
Automated Inference of Library Specifications
for Source-Sink Property Verification?

Haiyan Zhu1, Thomas Dillig2, and Isil Dillig3

1 College of William & Mary
2 University College London

3 Microsoft Research Cambridge

Abstract. Many safety properties in program analysis, such as many
memory safety and information flow problems, can be formulated as
source-sink problems. While there are many existing techniques for check-
ing source-sink properties, the soundness of these techniques relies on all
relevant source code being available for analysis. Unfortunately, many
programs make use of libraries whose source code is either not avail-
able or not amenable to precise static analysis. This paper addresses this
limitation of source-sink verifiers through a technique for inferring ex-
actly those library specifications that are needed for verifying the client
program. We have applied the proposed technique for tracking explicit
information flow in Android applications, and we show that our method
effectively identifies the needed specifications of the Android SDK.

1 Introduction

Many safety properties of interest in program analysis can be formulated in
terms of verifying the absence of source-sink errors. Such an error arises if a value
constructed at a location designated as a source reaches a location designated
as a sink. Examples of source-sink problems include the following:

– Confidential information (source) cannot be sent to an untrusted party (sink).
– A pointer assigned to null (source) should not reach a dereference (sink).
– A closed file f (source) should not be read or written (sink).

Over the last decade, there has been much progress in verifying the absence
of source-sink errors [1–3]. Given a value v constructed at source location l1, and
a value w consumed at sink location l2, source-sink checkers determine if there
exists a feasible execution path from l1 to l2 on which v and w are equal. As an
example, consider the following Java-like code:

1. Data d = new Data();

2. Location x = null;

3. if(R) x = getGPSLocation();

4. d.loc = x ;

5. if(R) send(d.loc, "http://xue.com/stealmyloc.php");

Here, we want to determine whether confidential data can be sent over the
network. The method getGPSLocation is a source since it returns the user’s

? This work is supported in part by DARPA #FA8750-12-2-0020



confidential GPS location. In contrast, the method send(x,y) called at line 5 is
a sink because it sends data x to URL y. Assuming predicate R can be true, the
above code snippet has a source-sink error because there is a feasible execution
path from the source to the sink in which x and d.loc are aliases.

While automated source-sink checkers have improved substantially in terms
of precision and scalability over the last decade, they typically make two as-
sumptions to guarantee soundness: First, they require sources and sinks to be
specified by the user. Second, they require all relevant source code to be avail-
able for analysis. The first requirement is often not too cumbersome because
there are typically few kinds of sources and sinks, and there has been recent
progress on automating source and sink inference [4]. On the other hand, the
second assumption is more problematic because modern software uses of many
layers of complex libraries. While calls to library methods can –and often do–
affect source-to-sink flows, it is often impractical to analyze library code together
with the client, for example, because library code may be unavailable or may be
written in a different language. Furthermore, even when library code is available,
its implementation is typically much larger and much lower-level than the client,
making it undesirable to analyze the library’s implementation for verifying the
client. Existing source-sink checkers deal with this difficulty in one of three ways:

1. Assume an angelic environment by treating library calls as no-ops. Unfortu-
nately, this amounts to the optimistic but unsound assumption that library
methods do not introduce flows from sources to sinks.

2. Assume a demonic environment by making worst-case assumptions about
library methods, which means that a library method m may introduce a
flow between any pair of locations reachable in m.

3. Require the user to write flow specifications of library methods, which de-
scribe whether input x may transitively reach output y.

Unfortunately, all of these options have serious drawbacks. The first option
is unsound and yields many false negatives. The second option is sound but
grossly imprecise, yielding many false positives. Finally, the third alternative is
extremely cumbersome for users: In modern software, there are typically many
calls to library functions, each of which could require several flow annotations. In
principle, not all of these flow specifications are relevant for verifying the absence
of source-sink errors, but it is very difficult for humans to reliably identify which
specifications are needed to guarantee soundness of the analysis.

In this paper, we address this limitation of source-sink checkers by automat-
ing the inference of library specifications that are needed for soundness. Given a
client program A, our technique infers a smallest set of must-not-flow require-
ments on library functions that are sufficient to ensure that A is free of source-
sink errors. Since our technique only analyzes implementations of clients but not
libraries, specifications inferred by our technique must be checked against either
the documentation or the implementation of the library. However, as we show
experimentally, the number of must-not-flow requirements inferred by our tech-
nique are only a small fraction of the possible flow relations that are possible;
hence, our technique minimizes the effort required to guarantee soundness.



VC Gen

Known
 specs

Abduction

Inferred
spec

Oracle

VC
Error

false

Proof+spec
validated

Client
  app

Fig. 1. A schematic illustration of our approach

1.1 Overview

The high-level architecture of our approach is shown in Figure 1. Given a client
application A, our technique first analyzes A to generate a verification condition
(VC) φ. This VC is parametrized over the possible flows that can be introduced
due to library calls and its validity guarantees the absence of source-sink errors
in A. Given such a VC φ and a formula χ encoding known partial specifications
of library methods, our technique enters a refinement loop with the “Abduction”
component at its core. The formula χ is initially just true, meaning there are no
known specifications of library methods, but becomes logically stronger as the
refinement process continues.

At every step of the refinement loop, we use an inference technique known as
abduction to speculate a candidate specification ψ, which asserts a minimal set of
must-not-flow requirements on library methods that are sufficient to guarantee
program A’s correctness. Since our technique does not analyze library imple-
mentations, each must-not-flow requirement in ψ must be externally validated
by an oracle. This oracle can be a user who can consult the documentation of the
library or a different technique for analyzing the library’s source code or binary.
In either case, since we want to minimize the amount of work to be performed by
the oracle, our inferred candidate specification ψ should be as small as possible.

Given the candidate specification ψ, we then ask the oracle to confirm or
refute each must-not-flow requirement li in ψ. If the oracle can confirm each
li ∈ ψ, we have found a correct and minimal specification sufficient to verify A.
In this case, the refinement loop terminates with ψ ⇒ φ as a proof of correctness
of A. On the other hand, if the oracle cannot certify some must-not-flow relation
li from α to β in ψ, this means there is a may-flow relation from α to β. Therefore,
the negation of li is added to the set of known specifications χ, and abduction is
used again to infer a different candidate specification ψ′. This process continues
until either we find a correct specification sufficient to verify A or until we prove
that there is no correct must-not-flow specification of the library sufficient to
discharge the VC φ. We now give a brief overview of the two key components
underlying our technique, illustrated as “VC Gen” and “Abduction” in Figure 1.

