
63

Program Synthesis using Abstraction Refinement

XINYU WANG, University of Texas at Austin, USA
ISIL DILLIG, University of Texas at Austin, USA
RISHABH SINGH,Microsoft Research, USA

We present a new approach to example-guided program synthesis based on counterexample-guided abstraction
refinement. Our method uses the abstract semantics of the underlying DSL to find a program P whose abstract
behavior satisfies the examples. However, since program P may be spurious with respect to the concrete
semantics, our approach iteratively refines the abstraction until we either find a program that satisfies the
examples or prove that no such DSL program exists. Because many programs have the same input-output
behavior in terms of their abstract semantics, this synthesis methodology significantly reduces the search
space compared to existing techniques that use purely concrete semantics.

While synthesis using abstraction refinement (SYNGAR) could be implemented in different settings, we pro-
pose a refinement-based synthesis algorithm that uses abstract finite tree automata (AFTA). Our technique uses
a coarse initial program abstraction to construct an initial AFTA, which is iteratively refined by constructing a
proof of incorrectness of any spurious program. In addition to ruling out the spurious program accepted by the
previous AFTA, proofs of incorrectness are also useful for ruling out many other spurious programs.

We implement these ideas in a framework called Blaze, which can be instantiated in different domains
by providing a suitable DSL and its corresponding concrete and abstract semantics. We have used the Blaze
framework to build synthesizers for string and matrix transformations, and we compare Blaze with existing
techniques. Our results for the string domain show that Blaze compares favorably with FlashFill, a domain-
specific synthesizer that is now deployed in Microsoft PowerShell. In the context of matrix manipulations, we
compare Blaze against Prose, a state-of-the-art general-purpose VSA-based synthesizer, and show that Blaze
results in a 90x speed-up over Prose. In both application domains, Blaze also consistently improves upon the
performance of two other existing techniques by at least an order of magnitude.

CCS Concepts: • Software and its engineering→ Programming by example; Formal software verifi-
cation; • Theory of computation→ Abstraction;

Additional Key Words and Phrases: Program Synthesis, Abstract Interpretation, Counterexample Guided
Abstraction Refinement, Tree Automata

ACM Reference Format:
Xinyu Wang, Isil Dillig, and Rishabh Singh. 2018. Program Synthesis using Abstraction Refinement. Proc. ACM
Program. Lang. 2, POPL, Article 63 (January 2018), 29 pages. https://doi.org/10.1145/3158151

1 INTRODUCTION

In recent years, there has been significant interest in automatically synthesizing programs from
input-output examples. Such programming-by-example (PBE) techniques have been successfully
used to synthesize string and format transformations [Gulwani 2011; Singh and Gulwani 2016] ,

Authors’ addresses: Xinyu Wang, Computer Science, University of Texas at Austin, Austin, TX, USA, xwang@cs.utexas.edu;
Isil Dillig, Computer Science, University of Texas at Austin, Austin, TX, USA, isil@cs.utexas.edu; Rishabh Singh, Microsoft
Research, Redmond, WA, USA, risin@microsoft.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the Association for Computing Machinery.
2475-1421/2018/1-ART63
https://doi.org/10.1145/3158151

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 63. Publication date: January 2018.

https://doi.org/10.1145/3158151
https://doi.org/10.1145/3158151

63:2 Xinyu Wang, Isil Dillig, and Rishabh Singh

automate data wrangling tasks [Feng et al. 2017], and synthesize programs that manipulate data
structures [Feser et al. 2015; Osera and Zdancewic 2015; Yaghmazadeh et al. 2016]. Due to its
potential to automate many tasks encountered by end-users, programming-by-example has now
become a burgeoning research area.

Because program synthesis is effectively a very difficult search problem, a key challenge in this
area is how to deal with the enormous size of the underlying search space. Even if we restrict our-
selves to short programs of fixed length over a small domain-specific language, the synthesizer may
still need to explore a colossal number of programs before it finds one that satisfies the specification.
In programming-by-example, a common search-space reduction technique exploits the observation
that programs that yield the same concrete output on the same input are indistinguishable with
respect to the user-provided specification. Based on this observation, many techniques use a canoni-
cal representation of a large set of programs that have the same input-output behavior. For instance,
enumeration-based techniques, such as Escher [Albarghouthi et al. 2013] and Transit [Udupa et al.
2013], discard programs that yield the same output as a previously explored program. Similarly,
synthesis algorithms in the Flash* family [Gulwani 2011; Polozov and Gulwani 2015], use a single
node to represent all sub-programs that have the same input-output behavior. Thus, in all of these
algorithms, the size of the search space is determined by the concrete output values produced by
the DSL programs on the given inputs.

