥2) = 52. Then,
we obtain a stronger constraint 𝜃1 ≡ 0 ≤ ?𝑐 ≤ 100∧ 52 < ?𝑐 at line 7. Note that this strengthening
prunes 53 policies.
Iteration 2: Since 𝜃1 is still satisfiable, Solve enters the loop again and obtains a model of 𝜃1

where ?𝑐 is assigned 55. This model corresponds to𝜓2 ≡
{
(pipe, 𝑥2 < 55)

}
, which is a sound policy.

Thus, we enter the branch at line 8. We include𝜓2 in the set Π and then strengthen 𝜃1 according
to line 10. In particular, this strengthening gives us a stronger formula 𝜃2 ≡ 0 ≤ ?𝑐 ≤ 100 ∧ 52 <

?𝑐 ∧ ∃𝑥2.?𝑐 ≤ 𝑥2 < 55, which simplifies to 𝜃2 ≡ 0 ≤ ?𝑐 ≤ 100∧ 52 < ?𝑐 ∧ ?𝑐 ≤ 54. This constraint
further eliminates 46 suboptimal policies weaker than𝜓2 from the search space.
Iteration 3: Since 𝜃2 is still satisfiable, we obtain another model of 𝜃2, for instance, one that

assigns 53 to ?𝑐 . This gives us a policy 𝜓3 ≡
{
(pipe, 𝑥2 < 53)

}
, which is again sound. We first

add𝜓3 into Π (now Π ≡ {𝜓2,𝜓3}) and then perform optimality-guided pruning, which gives us a
stronger formula 𝜃3 ≡ 0 ≤ ?𝑐 ≤ 100 ∧ 52 < ?𝑐 ≤ 54 ∧ ∃𝑥2.?𝑐 ≤ 𝑥2 < 53.

Termination: At this point, 𝜃3 is no longer satisfiable, so the algorithm terminates. Thus, Solve
returns two policies, namely, {(pipe, 𝑥2 < 55)} and {(pipe, 𝑥2 < 53)}. Both of these policies are
sound, and the second one is optimal.

Theorem 5.3. If Synthesize(Υ) returns a policy𝜓 , then𝜓 is sound and optimal with respect to Υ.

6 IMPLEMENTATION

We have implemented our proposed approach in a tool called Abhaya which takes as input an
application’s source code and a target policy language, and returns an optimal policy.

Tools. Abhaya is implemented as an LLVM pass [Lattner and Adve 2004] and leverages a number
of existing tools. First, Abhaya’s syscall analysis is built on top of the Crab framework [Gange
et al. 2016], a popular abstract interpretation engine for analyzing LLVM bitcode. We extend Crab
to fully support the ArrayVal domain as well as our summary-based interprocedural analysis. To
resolve virtual calls and aliasing queries in the syscall analysis, we use LLVM-DSA [Lattner et al.
2007], a highly scalable, summary-based, and flow-insensitive pointer analysis. Finally, Abhaya
also makes extensive use of the Z3 SMT solver [De Moura and Bjørner 2008].

Tunable parameters. Our implementation has two important tunable parameters. For the analysis
phase, we used a widening threshold of 2 for the number of summaries. For the synthesis phase,
we limit the number of atomic predicates in a syscall guard to 3. We found these hyper-parameters
to achieve a good trade-off between precision and efficiency.

Synthesis optimizations. Abhaya incorporates a few optimizations to improve synthesis efficiency.
For example, one optimization is to prune policy templates based on policy template weakening.
Specifically, given a policy template 𝜒 , we construct a concrete policy𝜓 that is weaker than any
completion of 𝜒 . If𝜓 is not sound, 𝜒 can be safely discarded.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 135. Publication date: November 2020.

135:18 Shankara Pailoor, Xinyu Wang, Hovav Shacham, and Isil Dillig

Fig. 7. % of apps vs. percentile of exploits blocked. Fig. 8. F1 score of synthesized Pledge policies.

7 EVALUATION

In this section, we present our evaluation results. Specifically, we aim to answer the following
research questions:
RQ1. Can Abhaya’s policies block real-world exploits? (Section 7.1)
RQ2. How do Abhaya’s policies compare with manual ones? (Section 7.2)
RQ3. How long does Abhaya take to generate policies? (Section 7.3)
RQ4. How important are Abhaya’s design choices (i.e., abstract domain in program analysis phase

and pruning strategy in program synthesis phase)? (Sections 7.4, 7.5)

Benchmarks. To answer these questions, we collect two sets of C/C++ applications running on
Linux and OpenBSD. For Linux, we search the top 1000 most popular Debian packages according
to the Debian Popularity Contest [deb 2011]. 146 of these 1000 packages are for C/C++ applications
while the rest are for standalone libraries or applications in other languages. Among the 146 C/C++
packages, Abhaya cannot analyze 30 as these can only be built with GCC, but our analysis is based
on LLVM, which requires Clang. Of the remaining 116 packages, we extract 491 total applications
and compile each program, along with their library dependencies, to LLVM. We also link each
application against musl-libc (compiled to LLVM) as glibc cannot be compiled with Clang.
For OpenBSD, we collect all C/C++ programs in the OpenBSD base system that come with

developer-written policies (183 in total). Since the most common syscall sandboxing frameworks
for Linux and OpenBSD are Seccomp-bpf and Pledge respectively, we use Abhaya to generate
policies targeting these two environments.

Setup. All experiments are conducted on the Google Compute Engine [gce 2013] using a 16 vcpu
instance with 120GB memory running Ubuntu 18.04 and with a time limit of 24 hours.