VC Generation Our approach to generating VCs is based on the following in-
sight: Rather than making purely angelic or purely demonic assumptions, we in-
troduce constraints describing the possible effects of library methods. These con-
straints are composed of boolean flow variables fl1 7→l2 , which describe whether
the value in location l1 may flow to location l2 in library function f . As an
example, consider the statement x = f(y) where f is a library method. Here, if y
was tainted before the call, our analysis will taint x under the constraint fa1 7→ret,



where the boolean variable fa1 7→ret represents whether f ’s first argument may
(transitively) flow to its return value.

Now, when we encounter a sink, we generate a VC that is parametric over
these flow variables. Specifically, if a variable x used at a sink has value v under
constraint ϕ, then the generated VC asserts that ϕ implies that v is not tainted.
Since the value constraints ϕ are parametrized over possible flow relations, the
validity of the VC therefore depends on the truth assignment to flow variables.

The advantage of this strategy is that the generated VC captures the full
range of possible assumptions on the library in between the angelic and demonic
ones. On one extreme, if the VC is valid, the client application can be verified
even under demonic assumptions. On the other hand, if the VC is unsatisfiable,
the client application cannot be verified even with angelic assumptions about
library calls. However, if the formula is contingent, the VC still contains useful
information about flow specifications needed to discharge the source-sink flow.

Abductive Inference The second insight underlying our technique is that
logical abduction can be used to infer a minimal set of must-not-flow requirements
that are needed to guarantee the absence of source-sink errors in the client
application. Specifically, given two formulas φ and χ, logical abduction is the
problem of finding an explanatory hypothesis ψ such that:

(1) χ ∧ ψ |= φ and (2) SAT(χ ∧ ψ)

In our setting, φ corresponds to the VC generated for the client, and χ corre-
sponds to the known assumptions on library methods. Therefore, the first con-
dition says that, together with known specifications χ, the solution ψ to the in-
ference problem should imply the verification condition φ. The second condition
says that the abductive solution ψ should not contradict known specifications χ.

In addition to these two requirements, we want our solution ψ to be the small-
est conjunction of flow literals satisfying the above conditions. This requirement
is important since we want to minimize the number of assumptions to be exter-
nally validated by an oracle. For this purpose, our technique uses minimum-size
prime implicants of boolean formulas to compute the desired abductive solutions.

1.2 Organization and Contributions

The rest of this paper is organized as follows: Section 2 gives the syntax and
semantics of a small language used for our formalization. Section 3 describes
a sound static analysis for generating VCs parametric over flow variables, and
Section 4 describes our inference algorithm based on minimum-size prime impli-
cants. Sections 5 and 6 describe important extensions and our implementation.
Finally, Sections 7, 8, 9 describe experimental results, related work, and future
directions. To summarize, this paper makes the following key contributions:

– We present a novel technique for inferring flow specifications of libraries for
source-sink property verification.

– We show how to generate verification conditions that are parametric over
the unknown behavior of library methods.



Program P := m f∗

Client m := def m = {κ}
Library function f := def f(α1, . . . , αn) = {ς; χf ← v}
Client stmt κ := v ← S | check(v) | a | κ1;κ2 | if(?) then κ1 else κ2 | v ←ρ f(v1, . . . , vn)
Library stmt ς := a | ς1; ς2 | if(?) then ς1 else ς2
Assignment a := v ← c | v1 ← v2
Constant c := C1 | . . . | Ck

Fig. 2. Language used for formal development

– We formulate the minimum flow specification inference problem as an in-
stance of logical abduction and give an algorithm based on minimum-size
prime implicants for solving the generated inference problems.

– We apply the proposed technique for verifying confidentiality of Android
applications that heavily use unanalyzed library methods. Experimentally,
we show that our method is effective at identifying a small set of relevant
flow specifications that are needed for analyzing the client.

2 Language and Concrete Semantics

Figure 2 defines an imperative call-by-value language used for our formaliza-
tion. In this language, a program consists of one client application m and zero
or more library functions f . The client m has body κ, and our goal is to verify
m without analyzing libraries called by m. While our technique will not ana-
lyze library functions f , we give their syntax and semantics in order to precisely
define what we mean by their flow specifications.

In this language, the special constant S denotes a source; hence, the assign-
ment v ← S taints variable v. The statement check(v) is a sink : It evaluates to
false if v is tainted (i.e., value of v is S); otherwise, it evaluates to true. If the
check statement check(v) evaluates to false, we say that the check fails.

In client m, statements are sources, sinks, assignments, sequencing, condi-
tionals, and calls to library functions, which are annotated with a unique label
ρ. Library functions f can take any number of arguments α1, . . . , αn and consist
of a body ς and a statement χf ← v, where χf denotes the return value of f .
Statements ς used in library functions are the same as those used in the client
except that they cannot be sources or sinks, since we assume library methods
corresponding to sources and sinks are annotated. Hence, while library functions
can propagate taint, they neither generate nor leak tainted values.

To focus on the novel ideas underlying our technique, our formal development
intentionally omits pointers. Section 5 will explain how the proposed technique
can reason about flows between objects in the heap.

2.1 Operational Semantics

To allow providing a soundness proof of our approach, Figure 3 presents a
large-step operational semantics of the language from Figure 2. The operational
semantics are described using judgments of the form Π,Γ ` s : Γ ′, b. Here, Π
maps each function name to its definition, and the store Γ maps each variable
to its value at run-time. A new store Γ ′ is obtained by executing statement s
starting with store Γ , and the boolean value b indicates whether there is a failing
check statement in s. Therefore, rules (4a) and (4b) for check(v) statements



(1)
Γ ′ = Γ [v 7→ c]

Π,Γ ` v ← c : Γ ′, true
(2)

Γ (v2) = c
Γ ′ = Γ [v1 7→ c]

Π,Γ ` v1 ← v2 : Γ ′, true
(3)

Π,Γ ` s1 : Γ1, b1
Π,Γ1 ` s2 : Γ2, b2

Π,Γ ` s1; s2 : Γ2, b1 ∧ b2

(4a)
Γ (v) = c c 6= S

Π,Γ ` check(v) : Γ, true
(4b)

Γ (v) = c c = S
Π,Γ ` check(v) : Γ, false

(5a)

(s1 ⊕ s2) = s1
Π,Γ ` s1 : Γ1, b1

Π,Γ ` if(?) then s1 else s2 : Γ1, b1
(5b)

(s1 ⊕ s2) = s2
Π,Γ ` s2 : Γ2

Π,Γ ` if(?) then s1 else s2 : Γ2, b2

(6)

Π(f) = λα1, . . . , αn.{s;χf ← v}
Γ (v1) = c1 . . . Γ (vn) = cn

Π, [α1 7→ c1, . . . , αn 7→ cn] ` {s;χf ← v} : Γ ′

Γ ′(χf ) = c

Π, Γ ` v ←ρ f(v1, . . . , vn) : Γ [v 7→ c, πρ 7→ c], true

Fig. 3. Operational semantics

produce true or false depending on whether v is S. In rules (5a) and (5b) for if
statements, the notation s1 ⊕ s2 non-deterministically chooses either s1 or s2.