In this paper, we aim to develop a more scalable general-purpose synthesis algorithm by using the
abstract semantics of DSL constructs rather than their concrete semantics. Building on the insight
that we can reduce the size of the search space by exploiting commonalities in the input-output
behavior of programs, our approach considers two programs to belong to the same equivalence
class if they produce the same abstract output on the same input. Starting from the input example,
our algorithm symbolically executes programs in the DSL using their abstract semantics and merges
any programs that have the same abstract output into the same equivalence class. The algorithm
then looks for a program whose abstract behavior is consistent with the user-provided examples.
Because two programs that do not have the same input-output behavior in terms of their concrete
semantics may have the same behavior in terms of their abstract semantics, our approach has the
potential to reduce the search space size in a more dramatic way.

Of course, one obvious implication of such an abstraction-based approach is that the synthesized
programs may now be spurious: That is, a program that is consistent with the provided examples
based on its abstract semantics may not actually satisfy the examples. Our synthesis algorithm
iteratively eliminates such spurious programs by performing a form of counterexample-guided
abstraction refinement: Starting with a coarse initial abstraction, we first find a program P that
is consistent with the input-output examples with respect to its abstract semantics. If P is also
consistent with the examples using the concrete semantics, our algorithm returns P as a solution.
Otherwise, we refine the current abstraction, with the goal of ensuring that P (and hopefully many
other spurious programs) are no longer consistent with the specification using the new abstraction.
As shown in Figure 1, this refinement process continues until we either find a program that satisfies
the input-output examples, or prove that no such DSL program exists.

While the general idea of program synthesis using abstractions can be realized in different ways,
we develop this idea by generalizing a recently-proposed synthesis algorithm that uses finite tree
automata (FTA) [Wang et al. 2017b]. The key idea underlying this technique is to use the concrete
semantics of the DSL to construct an FTA whose language is exactly the set of programs that
are consistent with the input-output examples. While this approach can, in principle, be used to
synthesize programs over any DSL, it suffers from the same scalability problems as other techniques
that use concrete program semantics.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 63. Publication date: January 2018.

Program Synthesis using Abstraction Refinement 63:3

Abstract
Synthesizer

Checker

Refiner

candidate
program

Failure
(no solution)

Synthesized program

counterexample
& spurious

program

new abstraction

End-users

Domain
expert

Examples

DSL

w/ abstract
semantics

SYNGAR

Fig. 1. Workflow illustrating Synthesis using abstraction refinement (SYNGAR). Since our approach is domain-

agnostic, it is parametrized over a domain-specific language with both concrete and abstract semantics. From

a user’s perspective, the only input to the algorithm is a set of input-output examples.

In this paper, we introduce the notion of abstract finite tree automata (AFTA), which can be used to
synthesize programs over the DSL’s abstract semantics. Specifically, states in an AFTA correspond
to abstract values and transitions are constructed using the DSL’s abstract semantics. Any program
accepted by the AFTA is consistent with the specification in the DSL’s abstract semantics, but
not necessarily in its concrete semantics. Given a spurious program P accepted by the AFTA,
our technique automatically refines the current abstraction by constructing a so-called proof of
incorrectness. Such a proof annotates the nodes of the abstract syntax tree representing P with
predicates that should be used in the new abstraction. The AFTA constructed in the next iteration
is guaranteed to reject P , alongside many other spurious programs accepted by the previous AFTA.
We have implemented our proposed idea in a synthesis framework called Blaze, which can be

instantiated in different domains by providing a suitable DSL with its corresponding concrete and
abstract semantics. As one application, we use Blaze to automate string transformations from the
SyGuS benchmarks [Alur et al. 2015] and empirically compare Blaze against FlashFill, a synthesizer
shipped with Microsoft PowerShell and that specifically targets string transformations [Gulwani
2011]. In another application, we have used Blaze to automatically synthesize non-trivial matrix
and tensor manipulations in MATLAB and compare Blaze with Prose, a state-of-the-art synthesis
tool based on version space algebra [Polozov and Gulwani 2015]. Our evaluation shows that Blaze
compares favorably with FlashFill in the string domain and that it outperforms Prose by 90x
when synthesizing matrix transformations. We also compare Blaze against enumerative search
techniques in the style of Escher and Transit [Albarghouthi et al. 2013; Udupa et al. 2013] and show
that Blaze results in at least an order of magnitude speedup for both application domains. Finally,
we demonstrate the advantages of abstraction refinement by comparing Blaze against a baseline
synthesizer that constructs finite tree automata using the DSL’s concrete semantics.