7.1 Blocking Privilege Escalation Attacks on Linux

In this section, we evaluate whether Abhaya’s policies can meaningfully restrict the capabilities of
an attacker for a broad class of applications. Our threat model is that an attacker has taken control
over the application, and they try to gain full privileges on the system by exploiting vulnerabilities
of the underlying OS kernel. The goal of our evaluation is to assess whether Abhaya-generated
policies can prevent the attacker from gaining full privileges.

To perform this evaluation, we first collected proof-of-conept (PoC) privilege escalation exploits
for the Linux kernel by searching for all Common Vulnerabilities and Exposures (CVEs) reported

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 135. Publication date: November 2020.

135:19

in the past 5 years3. We found 33 such CVEs, 23 of which have published PoCs. Then, we measured
how many of these 23 exploits the Abhaya-generated policy can block for each application.

Our main result is that, for all 491 Linux programs, the Abhaya-generated policies were able to
block every single one of the 23 PoC exploits. However, we found that, in many cases, the proof-
of-concept exploits are too specific in two ways: (1) they often contain many auxiliary syscalls
that make it more likely for the exploit to succeed but are not strictly required, and (2) they invoke
system calls with specific values even though the kernel vulnerability can be triggered using a
broader class of values. Thus, to understand how robust Abhaya-generated policies are, we further
generalized each PoC exploit by (a) getting rid of the auxiliary syscalls, and (b) identifying a broader
class of syscall argument values that will trigger the kernel vulnerability. Using this methodology,
we obtained a more general class of 23 exploits that capture necessary conditions for exploiting the
kernel vulnerability.

The results of this experiment (for the generalized version of the 23 exploits) are summarized in
Figure 7. In particular, Figure 7 shows the percentage of applications for which a given percentile
of the exploits are blocked. The take-away message is that for 96% of the applications, Abhaya-
generated policies can block over 95% of the exploits. In fact, for 90% of the 491 applications,Abhaya
is able to synthesize policies that block all 23 exploits.
Outlier analysis. We manually analyzed the cases where our policies permitted the generalized

version of the exploits. In 53% of these cases, the application needs to use syscalls in the same
way that is required for triggering the OS-level vulnerability. On the other hand, in 47% of the
cases, there exists a policy that could block the exploit without interfering with the application’s
functionality; however, Abhaya does not generate the more restrictive policy due to imprecision in
the underlying pointer analysis.
Bugs in manually-written Seccomp-bpf policies. Among the 491 Linux applications, six of them

actually come with developer-written Seccomp-bpf policies. We manually compared the Abhaya-
generated policies against existing policies for these 6 applications and found that our synthesized
policies identified 4 developer-confirmed bugs in two of them. In particular, the existing policy for
sshd unnecessarily allows the shutdown syscall while erroneously disallowing writev, which is
needed when the application is linked against musl-libc. Similarly, the manual policy for file also
unconditionally allows ioctl, whereas Abhaya only allows it when its second argument is one of
two values. Since there are known exploits that invoke ioctlwith specific values for this argument,
Abhaya’s more precise policy is preferable. The file developer adopted the policy synthesized by
Abhaya and the sshd developers plan to update their policy.

Result 1: 96% of the Abhaya-sandboxed applications are resistant to >95% of known privilege
escalation attacks.

7.2 Comparison with Handcrafted Pledge Policies

In this section, we compare the quality of Abhaya-generated policies with Pledge policies written
by developers. To conduct this comparison, we treat developer-written policies as the ground truth
and measure similarity between a pair of policies (i.e., Abhaya-generated policy and developer-
written policy) using the F1 score, which takes into account both precision and recall. In the context
of Pledge, precision is the percentage of groups in the synthesized policy that are also in the ground
truth. Conversely, recall is the percentage of ground truth groups that are also in the synthesized
policy. For example, if the ground truth is {𝑠𝑡𝑑𝑖𝑜, 𝑡𝑚𝑝𝑝𝑎𝑡ℎ} and the Abhaya-synthesized policy is
{𝑠𝑡𝑑𝑖𝑜, 𝑟𝑝𝑎𝑡ℎ,𝑤𝑝𝑎𝑡ℎ, 𝑐𝑝𝑎𝑡ℎ}, then precision would be 0.25 since we include three additional groups
3Security vulnerabilities in Linux typically have a lifetime between 3-5 years [Cook 2016] so we restricted our search to the
last 5 years. We also focus on Linux here because we were not able to find PoC exploits for OpenBSD.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 135. Publication date: November 2020.

135:20 Shankara Pailoor, Xinyu Wang, Hovav Shacham, and Isil Dillig

Application Manual Policy Synthesized Policy
calendar {𝑠𝑡𝑑𝑖𝑜, 𝑟𝑝𝑎𝑡ℎ, 𝑡𝑚𝑝𝑝𝑎𝑡ℎ, 𝑓 𝑎𝑡𝑡𝑟, 𝑔𝑒𝑡𝑝𝑤, . . .} {𝑠𝑡𝑑𝑖𝑜, 𝑟𝑝𝑎𝑡ℎ, 𝑤𝑝𝑎𝑡ℎ, 𝑐𝑝𝑎𝑡ℎ, 𝑓 𝑎𝑡𝑡𝑟, 𝑔𝑒𝑡𝑝𝑤, . . .}