Rule (6) in Figure 3 gives the semantics of calls to library methods. Since
this language has call-by-value semantics, only the value of variable v can change
in the client code as a result of the call v ←ρ f(v1, . . . , vn). Specifically, since
χf denotes function f ’s return value, v is assigned to c whenever χf evaluates
to c. The variable πρ used in rule (6) is an instrumentation variable and is only
introduced to facilitate the soundness proof of our abstract semantics.

Definition 1 A concrete execution of a program P has a source-sink error if
and only if P evaluates to false.

2.2 Flows in Concrete Executions

Since our technique will infer flow specifications of library functions, we first
formally define what we mean by a flow in a concrete execution. In this section,
we represent a concrete execution of a program by a trace σ = s1, s2, . . . , sn
consisting of the sequential execution of instructions s1 through sn. Instructions
can be assignments, check statements, function invocations, or function returns.
We write callρ f(v1, . . . , vn) to denote the invocation of function f with actuals
v1, . . . , vn at a call site v ←ρ f(v1, . . . , vn), and we write returnρ f 7→ v to
indicate f ’s return and the assignment of its return value to variable v.

Given a trace σ = s1, s2, . . . , sn, we write s+
i and s−i to represent the control

points right after and right before the execution of instruction si respectively.
Observe that this implies s+

i = s−i+1. We can now define a one-step flow relation
 between variables u, v on a concrete execution σ:

Definition 2 Let σ = s1, s2, . . . , sn be an execution trace. We define the one-
step flow relation to be the smallest relation satisfying the following conditions:

– (u, s−i ) (u, s+
i ) if si 6= (u← . . .)

– (u, s−i ) (v, s+
i ) if si = (v ← u)



The first condition here states that (u, s−i )  (u, s+
i ) if si does not reassign

u. The second condition says that (u, s−i ) (v, s+
i ) if instruction si is an assign-

ment from u to v. Thus, intuitively, the one-step flow relation (u, s−i ) (v, s+
i )

encodes whether the value of variable u flows to variable v in instruction si.
Using the relation  , we now define a multi-step flow relation  ∗ as follows:

Definition 3 The multi-step flow relation  ∗ is the smallest relation satisfying
the following conditions:

– (u, s−i ) ∗ (v, s+
j ) if (u, s−i ) (v, s+

j )

– (u, s−i ) ∗ (w, s+
k ) if (u, s−i ) ∗ (v, s+

j ) and (v, s−j+1) ∗ (w, s+
k )

– (vk, s
−
i )  ∗ (v, s+

j ) if si = callρf(v1, . . . vn) and sj = returnρf 7→ v and

(αk, s
−
i+1) ∗ (χf , s

+
j−1)

If (u, s−i )  ∗ (v, s+
j ), we say that u at si flows to v at sj . The first two

conditions in Definition 3 state that  ∗ includes the transitive closure of  .
The third condition deals with flows that are introduced due to calls to library
functions. Specifically, consider a pair (si, sj) of matching function call/return
instructions where si = callρ f(v1, . . . , vn) and sj = returnρf 7→ v. Observe that
the sub-trace given by si+1, si+2, . . . , sj−1 corresponds to the execution of f ’s
body. According to the third rule of Definition 3, if the k’th argument of f flows
to the return value of f between si+1 and sj−1, then the value of the actual vk
before instruction si also flows to variable v after instruction sj .

Example 1. Consider the following trace σ:

s1 : u← S
s5 : χf ← x

s2 : v ← u
s6 : returnρf 7→ w

s3 : callρf(v)
s7 : z ← w

s4 : x← α1

s8 : check(z)

Here, (α1, s
−
4 ) ∗ (χf , s

+
5 ) because f ’s first argument is transitively assigned

to its return value. Due to the call between s3 and s6, (v, s−3 ) ∗ (w, s+
6 ). Finally,

since (u, s+
1 ) ∗ (v, s−3 ) and (w, s+

6 ) ∗ (z, s−8 ), we have (u, s+
1 ) ∗ (z, s−8 ).

Since we will use flow specifications of library functions to determine the
absence of source-sink errors, it is helpful to give the following alternate charac-
terization of source-sink errors in terms of flows:

Proposition 1. Trace σ = s1, s2, . . . , sn has a source-sink error iff there exists
some si, sj ∈ σ such that si : (u← S) and sj : check(v) and (u, s+

i ) ∗ (v, s−j ).

Example 2. The trace from Example 1 has a source-sink error because (u, s+
1 ) ∗

(z, s−8 ) and s1 is u← S and s8 is check(z).

3 Analysis and VC Generation

This section describe a static analysis for generating verification conditions that,
if valid, imply the absence of source-sink errors. As mentioned earlier, the VCs
generated by our analysis are parametrized over boolean flow variables, which
soundly model the unknown effects of calls to library functions.

The VC generation procedure is described as inference rules shown in Fig-
ure 4. These rules use an environment Ω, which is the abstract counterpart of



(1)
Ω′ = Ω[v 7→ (c, true)]

Ω ` v ← c : Ω′, true
(2)

Ω(v2) = θ Ω′ = Ω[v1 7→ θ]

Ω ` v1 ← v2 : Ω′, true

(3)

Ω ` s1 : Ω1, φ1

Ω1 ` s2 : Ω2, φ2

Ω ` s1;ρ s2 : Ω2, φ1 ∧ φ2
(4)

Ω(v) = θ
φ =

∧
(Ai,φi)∈θ

φi ⇒ (Ai 6= S)

Ω ` check(v) : Ω,φ

(5)

Ω ` s1 : Ω1, φ1

Ω ` s2 : Ω2, φ2

Ω ` if(?) then s1 else s2 : Ω1 tΩ2, φ1 ∧ φ2

(6)

θi = {(Aij , φij ∧ fi) | (Aij , φij) ∈ Ω(vi)}
θ = (

⋃
1≤i<n

θi) ∪ (πρ, πρ 6= S)

Ω ` v ←ρ f(v1, . . . , vn) : Ω[v 7→ θ, πρ 7→ (πρ, true)], true

Fig. 4. VC Generation rules

the concrete store Γ from the operational semantics. The abstract store Ω maps
each program variable to a guarded value set θ, consisting of value, constraint
pairs. Values A in the analysis include sources S, constants C1, . . . , Cn, and spe-
cial variables π which are used to model the unknown return values of library
functions. If (Ai, φi) ∈ Ω(v), this means v may be equal to Ai if constraint φi is
satisfied. Constraints φ are formed according to the following grammar:

φ := true | false | A 6= S | fi | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 ⇒ φ2

Hence, constraints are boolean combinations of flow variables fi and disequality
constraints A 6= S. As expected, (S 6= S) ≡ false and (Ci 6= S) ≡ true for any
Ci. Given an interpretation σ mapping each flow variable to a boolean constant
and each π variable to a constant Ci or S, σ(φ) evaluates to true or false.