Contributions. To summarize, this paper makes the following key contributions:
• We propose a new synthesis methodology based on abstraction refinement. Our methodology
reduces the size of the search space by using the abstract semantics of DSL constructs and
automatically refines the abstraction whenever the synthesized program is spurious with
respect to the input-output examples.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 63. Publication date: January 2018.

63:4 Xinyu Wang, Isil Dillig, and Rishabh Singh

• We introduce abstract finite tree automata and show how they can be used in program
synthesis.
• We describe a technique for automatically constructing a proof of incorrectness of a spurious
program and discuss how to use such proofs for abstraction refinement.
• We develop a general synthesis framework called Blaze, which can be instantiated in different
domains by providing a suitable DSL with concrete and abstract semantics.
• We instantiate the Blaze framework in two different domains involving string and matrix
transformations. Our evaluation shows that Blaze can synthesize non-trivial programs and
that it results in significant improvement over existing techniques. Our evaluation also
demonstrates the benefits of performing abstraction refinement.

Organization. We first provide some background on finite tree automata (FTA) and review a
synthesis algorithm based on FTAs (Section 2). We then introduce abstract finite tree automata
(Section 3), describe our refinement-based synthesis algorithm (Section 4), and then illustarate
the technique using a concrete example (Section 5). The next section explains how to instantiate
Blaze in different domains and provides implementaion details. Finally, Section 7 presents our
experimental evaluation and Section 8 discusses related work.

2 PRELIMINARIES

In this section, we give background on finite tree automata (FTA) and briefly review (a generalization
of) an FTA-based synthesis algorithm proposed in previous work [Wang et al. 2017b].

2.1 Background on Finite Tree Automata

A finite tree automaton is a type of state machine that deals with tree-structured data. In particular,
finite tree automata generalize standard finite automata by accepting trees rather than strings.

Definition 2.1. (FTA) A (bottom-up) finite tree automaton (FTA) over alphabet F is a tuple
A = (Q ,F ,Qf ,∆) where Q is a set of states, Qf ⊆ Q is a set of final states, and ∆ is a set of
transitions (rewrite rules) of the form f (q1, · · · ,qn) → q where q,q1, · · · ,qn ∈ Q and f ∈ F .

Fig. 2. Tree for ¬(0 ∧ ¬1), annotated with states.

We assume that every symbol f in alphabet F
has an arity (rank) associated with it, and we use
the notation Fk to denote the function symbols of
arity k . We view ground terms over alphabet F as
trees such that a ground term t is accepted by an
FTA if we can rewrite t to some stateq ∈ Qf using
rules in ∆. The language of an FTA A, denoted
L (A), corresponds to the set of all ground terms
accepted by A.

Example 2.2. (FTA) Consider the tree automaton A defined by states Q = {q0,q1}, F0 = {0,1},
F1 = {¬}, F2 = {∧}, final states Qf = {q0}, and the following transitions ∆:

1→ q1 0→ q0 ∧(q0,q0) → q0 ∧(q0,q1) → q0
¬(q0) → q1 ¬(q1) → q0 ∧(q1,q0) → q0 ∧(q1,q1) → q1

This tree automaton accepts those propositional logic formulas (without variables) that evaluate to
false. As an example, Fig. 2 shows the tree for formula ¬(0 ∧ ¬1) where each sub-term is annotated
with its state on the right. This formula is not accepted by the tree automaton A because the rules
in ∆ “rewrite" the input to state q1, which is not a final state.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 63. Publication date: January 2018.