diff {𝑠𝑡𝑑𝑖𝑜, 𝑟𝑝𝑎𝑡ℎ, 𝑡𝑚𝑝𝑝𝑎𝑡ℎ} {𝑠𝑡𝑑𝑖𝑜, 𝑟𝑝𝑎𝑡ℎ, 𝑤𝑝𝑎𝑡ℎ, 𝑐𝑝𝑎𝑡ℎ}
mandoc {𝑠𝑡𝑑𝑖𝑜, 𝑟𝑝𝑎𝑡ℎ, 𝑡𝑚𝑝𝑝𝑎𝑡ℎ, 𝑡𝑡𝑦, 𝑝𝑟𝑜𝑐, 𝑒𝑥𝑒𝑐 } {𝑠𝑡𝑑𝑖𝑜, 𝑟𝑝𝑎𝑡ℎ, 𝑤𝑝𝑎𝑡ℎ, 𝑐𝑝𝑎𝑡ℎ, 𝑡𝑡𝑦, 𝑝𝑟𝑜𝑐, 𝑒𝑥𝑒𝑐 }
lndir {𝑠𝑡𝑑𝑖𝑜, 𝑟𝑝𝑎𝑡ℎ, 𝑤𝑝𝑎𝑡ℎ, 𝑐𝑝𝑎𝑡ℎ} {𝑠𝑡𝑑𝑖𝑜, 𝑟𝑝𝑎𝑡ℎ, 𝑐𝑝𝑎𝑡ℎ}
tset {𝑠𝑡𝑑𝑖𝑜, 𝑟𝑝𝑎𝑡ℎ, 𝑤𝑝𝑎𝑡ℎ, 𝑡𝑡𝑦 } {𝑠𝑡𝑑𝑖𝑜, 𝑟𝑝𝑎𝑡ℎ, 𝑡𝑡𝑦 }

Table 3. Synthesized policies with imperfect recall. The omitted groups for the calendar app in both the
manual and synthesized policies are 𝑖𝑑, 𝑝𝑟𝑜𝑐, 𝑒𝑥𝑒𝑐

(namely, 𝑟𝑝𝑎𝑡ℎ,𝑤𝑝𝑎𝑡ℎ, 𝑐𝑝𝑎𝑡ℎ) and the recall would be 0.5 since 𝑠𝑡𝑑𝑖𝑜 is included in the synthesized
policy but 𝑡𝑚𝑝𝑝𝑎𝑡ℎ is not. This gives us an F1 score of 0.33.

The result of this experiment is summarized in Figure 8, which shows the percentage of applica-
tions for a given F1 score range. As we can see, 63.3% of the synthesized policies exactly match
the ground truth (with an F1 score of 1), and over 75% of them have an F1 score above 0.8. 4 The
average F1 score across all 183 OpenBSD applications is 0.94.

Outlier analysis. For 8.1% of applications, Abhaya’s policies have an F1 score less than 0.5. In all
of these cases, Abhaya reports there is no sound policy due to imprecision in our static analysis.
More specifically, for all these cases, the application computes the first argument of the socket
syscall by traversing a (dynamically allocated) data structure which our analysis is not able to
reason about precisely. As such, our analysis generates an invariant that leaves the first argument of
socket unconstrained. However, since every Pledge group constrains the first argument of socket
in some way, Abhaya cannot synthesize a sound policy that over-approximates the invariant.

Cases with imperfect recall. Because our method is sound, we would expect the recall to always
be 1 across all cases; however, 5 of the synthesized policies have a recall below 1. Upon manual
inspection, we found that Abhaya indeed synthesizes semantically sound policies, but they are
syntactically different from the developer-written ones. Table 3 shows the 5 applications where
our synthesized policy had imperfect recall. As shown in this table, the developer-written policies
for calendar, diff, and mandoc include a group called 𝑡𝑚𝑝𝑝𝑎𝑡ℎ which is not included in the
correspondingAbhaya-generated policies. Instead,Abhaya synthesizes groups𝑤𝑝𝑎𝑡ℎ, 𝑐𝑝𝑎𝑡ℎ, 𝑟𝑝𝑎𝑡ℎ

which collectively cover the syscall states in the 𝑡𝑚𝑝𝑝𝑎𝑡ℎ group. Therefore, the synthesized policy
is still sound in these cases.
On the other, for the remaining two applications (lndir and tset), the policy synthesized by

Abhaya is indeed more restrictive than the manually written policy, which unnecessarily contains
the𝑤𝑝𝑎𝑡ℎ group that is not required for the application to work correctly. After we reported this
issue to the developers, they removed the𝑤𝑝𝑎𝑡ℎ path group from their policy.

Bugs in manually-written Pledge policies. By inspecting the application where the Abhaya-
synthesized policy differs from the manually written policy, we were also able to identify a real bug
in the existing policy for the csplit application. In particular, the synthesized policy includes the
fattr group, which is missing from the existing policy. As confirmed by developers, the fattr group
is actually necessary for the application to work correctly, and the manual policy would terminate
legitimate executions in which there is a call to the tmpfile libc function.

Result 2: Abhaya’s policies match manually-written policies with an average F1-score of 0.94
and exactly match the manual policy for the majority of the benchmarks.

4One may wonder why our synthesized optimal policy would be weaker than ground truth. The reason is due to imprecision
from the syscall analysis, i.e., the synthesized policy is an optimal policy that over-approximates the syscall invariant
inferred by the static analysis (whereas the ground truth does not over-approximate the invariant).

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 135. Publication date: November 2020.

135:21

7.3 Running Time of Abhaya

In terms of running time, Abhaya generates policies in an average time of 8.7 minutes across 674
applications in Linux and OpenBSD. We now provide more detailed statistics about the two phases.
Syscall analysis phase. Across all 674 Linux and OpenBSD applications, Abhaya requires an

average 7.3 minutes (standard deviation: 4.4) to analyze an application with 122,350 lines of LLVM
code (LoC) on average. The largest application has 2.1 million LoC and the maximum runtime is 2
hours 30 minutes. Unsurprisingly, analysis time strongly correlates with program size, and Abhaya
takes less than 2 minutes to analyze applications with under 35,000 LoC.