Figure 4 presents the analysis using judgments of the form Ω ` s : Ω′, φ.
The meaning of this judgment is that, given an abstract store Ω, the analysis of
statement s yields a new abstract store Ω′ and a verification condition φ.

Rules (1) and (2) in Figure 4 describe the analysis of assignments and are
straightforward analogues of the concrete semantics. For example, rule (2) for
assignments (v1 ← v2) says that if v2 has guarded value set θ in Ω, then Ω′ also
maps v1 to θ. For both rules, the resulting VC is just true since these statements
do not contain sinks. Rule (3) for sequencing also closely parallels the concrete
semantics. The resulting VC is φ1 ∧ φ2 because the VCs of both s1 and s2 must
hold to ensure that the program is error-free.

Rule (4) generates the VC for check statements. In this rule, we first retrieve
the guarded value set θ of variable v. For each pair, (Ai, φi) ∈ θ, we must check
that Ai is not equal to S under constraint φi, which is a necessary condition for
v to have value Ai. Thus, the generated verification condition is the conjunction
of constraints φi ⇒ (Ai 6= S) for each (Ai, φi) ∈ θ.

Rule (5) describes the analysis of conditionals. Since the analysis must ac-
count for the possibility that either branch may execute, the resulting store Ω′

is obtained by taking the join of Ω1 and Ω2:



Definition 4 Given two abstract stores Ω1 and Ω2, Ω1tΩ2 is defined as follows:

(A, φ) ∈ Ω1(v) ∧ (A, φ′) ∈ Ω2(v)⇒ (A, φ ∨ φ′) ∈ (Ω1 tΩ2)(v)
(A, φ) ∈ Ωi(v) ∧ (A, ) 6∈ Ωj(v)⇒ (A, φ) ∈ (Ω1 tΩ2)(v)

The VC we generate in rule (5) is φ1 ∧ φ2 because the VCs of both branches
must hold to guarantee that any execution of the program is error-free.

The last rule (6) describes the analysis of calls to library methods. Since
library methods do not contain sinks, the VC here is just true. The more inter-
esting part of this rule is the computation of the new guarded value set θ. To
account for the possibility that f ’s i’th argument may flow to its return value,
we introduce a propositional flow variable fi representing whether or not there
is such a flow. Specifically, if (Aij , φij) ∈ Ω(vi), then (Aij , φij ∧ fi) ∈ Ω′(vi),
where Ω′ is the abstract store after analyzing the function call. Now, in addition,
to account for the possibility that f may return a fresh value, v’s value set in Ω′

also contains a variable πρ, which represents an unknown value produced in f .
However, since sources are disallowed in library methods, the guard πρ 6= S for
v in θ stipulates that πρ is not a source.

Example 3. Consider the following code snippet:

1. x← S; y ← C2; if(?) then z ← x else z ← y;
2. a←1 f(z); b←2 g(y); c←3 f(x);
3. if(?) then d←4 m(a) else d←5 h(b, c);
4. check(d)

Here, after line 2, we have:

Ω(x) = {(S, true)} Ω(y) = {(C2, true)}
Ω(z) = {(S, true), (C2, true)} Ω(a) = {(S, f1), (C2, f1), (π1, π1 6= S)}
Ω(b) = {(C2, g1), (π2, π2 6= S)} Ω(c) = {(S, f1), (π3, π3 6= S)}

Here, f1, g1 are flow variables indicating whether f and g’s first arguments may
flow to their return value. After analyzing the if statement at line 3, we have:

(S, (f1 ∧m1) ∨ (f1 ∧ h2)) ∈ Ω(d)

This means that d is tainted at line 4 under constraint (f1 ∧ m1) ∨ (f1 ∧ h2).
Here, the first disjunct (f1∧m1) comes from the then branch of the if statement,
while the second disjunct, (f1 ∧ h2) comes from the else branch. Specifically, in
the then branch, d is tainted if a is tainted and m’s first argument flows to its
return value. Since a is tainted under guard f1, d is tainted under guard f1∧m1

where m1 is a flow variable for function m. Similarly, in the else branch, d is
tainted if either (i) b is tainted and h’s first argument flows to its return value,
or (ii) c is tainted and h’s second argument flows to its return value. Since S
is not in the value set for b, it is not tainted, and the first condition is false.
Since c is tainted under constraint f1, the second condition is f1 ∧ h2. Thus,
in the else branch, d is tainted under constraint f1 ∧ h2. Finally, when we take
the join of the two value sets for d, we obtain that d is tainted under the guard
(f1 ∧m1)∨ (f1 ∧ h2) after line 4. Finally, after analyzing the check statement at
line 5, the (simplified) VC is given by ((f1 ∧m1) ∨ (f1 ∧ h2))⇒ false.



3.1 Soundness

The soundness proof of the analysis is provided in Appendix A.

4 Inference of Flow Specifications

Given a program P and its VC φ, our goal is now to infer a smallest set candidate
flow specifications ψ such that ψ is sufficient to prove the validity of φ. At a
technical level, we define flow specifications as follows:

Definition 5 A flow specification for a library function f is an assignment from
a flow variable fi to a boolean constant.

A flow specification for a function f is said to be correct if it assigns fi to false
only if there is no possible execution σ = {s1, . . . , sn} of f where (αi, s

−
1 )  ∗

(χf , s
+
n ). In the rest of this section, we assume there is an oracle which can

confirm or refute the correctness of a candidate flow specification. This oracle
may be a human who can consult the documentation of the library or some other
sound analysis capable of analyzing the library code or binary. Since our goal is
to minimize the number of queries to the oracle, we are interested in inferring a
minimal specification sufficient for the verification task.

4.1 Computing Minimal Candidate Flow Specifications

We formulate the minimal specification inference problem in terms of abduction
in logic. Specifically, given a VC φ for a source-sink problem, and a formula χ
representing known flow specifications, we want to infer a formula ψ such that:

(1) χ ∧ ψ |= φ (2) SAT(χ ∧ ψ)

Here, (1) says the candidate specification ψ, together with known specifications
χ, should be sufficient to discharge the VC φ, and (2) says the candidate spec-
ification ψ should not contradict known specifications χ, since such a solution
ψ cannot be correct. The inference of a formula ψ satisfying the above require-
ments is an abduction problem in logic. However, in addition to being a solution
to the abduction problem, we require ψ to satisfy two additional requirements:

– First, since ψ represents a set of flow specifications, it should be a conjunction
of literals, where each literal is either a flow variable fi or its negation.