Program Synthesis using Abstraction Refinement 63:5

c⃗ = e⃗in
qc⃗x ∈ Q

(Var)
t ∈ TC c⃗ =

[
JtK, · · · , JtK

]
|c⃗ | = |e⃗ |

qc⃗t ∈ Q
(Const)

qc⃗s0 ∈ Q c⃗ = e⃗out

qc⃗s0 ∈ Qf
(Final)

(s → f (s1, · · · , sn)) ∈ P qc⃗1s1 ∈ Q, · · · , qc⃗nsn ∈ Q c j = Jf (c1j , · · · , cnj)K c⃗ = [c1, · · · , c |e⃗ |]

qc⃗s ∈ Q,
(
f (qc⃗1s1 , · · · , q

c⃗n
sn) → qc⃗s

)
∈ ∆

(Prod)

Fig. 3. Rules for constructing CFTA A = (Q ,F ,Qf ,∆) given examples e⃗ and grammar G = (T ,N ,P ,s0).

2.2 Synthesis using Concrete Finite Tree Automata

Since our approach builds on a prior synthesis technique that uses finite tree automata, we first
review the key ideas underlying the work of Wang et al. [2017b]. However, since that work uses
finite tree automata in the specific context of synthesizing data completion scripts, our formulation
generalizes their approach to synthesis tasks over a broad class of DSLs.

Given a DSL and a set of input-output examples, the key idea is to construct a finite tree automaton
that represents the set of all DSL programs that are consistent with the input-output examples. The
states of the FTA correspond to concrete values, and the transitions are obtained using the concrete
semantics of the DSL constructs. We therefore refer to such tree automata as concrete FTAs (CFTA).
To understand the construction of CFTAs, suppose that we are given a set of input-output

examples e⃗ and a context-free grammar G defining a DSL. We represent the input-output examples
e⃗ as a vector, where each element is of the form ein → eout, and we write e⃗in (resp. e⃗out) to represent
the input (resp. output) examples. Without loss of generality, we assume that programs take a
single input x , as we can always represent multiple inputs as a list. Thus, the synthesized programs
are always of the form λx .S , and S is defined by the grammar G = (T ,N ,P ,s0) where:

• T is a set of terminal symbols, including input variable x . We refer to terminals other than x
as constants, and use the notation TC to denote these constants.
• N is a finite set of non-terminal symbols that represent sub-expressions in the DSL.
• P is a set of productions of the form s → f (s1, · · · ,sn) where f is a built-in DSL function and
s,s1, · · · ,sn are symbols in the grammar.
• s0 ∈ N is the topmost non-terminal (start symbol) in the grammar.

We can construct the CFTA for examples e⃗ and grammar G using the rules shown in Fig. 3. First,
the alphabet of the CFTA consists of the built-in functions (operators) in the DSL. The states in the
CFTA are of the form qc⃗s , where s is a symbol (terminal or non-terminal) in the grammar and c⃗ is a
vector of concrete values. Intuitively, the existence of a state qc⃗s indicates that symbol s can take
concrete values c⃗ for input examples e⃗in. Similarly, the existence of a transition f (qc⃗1s1 , · · · ,q

c⃗n
sn) → qc⃗s

means that applying function f on the concrete values c1j , · · · ,cnj yields c j . Hence, as mentioned
earlier, transitions of the CFTA are constructed using the concrete semantics of the DSL constructs.
We now briefly explain the rules from Fig. 3 in more detail. The first rule, labeled Var, states

that qc⃗x is a state whenever x is the input variable and c⃗ is the input examples. The second rule,
labeled Const, adds a state q[JtK, · · · ,JtK]t for each constant t in the grammar. The next rule, called
Final, indicates that qc⃗s0 is a final state whenever s0 is the start symbol in the grammar and c⃗ is the
output examples. The last rule, labeled Prod, generates new CFTA states and transitions for each
production s → f (s1, · · · ,sn). Essentially, this rule states that, if symbol si can take value c⃗i (i.e.,
there exists a state qc⃗isi) and executing f on c1j , · · · ,cnj yields value c j , then we also have a state qc⃗s
in the CFTA and a transition f (qc⃗1s1 · · · ,q

c⃗n
sn) → qc⃗s .

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 63. Publication date: January 2018.