Policy synthesis phase. For the 491 Linux applications, it takes Abhaya an average of 2.3 minutes

(SD: 0.3) to synthesize a Seccomp-bpf policy, whereas for the 183 OpenBSD applications, Abhaya
takes on average 20.1 seconds (SD: 0.1) to synthesize a Pledge policy. Synthesizing Pledge policies
is six times faster than Seccomp-bpf because Pledge does not allow arbitrary predicates, making
the search space smaller. The average size of the synthesized policy for Seccomp-bpf and Pledge is
90.5 and 3.4 AST nodes respectively, whereas the maximum size is 130 and 11 respectively.

Result 3: Abhaya can synthesize policies for applications with >100K LoC within a few
minutes on average.

7.4 Ablation Study for Syscall Analysis

We now describe an ablation study to evaluate the design decisions underlying our syscall analysis
from Section 4. Specifically, to justify the necessity of using the ArrayVal abstract domain, we
compare our analysis against three of its own variants:

• Abhaya-NoVal: This variant only tracks which system calls are invoked but does not track
anything about their arguments.
• Abhaya-NoArray: This variant does not reason about contents of arrays, but uses the
disjunctive interval domain to reason about integer variables.
• Abhaya-NoDisj: This variant uses the reduced product of the array expansion and inter-
val domains. In other words, it differs from our ArrayVal domain in that it does not use
disjunctions.

Impact on Pledge policies. Table 4 summarizes the results from re-running the experiment from
Section 7.2 using each of the three variants as well as the full Abhaya system. There are three
take-aways from this evaluation:

(1) Abhaya is significantly most precise compared to each of the three variants, In particular, it
synthesizes policies that are (on average) nearly 20% more precise than Abhaya-NoDisj and
10x more precise than Abhaya-NoArray. Moreover, Abhaya’s policies exactly match the
developer policies for 113 of the applications compared to only 53 for Abhaya-NoDisj and
15 for Abhaya-NoArray.

(2) Tracking array contents is crucial for synthesizing precise policies. In particular, Abhaya-
NoArray can only synthesize policies for 8% of the applications. This is because many
groups (𝑠𝑡𝑑𝑖𝑜 , 𝑝𝑠 , . . .) restrict the array arguments of commonly used syscalls

(3) Using a disjunctive domain is important for increasing precision. In particular, Abhaya’s
policies are on average 20% more precise than Abhaya-NoDisj.

(4) Tracking array contents introduces a noticeable overhead (4-5x over Abhaya-NoArray) in
the analysis; however, it is essential for successfully synthesizing Pledge policies.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 135. Publication date: November 2020.

135:22 Shankara Pailoor, Xinyu Wang, Hovav Shacham, and Isil Dillig

Baseline Exact Match % Synthesized Avg. Precision Avg. Time (sec) Max Time Min Time
Abhaya 116 91.8 0.92 415.5 ± 322.4 5542.5 44.2

Abhaya-NoDisj 51 91.2 0.76 372.2 ± 301.1 4833.3 25.2
Abhaya-NoArray 15 8.2 0.09 84.4 ± 55.5 332.2 13.1
Abhaya-NoVal 0 0.0 0.00 48.4 ± 18.2 78.2 13.1

Table 4. Results from the ablation study on the 183 OpenBSD benchmarks. The Avg. Time column indicates
the average run time along with the standard deviation.

Baseline Blocks All Blocks >90% >75% >50% Avg. Time (sec) Max Time Min Time
Abhaya 90.2 97.2 100.0 100.0 499.5 ± 367.4 9325.5 32.2

Abhaya-NoDisj 75.2 85.2 96.3 100.0 401.2 ± 322.1 8842.3 22.2
Abhaya-NoArray 83.3 90.3 98.2 100.0 93.4 ± 64.5 442.2 11.1
Abhaya-NoVal 13.3 25.2 35.5 66.2 55.4 ± 22.2 90.2 10.1

Table 5. Results from the ablation study for the syscall analysis on all 491 benchmarks Linux.

Impact on Seccomp-bpf policies. We perform another ablation study by repeating the Seccomp-bpf
experiment from Section 7.1. As summarized in Table 5, there are three main takeaways from this
experiment:
(1) Using disjunctions is extremely important for generating useful Seccomp-bpf policies. In

particular, if we do not use a disjunctive domain, the percentage of policies that block all
exploits drops from 90% to 75%.

(2) Even though tracking array contents leads to a significant increase in running time, it is
important for the precision of the analysis. In particular, if we do not reason about individual
array elements, the percentage of benchmarks for which all exploits can be blocked drops
down to 83%.

Result 4: Our ablation study shows the importance of reasoning precisely about the arguments
of system calls using the ArrayVal domain.

7.5 Ablation Study for Policy Synthesis

In this section, we perform another ablation study to justify the pruning strategies in our policy
synthesis algorithm from Section 5. Towards this goal, we consider the following two variants of
our proposed synthesis algorithm:
(1) Abhaya-NoGen replaces lines 6-7 in Algorithm 3 by blocking the current assignment of

constants. Intuitively, this variant blocks a single assignment but does not perform any
generalization (CEGIS) based on the current counterexample.

(2) Abhaya-NoSubOpt replaces lines 9-10 in Algorithm 3 by blocking the current assignment
of constants. Intuitively, this variant does not prune other sound sub-optimal policies.