– Second, since we want a minimal specification, ψ should contain as few
literals as possible. Since each literal in ψ corresponds to a query to the
oracle, this minimizes the number of queries needed to verify the client.

Our insight is that we can compute a solution ψ satisfying these two require-
ments using minimum-size prime implicants (MPI) defined as follows:

Definition 6 (Minimum-size prime implicant) A minimum-size prime im-
plicant (MPI) of a boolean formula ϕ is a set S of literals such that

∧
li∈S li |= ϕ

and for any other set S′ such that |S′| < |S|,
∧
l′i∈S′ l′i 6|= ϕ.



Procedure FindSpec
input: verification condition φ
output: inferred specification χ
(1) χ := true
(2) while true do
(3) I := MinPrimeImp(χ⇒ φ, χ)
(4) if I = ∅ then return false
(5) proven := false
(6) for each li ∈ I
(7) proven := CertifiedByOracle(li)
(8) if proven then χ := χ ∧ li
(9) else (χ := χ ∧ ¬li; break)
(10) if proven then return χ

Fig. 5. Algorithm for finding correct flow specifications

Practical algorithms for computing MPIs of boolean formulas have been stud-
ied, for example, in [5, 6]. To see how MPIs are useful for solving our abduc-
tion problem, observe that the first requirement χ ∧ ψ |= φ can be written as
ψ |= χ⇒ φ. Since we want ψ to be a smallest conjunction of literals that implies
χ ⇒ φ, a solution to the abduction problem is an MPI of χ ⇒ φ that does
not contradict χ. The algorithm given in [6] can be used to compute an MPI of
χ⇒ φ consistent with χ, which yields the solution ψ to our abduction problem.

Example 4. Consider again the code from Example 3. Recall that we computed
the VC for this program as φ : ((f1∧m1)∨(f1∧h2))⇒ false. Assuming χ = true,
an MPI for χ⇒ φ is ¬f1. Hence, the program is free of source-sink errors if there
is no flow from the first argument of f to its return value.

4.2 Computing Correct Minimal Flow Specifications

The solution ψ to the abduction problem from Section 4.1 yields a minimal can-
didate specification sufficient to verify the client. However, since ψ is effectively
a speculation, it does not have to be correct. This section describes a refinement
algorithm that interacts with the oracle until a correct specification is found.
The FindSpec algorithm used for this purpose is shown in Figure 5. It takes as
input the VC φ and returns a set of correct flow specifications that are sufficient
to discharge the error. If no such specification exists, it returns false.

The idea behind FindSpec is the following: First, at line (3), it computes a
set I = {l1, . . . , ln} of candidate flow specifications as discussed in Section 4.1
using minimum prime implicants. In the inner loop of FindSpec, we use an oracle
to certify each flow specification li ∈ I. If the oracle can certify each li ∈ I, then
we are done. However, if the oracle cannot validate some candidate specification
li ∈ I, this means I may not be correct, and we therefore backtrack from this
choice by breaking out of the inner loop (line 9). In each iteration of the outer
while loop, we compute a new candidate specification I using abduction. To
ensure that the current solution I is distinct from previous ones, we maintain a
formula χ which represents previous answers given by the oracle. This formula
χ is initially true, but becomes stronger after every query to the oracle: If the
oracle certifies specification li, we conjoin li with χ; otherwise, we conjoin ¬li.
This strategy ensures that we do not obtain inferences containing literal li in



the future. This process continues until we either find a valid proof or conclude
that the program cannot be verified relative to the oracle.

Theorem 1. The FindSpec algorithm is guaranteed to terminate.

Proof. Given in Appendix B.

Theorem 2. If there exists a set of correct flow specifications sufficient to dis-
charge φ, then FindSpec will not return false assuming completeness of the oracle.

Proof. Given in Appendix B.

Example 5. Consider again the code from Example 3 and its corresponding VC
φ : ((f1∧m1)∨(f1∧h2))⇒ false. FindSpec first computes an MPI of φ, which is
¬f1 as discussed in Example 4. Thus, I starts out as {¬f1}. If the oracle certifies
that f ’s first argument never flows to its return value, the program is verified.
Otherwise, we conjoin f1 with χ (true). In the next iteration, the solution to
the abduction problem is {¬m1,¬h2}. Now, we ask the oracle to certify ¬m1. If
the oracle cannot do so, the algorithm terminates because m1 is conjoined with
χ, and there is no abductive solution consistent with f1 ∧m1. If the oracle can
certify m1, the program can be verified iff the oracle can also certify ¬h2.

5 Tracking Flows in the Heap

While the language used in the formalization did not allow pointers, our im-
plementation targets Java, where method calls can introduce flows between any
pair of heap objects reachable in the called method. Therefore, to soundly handle
flows through the heap, we introduce one flow variable for any ordered pair of
abstract memory locations (l1, l2) for which the value in l2 may flow to l1. That
is, a flow variable fl1,l2 expresses that there is a flow in f from some concrete
memory location represented by l1 to a concrete location represented by l2. Since
Java is type-safe, we consider a flow between two heap locations l1 and l2 feasible
if the static type of l1 is a subtype of that of l2 or vice versa. If these types are
class types and field declarations in the library are visible, we also consider their
nested fields with their respective types. 4 As an example, consider the following
Java code, where library definitions and client code are shown:

/* Library Definitions */

class Name { private String name; };

class Phone { private String phone; }

class Contact { private Name n; private Phone p; };

/* Client Code */

String str = TAINTED; Name n = new Name ("John Smith");

Phone p = new Phone(str); Contact c = new Contact(n, p);

Network.send(n);

4 If library declarations are not visible, we conservatively introduce a flow variable for
any pair of locations (l1, l2) where l2 is an instance of a library-defined class.



App LOC lib calls possible flows time queries queries
possible SSF actual SSF demonic

ContentProvider 342 26 27 0.9s 2 7.41% 1 3
ContactManager 1017 206 319 5.2s 2 0.63% 1 4
TUIOdroid 1612 437 646 16.4s 2 0.31% 1 24
eu.domob.angulo 1748 141 163 5.0s 1 0.61% 1 22
RemoteDroid 3781 505 680 33.9s 4 0.59% 3 48
tomdroid 10316 1515 2853 126.3s 4 0.14% 2 31
net.rocrail.android 13499 1940 3281 214.0s 4 0.12% 0 103
org.yaaic 18099 1517 2800 96.7s 9 0.32% 1 92

Average 6302 786 1346 62.3s 3.5 0.26% 1.25 40.9

Fig. 6. Experimental Results. The column labeled “SSF actual” shows the number of
actual source-sink flows, while “SSF demonic” shows the number of source-sink flows
reported when making conservative assumptions about library methods.