63:6 Xinyu Wang, Isil Dillig, and Rishabh Singh

Transitions
(1)

(2)

CFTA

Representation
we use in
examples

Fig. 4. The CFTA constructed for Example 2.3. We visualize the CFTA as a graph where nodes are labeled

with concrete values for symbols. Edges correspond to transitions and are labeled with the operator (i.e., + or

×) followed by the constant operand (i.e., 2 or 3). For example, for the upper two transitions shown in (1) on

the left, the graphical representation is shown in (2). Moreover, to make our representation easier to view, we

do not include transitions that involve nullary functions in the graph. For instance, the transition q22 → q2t in
(1) is not included in (2). A transition of the form f (qc1n ,q

c2
t) → qc3n is represented by an edge from a node

labeled c1 to another node labeled c3, and the edge is labeled by f followed by c2. For instance, the transition
+(q1n ,q

2
t) → q3n in (1) is represented by an edge from 1 to 3 with label +2 in (2).

It can be shown that the language of the CFTA constructed from Fig. 3 is exactly the set of
abstract syntax trees (ASTs) of DSL programs that are consistent with the input-output examples. 1
Hence, once we construct such a CFTA, the synthesis task boils down to finding an AST that is
accepted by the automaton. However, since there are typically many ASTs accepted by the CFTA,
one can use heuristics to identify the “best” program that satisfies the input-output examples.

Remark. In general, the tree automata constructed using the rules from Fig. 3 may have infinitely
many states. As standard in synthesis literature [Polozov and Gulwani 2015; Solar-Lezama 2008],
we therefore assume that the size of programs under consideration should be less than a given
bound. In terms of the CFTA construction, this means we only add a state qc⃗s if the size of the
smallest tree accepted by the automaton (Q ,F , {qc⃗s },∆) is lower than the threshold.

Example 2.3. To see how to construct CFTAs, let us consider the following very simple toy DSL,
which only contains two constants and allows addition and multiplication by constants:

n := id (x) | n + t | n × t ;
t := 2 | 3;

Here, id is just the identity function. The CFTA representing the set of all DSL programs with at
most two + or × operators for the input-output example 1→ 9 is shown in Fig. 4. For readability,
we use circles to represent states of the form qcn , diamonds to represent qcx and squares to represent
qct , and the number labeling the node shows the value of c . There is a state q1x since the value of x
is 1 in the provided example (Var rule). We construct transitions using the concrete semantics of
the DSL constructs (Prod rule). For instance, there is a transition id(q1x) → q1n because id(1) yields
value 1 for symbol n. Similarly, there is a transition +(q1n ,q2t) → q3n since the result of adding 1 and
2 is 3. The only accepting state is q9n since the start symbol in the grammar is n and the output
has value 9 for the given example. This CFTA accepts two programs, namely (id (x) + 2) × 3 and
(id (x) × 3) × 3. Observe that these are the only two programs with at most two + or × operators in
the DSL that are consistent with the example 1→ 9.

1The proof can be found in the extended version of this paper [Wang et al. 2017a].

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 63. Publication date: January 2018.

Program Synthesis using Abstraction Refinement 63:7

3 ABSTRACT FINITE TREE AUTOMATA

In this section, we introduce abstract finite tree automata (AFTA), which form the basis of the
synthesis algorithm that we will present in Section 4. However, since our approach performs
predicate abstraction over the concrete values of grammar symbols, we first start by reviewing some
requirements on the underlying abstract domain.

3.1 Abstractions

In the previous section, we saw that CFTAs associate a concrete value for each grammar symbol by
executing the concrete semantics of the DSL on the user-provided inputs. To construct abstract
FTAs, we will instead associate an abstract value with each symbol. In the rest of the paper, we
assume that abstract values are represented as conjunctions of predicates of the form f (s) op c ,
where s is a symbol in the grammar defining the DSL, f is a function, and c is a constant. For
example, if symbol s represents an array, then predicate len(s) > 0 may indicate that the array is
non-empty. Similarly, if s is a matrix, then rows(s) = 4 could indicate that s contains exactly 4 rows.

Universe of predicates. Asmentioned earlier, our approach is parametrized over a DSL constructed
by a domain expert. We will assume that the domain expert also specifies a suitable universeU of
predicates that may appear in the abstractions used in our synthesis algorithm. In particular, given
a family of functions F , a set of operators O, and a set of constants C specified by the domain
expert, the universeU includes any predicate f (s) op c where f ∈ F , op ∈ O, c ∈ C, and s is a
grammar symbol. To ensure the completeness of our approach, we require that F always contains
the identity function, O includes equality, and C includes all concrete values that symbols in the
grammar can take. As we will see, this requirement ensures that every CFTA can be expressed as
an AFTA over our predicate abstraction. We also assume that the universe of predicates includes
true and false. In the remainder of this paper, we use the notationU to denote the universe of all
possible predicates that can be used in our algorithm.