To perform this ablation study, we repeat the experiment from Section 7.1 using the two variants
described above. 5 For this experiment, we set a timeout of two hours for each benchmark.
The results for this experiment are presented in Table 6. Note that Abhaya is able to syn-

thesize policies for all benchmarks in 2.3 minutes on average whereas Abhaya-NoSubOpt and
Abhaya-NoGen can only solve 6 and 11 benchmarks within the time limit. Even among the bench-
marks that Abhaya-NoGen and Abhaya-NoSubOpt can solve, they take take 20-25x longer than
Abhaya. These results highlight the importance of both pruning strategies used in our synthesis
algorithm.

Result 5: This ablation study highlights the importance of the pruning and generalization
strategies used by our policy synthesis algorithm from Section 5.

5The Pledge experiments from Section 7.2 are not relevant in this case since Pledge policies do not involve constants.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 135. Publication date: November 2020.

135:23

Policies Synthesized Avg. Time (m) Max Time (m) Timouts
Abhaya 491 2.3 8.2 0

Abhaya-NoSubOpt 6 55.1 110.2 485
Abhaya-NoGen 11 40.1 118.3 480

Table 6. Impact of pruning strategies when instantiating policy templates

8 RELATEDWORK

In this section, we survey prior work related to this paper.

Syscall analysis. There has been a long line of work in the area of intrusion detection that uses
static analysis to detect sequences of syscalls invoked by an application. For example, several
papers [Giffin et al. 2004; Lam and Chiueh 2004; Lam et al. 2006; Wagner and Dean 2001], starting
with Wagner and Dean [Wagner and Dean 2001], use static analysis to infer the set of syscalls
invoked by the program, but they do not reason precisely about syscall arguments. In addition, all
of these papers propose custom sandboxing frameworks tailored to their analysis results, whereas
our approach targets existing syscall whitelisting frameworks.

There have also been proposals for using dynamic analysis to automate syscall sandboxing [Mutz
et al. 2006; Wan et al. 2019; Wan et al. 2017]. While these approaches use testing to collect the set
of invoked syscalls and their arguments, they do not automatically synthesize a policy. In addition,
they cannot be used to generate sound policies and typically suffer from low code coverage.

Permission Analysis. There has been a long line of work related to permission analysis for Java
and Android applications [Bartel et al. 2012, 2014; Felt et al. 2011; Geay et al. 2009; Jamrozik et al.
2016; Koved et al. 2002; Naumovich and Centonze 2004; Pistoia et al. 2005; Pottier et al. 2001]. For
example, Koved et al. use lightweight data-flow analysis to determine all possible objects that could
be passed to a checkPermission method [Koved et al. 2002], and Felt et al. also use (intra-procedural)
data-flow analysis to identify all possible Android API calls invoked by the program [Felt et al.
2011]. Compared to these techniques, our approach addresses a different problem, namely that
of automating system call whitelisting. In addition, there are two important technical differences.
First, our method performs fine-grained inter-procedural static analysis to precisely reason about
values of system calls. As we show experimentally in Section 7.4, this level of precision is crucial
for successfully synthesizing system call whitelisting policies. Second, our method decomposes
the problem into two separate syscall analysis and policy synthesis phases. Such a decomposition
makes it much easier to re-target our approach to other policy enforcement frameworks. As we
demonstrate experimentally, our uniform approach can be used to synthesize both Pledge and
Seccomp-bpf policies.
CEGIS. In the CEGIS paradigm[Alur et al. 2015; Solar-Lezama et al. 2007, 2006], an inductive

synthesizer generates a candidate program 𝑃 that is consistent with a set of examples, and the
verifier checks the correctness of 𝑃 or provides counterexamples. Our technique for solving policy
templates can be viewed as an instance of the CEGIS paradigm; however, it looks for optimal

solutions.
Optimal Synthesis. There has also been recent work on synthesizing programs such that an

objective function is optimized. For example, Bornholt and Torlak intoduce the the concept of a
metasketch and use the gradient of the cost function to direct the search [Bornholt et al. 2016].
However, this technique is not easily applicable to our domain as they mainly consider optimality
with respect to syntax (e.g, number of instructions or branches) rather than optimality in a logical
sense.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 135. Publication date: November 2020.

135:24 Shankara Pailoor, Xinyu Wang, Hovav Shacham, and Isil Dillig

9 CONCLUSION

We presented a new technique, and its implementation in a tool called Abhaya, to automatically
synthesize a syscall sandboxing policy for a given application and policy DSL. Our approach uses
abstract interpretation to compute a sound over-approximation of the resources required by the
program and generates a policy in the given DSL from the analysis results using a custom program
synthesis technique. We used Abhaya to synthesize Pledge and Seccomp-bpf policies for a total
of 674 Linux and OpenBSD applications. Our evaluation demonstrates that Abhaya’s policies (a)
prevent over 95% of known privilege escalation exploits for 96% of the programs, and (b) they
match manually written policies in the majority of cases.

ACKNOWLEDGMENTS

We thanks our anonymous reviewers and members of the UToPiA group for their helpful feedback.
We also thank Jorge Navas from SRI for his very helpful and prompt assistance with Crab-LLVM.
This material is based upon work supported by the National Science Foundation under Grant
Nos. CNS-1908304, CCF-1811865, and CNS-1514435, the US Air Force, AFRL/RIKE and DARPA
under Contract No. FA8750-20-C-0208, along with gifts from Google, Mozilla, and Qualcomm. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the
author and do not necessarily reflect the views of the National Science Foundation, US Air Force,
AFRL/RIKE, DARPA, Google, Mozilla, and Qualcomm.