Here, assume TAINTED is a secret value and Network.send is a sink. Since
p.phone and str are type compatible, a boolean variable Phonearg0,ret.phone
expresses a possible flow from the first argument of the Phone constructor
to the phone field of its return value. Similarly, since the name and phone

fields of heap locations p and n are type compatible, the boolean variables
Contactarg1.phone,arg0.name and Contactarg0.name,arg1.phone express potential flows
from p.phone to n.name and vice versa. Therefore, for this example, our tech-
nique generates the VC: ¬Contactarg1.phone,arg0.name ∨ ¬Phonearg0,ret.phone.

6 Implementation

We have implemented a tool for tracking explicit information flow properties of
Android smart phone applications. Android applications are developed in the
Java programming language, but make extensive use of the Android software
development kit (SDK). Since the Android SDK is many orders of magnitude
larger than the typical client application and since it is written in a variety of
languages besides Java, it is impractical to perform a precise static analysis of the
framework code along with the application code. Therefore, our implementation
uses the technique described in this paper to reason about calls to the Android
framework when analyzing a given smart phone application.

While the language from Section 2 does not contain many of the standard
features of Java, such as pointers and virtual method calls, our implementation
handles the full Java language (except some uses of reflection). For reasoning
about the heap, we use a flow- and context-sensitive pointer analysis that we
introduced in our previous work (see [7]). Since our pointer analysis also does
not analyze the Android framework code, we deal with calls to the Android
framework methods as outlined in Section 5.

7 Experiments

We used the proposed technique for verifying confidentiality in Android applica-
tions. Specifically, we targeted explicit information flow properties where sources
correspond to private user data and sinks are methods that send data. Since the
proposed technique is not meant for inferring sources and sinks, we manually
annotated a total of six different sources and sinks found in these applications.
Sources include phone contacts, GPS location, call records, and IMEI number,
while sinks include methods that send data over the network and methods for
sending SMS messages.



In our experimental evaluation, we chose to focus on Android applications
because they are programmed against the complex Android SDK library. While
individual Android applications are typically a few thousand or ten thousand
lines of code, the size of the entire Android library stack is several millions of
lines of code, containing a mix of Java, C, and C++ code. Therefore, Android
applications are good examples of software for which it is neither feasible nor
desirable to analyze implementations of libraries in order to verify the client.

The eight applications we analyzed range from 342 to 18,099 lines of code
and include an instant messaging client, a miniature train controller, an angle
measurement software, two remote control programs, a note-taking software,
and two small Android developer example applications. With the exception of
the miniature train control (net.rocrail.android), all applications contain some
source-sink flows. However, many of these flows are necessary for the application
to perform its functionality and do not show malicious intent.

The first four columns in Figure 6 give details about the experimental bench-
marks. As indicated by the column “lib calls”, the number of calls to library
methods range from 26 to 1940 calls per application. On average, there are 786
calls to unanalyzed library methods. The column labeled “possible flows” shows
the total number of flows that could be introduced due to calls to library meth-
ods. On average, there are 1346 possible flows that could arise from library calls.

The next five columns in Figure 6 present analysis results. As shown in the
column labeled “time”, the analysis takes an average of 62.3 seconds for analyzing
an average of 6302 lines of code. The next column labeled “queries” shows the
number of queries made to the oracle. As shown in the “queries” column, the
number of queries to the oracle range from one to nine, with an average of
3.5 queries across all benchmarks. In our experimental setup, all queries to the
oracle were answered by one of the authors who consulted the documentation
of the library methods in the Android SDK. Observe that the number of flow
specifications that must be confirmed by the user is a very small percentage of
the possible flows that could be introduced due to calls to library methods. The
column labeled “queries/possible” shows the percentage of flow specifications
that must be confirmed by the user relative to all possible flows that could be
introduced due to library calls. As the table shows, this percentage is very small;
on average, the user only needs to examine 0.26% of all the possible flows.

The next column labeled “SSF actual” in Figure 6 shows the number of
source-sink flows identified by our analysis. On these benchmarks, our analysis
identifies zero to three possible source-sink flows. We manually inspected all of
these flows and found that none of them are spurious. We believe the absence of
false positives indicates that the may-flow abstraction is sufficiently precise for
summarizing the behavior of libraries for source-sink property verification.

Finally, the last column labeled “SSF demonic” shows the number of source-
sink errors identified by the analysis when we make demonic (i.e., conservative)
assumptions about flows that could be introduced due to library calls. As shown
in Figure 6, there are an average of 40.9 source-sink flows identified by the
analysis when we make conservative assumptions about library calls. On aver-



age, this is 33 times larger than the number of actual source-sink flows found
in these applications and shows that making conservative assumptions about
library method behavior results in a very high number of false alarms.

8 Related Work

Specification Inference Existing work for specification inference [8–10, 4, 11–
14] can be classified as static vs. dynamic and library-side vs. client-side. Our
technique is client-side and static, but differs from previous work in several ways:
First, our technique infers flow specifications for source-sink problems, which is
not addressed by existing work. Second, our approach uses a novel form of VC
generation and minimum prime implicants to identify the required specifications.
Third, our goal is not to infer as many facts as possible about the library, but
rather to identify exactly those specifications needed to verify a given client.
Specifications for Source-Sink Properties Other work for specification in-
ference, such as [4, 15], also target source-sink problems. In particular, Merlin [4]
infers sources, sinks, and sanitizers for explicit information flow problems using
probabilistic inference. We believe our proposed technique and [4] are comple-
mentary since we assume that sources and sinks are known, whereas [4] does
not infer specifications of methods that propagate taint, but that are neither
sources nor sinks. The recent work presented in [15] addresses taint analysis of
framework-based web applications and gives a specification language for anno-
tating taint-related framework behavior.
Other Source-Sink Checkers Many techniques have been proposed for check-
ing source-sink properties [16–19]. Many of these tools focus on taint analysis in
the context of SQL injection attacks [20, 17, 16], where it is important to con-
sider sanitizers in addition to sources and sinks. While we have not considered
sanitizers in the technical development, our technique can be easily extended to
infer flow specifications in the presence of sanitizers. However, we assume that
sources, sinks, and sanitizers are known and infer specifications regarding taint
propagation rather than taint introduction, removal, or consumption.

Use of Abduction in Static Analysis Several other approaches have used
abductive inference in the context of program verification [21–23]. Among these,
[22] also uses abduction for inferring specifications of unknown procedures but
differs from this work in several ways: First, here, our goal is to verify the absence
of source-sink errors whereas [22] addresses verifying pointer safety. The second
difference is that we consider an algorithmic approach to performing abduction
in propositional logic whereas [22, 21] use a rule-based approach in separation
logic. Third, while [22] generates a single abductive solution and fails if the
candidate specification is wrong, our technique iteratively refines the candidate
specification until the program is verified.