REFERENCES

2011. Debian Popularity Contest. https://popcon.debian.org/
2013. Google Cloud Platform (GCP). https://cloud.google.com/.
2013. Issue 329053. https://bugs.chromium.org/p/chromium/issues/detail?id=329053
2015. Issue 546204. https://bugs.chromium.org/p/chromium/issues/detail?id=546204
2016. Issue 662450. https://bugs.chromium.org/p/chromium/issues/detail?id=662450
2017a. Issue 682488. https://bugs.chromium.org/p/chromium/issues/detail?id=682488
2017b. Issue 766245. https://bugs.chromium.org/p/chromium/issues/detail?id=766245
Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund Raghothaman, Sanjit A Seshia, Rishabh Singh,

Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2015. Syntax-guided synthesis. Dependable Software

Systems Engineering 40 (2015), 1–25.
A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus. 2012. Automatically securing permission-based software by reducing the

attack surface: an application to Android. In 2012 Proceedings of the 27th IEEE/ACM International Conference on Automated

Software Engineering. 274–277. https://doi.org/10.1145/2351676.2351722
A. Bartel, J. Klein, M. Monperrus, and Y. Le Traon. 2014. Static Analysis for Extracting Permission Checks of a Large Scale

Framework: The Challenges and Solutions for Analyzing Android. IEEE Transactions on Software Engineering 40, 6 (June
2014), 617–632. https://doi.org/10.1109/TSE.2014.2322867

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, and
Xavier Rival. 2002. The Essence of Computation. Springer-Verlag New York, Inc., New York, NY, USA, Chapter Design
and Implementation of a Special-purpose Static Program Analyzer for Safety-critical Real-time Embedded Software,
85–108. http://dl.acm.org/citation.cfm?id=860256.860262

James Bornholt, Emina Torlak, Dan Grossman, and Luis Ceze. 2016. Optimizing Synthesis with Metasketches (POPL). ACM,
775–788.

Kees Cook. 2016. https://outflux.net/blog/archives/2016/10/18/security-bug-lifetime/
Patrick Cousot, Radhia Cousot, and Laurent Mauborgne. 2011. The Reduced Product of Abstract Domains and the

Combination of Decision Procedures. In Proceedings of the 14th International Conference on Foundations of Software Science

and Computational Structures: Part of the Joint European Conferences on Theory and Practice of Software (Saarbrücken,
Germany) (FOSSACS’11/ETAPS’11). Springer-Verlag, Berlin, Heidelberg, 456–472. http://dl.acm.org/citation.cfm?id=
1987171.1987210

Manuvir Das, Sorin Lerner, and Mark Seigle. 2002. ESP: Path-sensitive Program Verification in Polynomial Time. In
Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design and Implementation (Berlin, Germany)
(PLDI ’02). ACM, New York, NY, USA, 57–68. https://doi.org/10.1145/512529.512538

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 135. Publication date: November 2020.

https://popcon.debian.org/
https://cloud.google.com/
https://bugs.chromium.org/p/chromium/issues/detail?id=329053
https://bugs.chromium.org/p/chromium/issues/detail?id=546204
https://bugs.chromium.org/p/chromium/issues/detail?id=662450
https://bugs.chromium.org/p/chromium/issues/detail?id=682488
https://bugs.chromium.org/p/chromium/issues/detail?id=766245
https://doi.org/10.1145/2351676.2351722
https://doi.org/10.1109/TSE.2014.2322867
http://dl.acm.org/citation.cfm?id=860256.860262
https://outflux.net/blog/archives/2016/10/18/security-bug-lifetime/
http://dl.acm.org/citation.cfm?id=1987171.1987210
http://dl.acm.org/citation.cfm?id=1987171.1987210
https://doi.org/10.1145/512529.512538

135:25

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Proceedings of the Theory and Practice of

Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (Budapest,
Hungary) (TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337–340. http://dl.acm.org/citation.cfm?id=1792734.
1792766

Jake Edge. 2015. A seccomp overview. Online: https://lwn.net/Articles/738694/.
P. Feautrier. 1988. Array Expansion. In Proceedings of the 2Nd International Conference on Supercomputing (St. Malo, France)

(ICS ’88). ACM, New York, NY, USA, 429–441. https://doi.org/10.1145/55364.55406
Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner. 2011. Android Permissions Demystified. In

Proceedings of the 18th ACM Conference on Computer and Communications Security (Chicago, Illinois, USA) (CCS ’11).
Association for Computing Machinery, New York, NY, USA, 627–638. https://doi.org/10.1145/2046707.2046779

Graeme Gange, Jorge A. Navas, Peter Schachte, Harald SOndergaard, and Peter J. Stuckey. 2016. An Abstract Domain of
Uninterpreted Functions. In Proceedings of the 17th International Conference on Verification, Model Checking, and Abstract

Interpretation - Volume 9583 (St. Petersburg, FL, USA) (VMCAI 2016). Springer-Verlag New York, Inc., New York, NY, USA,
85–103. https://doi.org/10.1007/978-3-662-49122-5_4

E. Geay, M. Pistoia, Takaaki Tateishi, B. G. Ryder, and J. Dolby. 2009. Modular string-sensitive permission analysis
with demand-driven precision. In 2009 IEEE 31st International Conference on Software Engineering. 177–187. https:
//doi.org/10.1109/ICSE.2009.5070519

Jonathon T. Giffin, Somesh Jha, and Barton P. Miller. 2004. Efficient Context-Sensitive Intrusion Detection. In Proceedings of

NDSS 2004, Mike Reiter and Dan Boneh (Eds.).
Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas. 2015. The SeaHorn Verification Framework. In

Computer Aided Verification, Daniel Kroening and Corina S. Păsăreanu (Eds.). Springer International Publishing, Cham,
343–361.

Arie Gurfinkel and Jorge Navas. 2017. A Context-Sensitive Memory Model for Verification of C/C++ Programs. 148–168.
https://doi.org/10.1007/978-3-319-66706-5_8

Konrad Jamrozik, Philipp von Styp-Rekowsky, and Andreas Zeller. 2016. Mining Sandboxes. In Proceedings of the 38th

International Conference on Software Engineering (Austin, Texas) (ICSE ’16). Association for Computing Machinery, New
York, NY, USA, 37–48. https://doi.org/10.1145/2884781.2884782

Larry Koved, Marco Pistoia, and Aaron Kershenbaum. 2002. Access rights analysis for Java. In In ACM OOPSLA.
Maxwell Krohn, Petros Efstathopoulos, Cliff Frey, Frans Kaashoek, Eddie Kohler, David Mazières, Robert Morris, Michelle

Osborne, Steve VanDeBogart, and David Ziegler. 2005. Make Least Privilege a Right (Not a Privilege). In Proceedings of

the 10th Conference on Hot Topics in Operating Systems - Volume 10 (Santa Fe, NM) (HOTOS’05). USENIX Association,
Berkeley, CA, USA, 21–21. http://dl.acm.org/citation.cfm?id=1251123.1251144

Lap Chung Lam and Tzi-cker Chiueh. 2004. Automatic extraction of accurate application-specific sandboxing policy. In
Proceedings of RAID 2004 (LNCS, Vol. 3224), Erland Jonsson and Alfonso Valdes (Eds.). Springer, 1–20.

Lap Chung Lam, Wei Li, and Tzi-cker Chiueh. 2006. Accurate and Automated System Call Policy-Based Intrusion Prevention.
In Proceedings of DSN 2006), Lorenzo Alvisi (Ed.). IEEE Computer Society, 413–24.

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation.
In Proceedings of the International Symposium on Code Generation and Optimization: Feedback-directed and Runtime

Optimization (Palo Alto, California) (CGO ’04). IEEE Computer Society, Washington, DC, USA, 75–. http://dl.acm.org/
citation.cfm?id=977395.977673

Chris Lattner, Andrew Lenharth, and Vikram Adve. 2007. Making Context-sensitive Points-to Analysis with Heap Cloning
Practical for the Real World. In Proceedings of the 28th ACM SIGPLAN Conference on Programming Language Design and

Implementation (San Diego, California, USA) (PLDI ’07). ACM, New York, NY, USA, 278–289. https://doi.org/10.1145/
1250734.1250766

Samuel Laurén, Sampsa Rauti, and Ville Leppänen. 2017. A Survey on Application Sandboxing Techniques. In Proceedings of

the 18th International Conference on Computer Systems and Technologies (Ruse, Bulgaria) (CompSysTech’17). ACM, New
York, NY, USA, 141–148. https://doi.org/10.1145/3134302.3134312

Ravi Mangal, Mayur Naik, and Hongseok Yang. 2014. A Correspondence Between Two Approaches to Interprocedural
Analysis in the Presence of Join. In Proceedings of the 23rd European Symposium on Programming Languages and Systems -

Volume 8410. Springer-Verlag New York, Inc., New York, NY, USA, 513–533. https://doi.org/10.1007/978-3-642-54833-8_27
Bill McCarty. 2004. SELinux: NSA’s Open Source Security Enhanced Linux. O’Reilly Media, Inc.
Alex Murray. 2019. AppArmor. Online: https://wiki.ubuntu.com/AppArmor.
Darren Mutz, Fredrik Valeur, Giovanni Vigna, and Christopher Kruegel. 2006. Anomalous System Call Detection. ACM

Trans. Inf. Syst. Secur. 9, 1 (Feb. 2006), 61–93. https://doi.org/10.1145/1127345.1127348
Gleb Naumovich and Paolina Centonze. 2004. Static analysis of role-based access control in J2EE applications. ACM SIGSOFT

Software Engineering Notes 29 (09 2004), 1–10. https://doi.org/10.1145/1022494.1022530
Neeraj Pal. 2018. Pledge: OpenBSDs defensive approach to OS Security.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 135. Publication date: November 2020.

http://dl.acm.org/citation.cfm?id=1792734.1792766
http://dl.acm.org/citation.cfm?id=1792734.1792766
https://lwn.net/Articles/738694/
https://doi.org/10.1145/55364.55406
https://doi.org/10.1145/2046707.2046779
https://doi.org/10.1007/978-3-662-49122-5_4
https://doi.org/10.1109/ICSE.2009.5070519
https://doi.org/10.1109/ICSE.2009.5070519
https://doi.org/10.1007/978-3-319-66706-5_8
https://doi.org/10.1145/2884781.2884782
http://dl.acm.org/citation.cfm?id=1251123.1251144
http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673
https://doi.org/10.1145/1250734.1250766
https://doi.org/10.1145/1250734.1250766
https://doi.org/10.1145/3134302.3134312
https://doi.org/10.1007/978-3-642-54833-8_27
https://wiki.ubuntu.com/AppArmor
https://doi.org/10.1145/1127345.1127348
https://doi.org/10.1145/1022494.1022530

135:26 Shankara Pailoor, Xinyu Wang, Hovav Shacham, and Isil Dillig

Marco Pistoia, Robert Flynn, Larry Koved, and Vugranam Sreedhar. 2005. Interprocedural Analysis for Privileged Code
Placement and Tainted Variable Detection. Lecture Notes in Computer Science 3586, 362–386. https://doi.org/10.1007/
11531142_16

Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: A Framework for Inductive Program Synthesis. In Proceedings of

the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA). ACM, 107–126.
François Pottier, Christian Skalka, and Scott Smith. 2001. A Systematic Approach to Static Access Control. In Programming

Languages and Systems, David Sands (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 30–45.
Niels Provos. 2003. Improving Host Security with System Call Policies. In Proceedings of the 12th Conference on USENIX

Security Symposium - Volume 12 (Washington, DC) (SSYM’03). USENIX Association, Berkeley, CA, USA, 18–18. http:
//dl.acm.org/citation.cfm?id=1251353.1251371

Niels Provos, Markus Friedl, and Peter Honeyman. 2003. Preventing Privilege Escalation. In Proceedings of the 12th Conference
on USENIX Security Symposium - Volume 12 (Washington, DC) (SSYM’03). USENIX Association, Berkeley, CA, USA, 16–16.
http://dl.acm.org/citation.cfm?id=1251353.1251369

Zvonimir Rakamarić and Michael Emmi. 2014. SMACK: Decoupling Source Language Details from Verifier Implementations.
In Computer Aided Verification, Armin Biere and Roderick Bloem (Eds.). Springer International Publishing, Cham,
106–113.