Our own previous work uses abductive inference for helping users diagnose
warnings generated by static analysis [24]. However, that technique is not useful
for inferring flow specifications because the generated constraints do not express
possible input-output dependencies due to unknown method calls. Furthermore,
the abduction algorithm used here is different: Here, we are interested in conjunc-



tive propositional formulas over flow variables whereas [24] generates possibly
disjunctive solutions of Presburger arithmetic formulas.

9 Conclusions and Future Work

We have presented a new technique for source-sink property verification of open
programs that call unanalyzed library methods. We have applied the proposed
technique to checking confidentiality in Android applications and show that our
method can effectively identify the necessary specifications required for ruling
out a large number of potential source-sink flows. A promising direction for
future research is to combine the proposed technique with dynamic symbolic
execution which can rule out many spurious must-not-flow assumptions inferred
by our technique.

References

1. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Software verification with blast.
Model Checking Software (2003) 624–624

2. Aiken, A., Bugrara, S., Dillig, I., Dillig, T., Hackett, B., Hawkins, P.: An overview
of the saturn project. In: PASTE, ACM (2007) 43–48

3. Ball, T., Rajamani, S.: The SLAM project: debugging system software via static
analysis. In: POPL, NY, USA (2002) 1–3

4. Livshits, B., Nori, A.V., Rajamani, S.K., Banerjee, A.: Merlin: Specification infer-
ence for explicit information flow problems. In: PLDI. (2009)

5. Silva, J.: On computing minimum size prime implicants. In: International Work-
shop on Logic Synthesis, Citeseer (1997)

6. Dillig, I., Dillig, T., McMillan, K., Aiken, A.: Minimum satisfying assignments for
SMT. In: CAV. (2012)

7. Dillig, I., Dillig, T., Aiken, A., Sagiv, M.: Precise and compact modular procedure
summaries for heap manipulating programs. PLDI ’11 (2011) 567–577

8. Nimmer, J.W., Ernst, M.D.: Automatic generation of program specifications. In:
ISSTA. (2002) 232–242

9. Ammons, G., Bod́ık, R., Larus, J.R.: Mining specifications. POPL ’02 (2002) 4–16

10. Yang, J., Evans, D., Bhardwaj, D., Bhat, T., Das, M.: Perracotta: mining temporal
api rules from imperfect traces. ICSE ’06 (2006) 282–291

11. Alur, R., Černý, P., Madhusudan, P., Nam, W.: Synthesis of interface specifications
for java classes. POPL ’05 (2005) 98–109

12. Shoham, S., Yahav, E., Fink, S., Pistoia, M.: Static specification mining using
automata-based abstractions. ISSTA ’07 (2007) 174–184

13. Beckman, N.E., Nori, A.V.: Probabilistic, modular and scalable inference of type-
state specifications. In: PLDI, ACM (2011) 211–221

14. Ramanathan, M.K., Grama, A., Jagannathan, S.: Static specification inference
using predicate mining. PLDI ’07 (2007) 123–134

15. Sridharan, M., Artzi, S., Pistoia, M., Guarnieri, S., Tripp, O., Berg, R.: F4F: taint
analysis of framework-based web applications. OOPSLA ’11 (2011) 1053–1068

16. Tripp, O., Pistoia, M., Fink, S.J., Sridharan, M., Weisman, O.: Taj: effective taint
analysis of web applications. PLDI ’09 (2009) 87–97

17. Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in java applications
with static analysis. In: USENIX Security Symposium. SSYM’05 (2005) 18–18



18. Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.:
Taintdroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. OSDI’10 (2010) 1–6

19. Clause, J., Li, W., Orso, A.: Dytan: a generic dynamic taint analysis framework.
ISSTA ’07 (2007) 196–206

20. Wassermann, G., Su, Z.: Sound and precise analysis of web applications for injec-
tion vulnerabilities. In: PLDI, ACM (2007) 32–41

21. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis
by means of bi-abduction. POPL (2009) 289–300

22. Luo, C., Craciun, F., Qin, S., He, G., Chin, W.N.: Verifying pointer safety for
programs with unknown calls. J. Symb. Comput. 45(11) (2010) 1163–1183

23. Giacobazzi, R.: Abductive analysis of modular logic programs. In: International
Symposium on Logic programming, Citeseer (1994) 377–391

24. Dillig, I., Dillig, T., Aiken, A.: Automated error diagnosis using abductive infer-
ence. In: PLDI. (2012)



Appendix A: Soundness of Analysis

In this section, we prove the soundness of the analysis presented in Section 3.
First, to allow us to relate the concrete and abstract semantics in a precise

way, we introduce some auxiliary concepts that are necessary for stating the
soundness theorem.

Definition 7 (Flow environment F) Given a concrete execution σ = s1s2, . . . , sk
of a program P , Fσ is an environment that maps each flow variable fi to a
boolean value. Specifically, Fσ(fi) = true iff (αi, s

+
i )  ∗ (χf , s

−
j ) for some

si, sj ∈ σ such that si = callρf(. . .) and sj = returnρf .

In other words, flow environment Fσ tracks whether there is a flow from
f ’s i’th argument to its return value in a concrete execution σ. It is easy to
instrument the concrete semantics in a way that allows the computation of Fσ.

Next, we describe how to evaluate the terms and constraints used in the
analysis under concrete store Γ and flow environment F :

Definition 8 (Evaluation of terms) eval(t, Γ ) evaluates term t to a constant
under environment Γ :

eval(c, Γ ) = c (c ∈ {S, C1, . . . , Ck})
eval(v, Γ ) = Γ (v) (v a variable)

Definition 9 (Evaluation of constraint) For a concrete execution with flow
environment F , evalF (φ, Γ ) evaluates constraint φ to a boolean constant as fol-
lows:

evalF (fi, Γ ) = F(fi)
evalF (t1 6= t2, Γ ) = eval(t1, Γ ) 6= eval(t2, Γ )
evalF (φ1 ◦ φ2, Γ ) = eval(φ1, Γ ) ◦ eval(φ2, Γ ) (◦ ∈ {∧,∨,⇒})

Definition 10 (Evaluation of θ) F , evalF (θ, Γ ) evaluates guarded value set
θ as follows:

evalF (θ, Γ ) =

{
(ci, bi)