Zvonimir Rakamarić and Alan J. Hu. 2009. A Scalable Memory Model for Low-Level Code. In Proceedings of the 10th

International Conference on Verification, Model Checking, and Abstract Interpretation (Savannah, GA) (VMCAI ’09). Springer-
Verlag, Berlin, Heidelberg, 290–304. https://doi.org/10.1007/978-3-540-93900-9_24

J. H. Saltzer and M. D. Schroeder. 1975. The protection of information in computer systems. Proc. IEEE 63, 9 (Sep. 1975),
1278–1308. https://doi.org/10.1109/PROC.1975.9939

Sriram Sankaranarayanan, Franjo Ivančić, Ilya Shlyakhter, and Aarti Gupta. 2006. Static Analysis in Disjunctive Numerical
Domains. In Proceedings of the 13th International Conference on Static Analysis (Seoul, Korea) (SAS’06). Springer-Verlag,
Berlin, Heidelberg, 3–17. https://doi.org/10.1007/11823230_2

Steven Smalley. 2002. Configuring the SELinux Policy. NAI Labs Report (Feb. 2002), 7–22.
Armando Solar-Lezama. 2008. Program synthesis by sketching. Ph.D. Dissertation.
Armando Solar-Lezama, Gilad Arnold, Liviu Tancau, Rastislav Bodik, Vijay Saraswat, and Sanjit Seshia. 2007. Sketching

Stencils (PLDI). ACM, 167–178.
Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat. 2006. Combinatorial Sketching for

Finite Programs. In Proceedings of the 12th International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS). ACM, 404–415.
Arnaud Venet. 2004. A Scalable Nonuniform Pointer Analysis for Embedded Programs. In Static Analysis, Roberto Giacobazzi

(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 149–164.
David Wagner and Drew Dean. 2001. Intrusion Detection via Static Analysis. In Proceedings of IEEE Security and Privacy

(“Oakland”) 2001, Roger Needham and Martin Abadi (Eds.). IEEE Computer Society, 156–68.
Zhiyuan Wan, David Lo, Xin Xia, and Liang Cai. 2019. Practical and effective sandboxing for Linux containers. Empirical

Software Engineering (04 Jul 2019). https://doi.org/10.1007/s10664-019-09737-2
Z. Wan, D. Lo, X. Xia, L. Cai, and S. Li. 2017. Mining Sandboxes for Linux Containers. In 2017 IEEE International Conference

on Software Testing, Verification and Validation (ICST). 92–102. https://doi.org/10.1109/ICST.2017.16
Michal Zalewski. 2014. PSA: don’t run ‘strings’ on untrusted files (CVE-2014-8485). Online: https://lcamtuf.blogspot.com/

2014/10/psa-dont-run-strings-on-untrusted-files.html.
Xin Zhang, Ravi Mangal, Mayur Naik, and Hongseok Yang. 2014. Hybrid Top-down and Bottom-up Interprocedural Analysis.

In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation (Edinburgh,
United Kingdom) (PLDI ’14). ACM, New York, NY, USA, 249–258. https://doi.org/10.1145/2594291.2594328

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 135. Publication date: November 2020.

https://doi.org/10.1007/11531142_16
https://doi.org/10.1007/11531142_16
http://dl.acm.org/citation.cfm?id=1251353.1251371
http://dl.acm.org/citation.cfm?id=1251353.1251371
http://dl.acm.org/citation.cfm?id=1251353.1251369
https://doi.org/10.1007/978-3-540-93900-9_24
https://doi.org/10.1109/PROC.1975.9939
https://doi.org/10.1007/11823230_2
https://doi.org/10.1007/s10664-019-09737-2
https://doi.org/10.1109/ICST.2017.16
https://lcamtuf.blogspot.com/2014/10/psa-dont-run-strings-on-untrusted-files.html
https://lcamtuf.blogspot.com/2014/10/psa-dont-run-strings-on-untrusted-files.html
https://doi.org/10.1145/2594291.2594328

	Abstract
	1 Introduction
	2 Motivating Example
	2.1 Current Practice
	2.2 Our Approach

	3 Syscall Whitelisting Policies
	3.1 Feasible Syscall States
	3.2 Syscall Policies

	4 Syscall Analysis
	4.1 Programming Language
	4.2 The ArrayVal Abstract Domain
	4.3 Intraprocedural Transformers
	4.4 Interprocedural Transformers
	4.5 Analysis Algorithm

	5 Policy Synthesis
	5.1 Optimal Policy Synthesis Problem
	5.2 Synthesis Algorithm

	6 Implementation
	7 Evaluation
	7.1 Blocking Privilege Escalation Attacks on Linux
	7.2 Comparison with Handcrafted Pledge Policies
	7.3 Running Time of Abhaya
	7.4 Ablation Study for Syscall Analysis
	7.5 Ablation Study for Policy Synthesis

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