∣∣∣∣ ci = eval(ti, Γ )∧
bi = evalF (φi, Γ ) ∧ (ti, φi) ∈ θ

}
Definition 11 (Evaluation of Ω) For a concrete execution with flow environ-
ment F , evalF (Ω,Γ ) evaluates abstract environment Ω under Γ . Specifically, for
every v ∈ dom(Ω), we have:

evalF (Ω,Γ ) = [v 7→ θ | v ∈ Ω θ = evalF (Ω(v), Γ ))]

Given these definitions, we can now state agreement between concrete and
abstract states:

Definition 12 (Agreement) Given a concrete execution with flow environ-
ment F , we say that a concrete environment Γ agrees with abstract environment
Ω, written Γ ∼F Ω, if and only if the following conditions hold:



1. If v ∈ dom(Γ ), then v ∈ dom(Ω)
2. ∀v ∈ dom(Γ ), if Γ (v) = c and Ω(v) = θ, then:

(c, true) ∈ evalF (θ, Γ )

The following theorem states the soundness of the analysis:

Theorem 3 (Soundness). Let σ be an execution of program P such that Π,Γ `
P : Γ ′, b according to the concrete semantics, and let F be the flow environment
for σ. Suppose Ω ` P : Ω′, φ according to the abstract semantics. If Γ ∼F Ω,
then Γ ′ ∼F Ω′ and evalF (φ, Γ ′)⇒ b.

Proof. The proof is by structural induction.

– Let P = (v ← c). Since Γ ∼F Ω, ∀x 6= v. Γ ′(x) ∼F Ω′(x). Furthermore,
since Γ ′(v) = c and Ω′(v) = (c, true), we have Γ ′(v) ∼F Ω′(v). Thus,
Γ ′ ∼F Ω′. Finally, since φ = true and b = true, evalF (φ, Γ ′)⇒ b.

– Let P = (v1 ← v2). Since Γ (v2) = c and Ω(v2) = θ, we have (c, true) ∈
evalF (θ, Γ ) because Γ ∼F Ω. Hence, (c, true) ∈ evalF (Ω′(v1), Γ ′); thus
Ω′ ∼F Γ ′. Finally, since φ = true and b = true, evalF (φ, Γ ′)⇒ b.

– Let P = s1; s2. By the inductive hypothesis, Ω1 ∼F Γ1. Thus, also by
the inductive hypothesis, Ω2 ∼F Γ2. Also, by the inductive hypothesis,
we have evalF (φ1, Γ1) ⇒ b1 and evalF (φ2, Γ2) ⇒ b2. Note that Γ2 must
agree with Γ1 on the values of all πρ variables used in the constraints, thus
evalF (φ1, Γ2) = evalF (φ1, Γ1). Finally, be definition of evalF , evalF (φ1 ∧
φ2, Γ2) = eval(φ1, Γ2) ∧ evalF (φ2, Γ2). Hence, evalF (φ1 ∧ φ2, Γ2)⇒ b1 ∧ b2.

– P = check(v). The interesting case is when Γ (v) = S. Since Γ ∼F Ω,
(S, true) ∈ evalF (θ, Γ ). Thus, there must exist some (Ai, φi) ∈ θ such that
evalF (Ai, Γ ) = S and evalF (φi, Γ ) = true. Since φ =

∧
(Ai,φi)∈θ φi ⇒ (A 6=

S), evalF (φ, Γ ) = false.
– P = if(?) then s1 else s2. Without loss of generality, suppose (s1⊕ s2) = s1.

By the inductive hypothesis, Γ1 ∼F Ω1. By definition of t, if (c, true) ∈
evalF (θ, Γ1), then (c, true) ∈ evalF (θtθ′, Γ1) for any θ′. Thus, Γ1 ∼F Ω1tΩ2.
We also have that evalF (φ1 ∧ φ2, Γ1) ⇒ b because evalF (φ1 ∧ φ2, Γ1) =
evalF (φ1, Γ1) ∧ evalF (φ2, Γ2), and evalF (φ1, Γ1) ⇒ b1 by the inductive hy-
pothesis.

– P = v ←ρ f(v1, . . . , vn). There are two cases to consider:
Case 1: Suppose (vi, P

−)  ∗ (v, P+) for some vi (where P− denotes the
control point before callρf(. . .) instruction, and P+ denotes the control point
right after the return returnρf instruction). Since Γ ′(v) = c, this implies
Γ (vi) = c because (vi, P

−)  ∗ (v, P+). Since Γ ∼F Ω, we have (c, true) ∈
evalF (Ω(vi), Γ ). Since (vi, P

−) ∗ (v, P+), by definition of F , F(fi) = true.
Therefore, (c, true) ∈ evalF (θ, Γ ). Hence, Γ ′ ∼F Ω′.
Case 2: Suppose (vi, P

−) 6 ∗ (v, P+) for any vi. This implies Γ ′(v) = c 6= S
since the constant S is disallowed in f . By construction of θ in Ω′, (c, true) ∈
evalF (θ, Γ ′) since (πρ, πρ 6= S) ∈ S and Γ ′(πρ) = c and c 6= S.



Effectively, the soundness theorem states that the verification condition com-
puted by our analysis is a safe overapproximation of program correctness. The
following corollary follows immediately from Theorem 3:

Corollary 1. Let P be a program such that Ω ` P : Ω′, φ. If φ is valid (i.e.,
|= φ), then P does not have a source-sink error in any execution.

Appendix B: Termination and Completeness of FindSpec

Theorem 2. (Termination) FindSpec algorithm is guaranteed to terminate.

Proof. First, observe that φ contains a finite number of flow variables, therefore
there are a finite number of distinct flow specification queries that can be asked
to the oracle. Second, if we make a query li to the oracle, no future query q will
be equivalent to li or its negation. To see this, consider two cases: (i) If li is
certified by the oracle, χ = li∧ϕ for some formula ϕ. Now, q 6≡ ¬li because each
literal in I must be consistent with χ. Furthermore, we also have q 6≡ li because
I containing li cannot be a minimum prime implicant of χ⇒ φ because I\li is
also a prime implicant of χ⇒ φ for any conjunct χ containing li. (ii) The proof
when li cannot be certified by the oracle is analogous.

Theorem 3. (Relative Completeness) If there exists a set of correct
flow specifications sufficient to discharge φ, then FindSpec will not return false
assuming completeness of the oracle.

Proof. Suppose there exists a specification I sufficient to discharge φ (i.e., I |=
φ), but FindSpec returns false. This means that for every χ at line (3) of the
algorithm, either (i) I 6|= χ ⇒ φ or (ii) I and χ are not consistent. Here, (i) is
not possible because if I |= φ, then we also have I |= χ ⇒ φ. For (ii), observe
that, for I ∧ χ to be unsatisfiable, I and χ must disagree on the assignment to
at least one flow variable. But since the oracle is complete, this is not possible
if I is indeed a correct specification.