Notation. Given two abstract valuesφ1 andφ2, we writeφ1 ⊑ φ2 iff the formulaφ1 ⇒ φ2 is logically
valid. As standard in abstract interpretation [Cousot and Cousot 1977], we write γ (φ) to denote the
set of concrete values represented by abstract value φ. Given predicates P = {p1, · · · ,pn } ⊆ U and
a formula (abstract value) φ over universeU , we write α P (φ) to denote the strongest conjunction
of predicates pi ∈ P that is logically implied by φ. Finally, given a vector of abstract values
φ⃗ = [φ1, · · · ,φn], we write α P (φ⃗) to mean φ⃗ ′ where φ ′i = α

P (φi).

Abstract semantics. In addition to specifying the universe of predicates, we assume that the
domain expert also specifies the abstract semantics of each DSL construct by providing symbolic
post-conditions over the universe of predicates U . We represent the abstract semantics for a
production s → f (s1, · · · ,sn) using the notation Jf (φ1, · · · ,φn)K♯ . That is, given abstract values
φ1, · · · ,φn for the argument symbols s1, · · · ,sn , the abstract transformer Jf (φ1, · · · ,φn)K♯ returns
an abstract value φ for s . We require that the abstract transformers are sound, i.e.:

If Jf (φ1, · · · ,φn)K♯ = φ and c1 ∈ γ (φ1), · · · ,cn ∈ γ (φn), then Jf (c1, · · · ,cn)K ∈ γ (φ)

However, in general, we do not require the abstract transformers to be precise. That is, if we
have Jf (φ1, · · · ,φn)K♯ = φ and S is the set containing Jf (c1, · · · ,cn)K for every ci ∈ γ (φi), then
it is possible that φ ⊒ αU (S). In other words, we allow each abstract transformer to produce an
abstract value that is weaker (coarser) than the value produced by the most precise transformer
over the given abstract domain. We do not require the abstract semantics to be precise because it
may be cumbersome to define the most precise abstract transformer for some DSL constructs. On

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 63. Publication date: January 2018.

63:8 Xinyu Wang, Isil Dillig, and Rishabh Singh

φ⃗ = αP
([
x = e⃗in,1, · · · , x = e⃗in, |e⃗ |

])
qφ⃗x ∈ Q

(Var)
t ∈ TC φ⃗ = αP

([
t = JtK, · · · , t = JtK

])
|φ⃗ | = |e⃗ |

qφ⃗t ∈ Q
(Const)

qφ⃗s0 ∈ Q ∀j ∈ [1, |e⃗out |]. (s0 = eout,j) ⊑ φ j

qφ⃗s0 ∈ Qf

(Final)

(s → f (s1, · · · , sn)) ∈ P qφ⃗1
s1 ∈ Q, · · · , qφ⃗nsn ∈ Q φ j = αP

(
Jf (φ1j , · · · , φnj)K♯

)
φ⃗ = [φ1, · · · , φ |e⃗ |]

qφ⃗s ∈ Q,
(
f (qφ⃗1

s1 , · · · , q
φ⃗n
sn) → qφ⃗s

)
∈ ∆

(Prod)

Fig. 5. Rules for constructing AFTA A = (Q ,F ,Qf ,∆) given examples e⃗ , grammarG = (T ,N ,P ,s0) and a set

of predicates P ⊆ U .

the other hand, we require an abstract transformer Jf (φ1, · · · ,φn)K♯ where each φi is of the form
si = ci to be precise. Note that this can be easily implemented using the concrete semantics:

Jf (s1 = c1, · · · ,sn = cn)K♯ = (s = Jf (c1, · · · ,cn)K)

Example 3.1. Consider the same DSL that we used in Example 2.3 and suppose the universeU
includes true, all predicates of the form x = c , t = c , and n = c where c is an integer, and predicates
0 < n ≤ 4,0 < n ≤ 8. Then, the abstract semantics can be defined as follows:

Jid (x = c)K♯ := (n = c)

J(n = c1) + (t = c2)K♯ := (n = (c1 + c2)) J(n = c1) × (t = c2)K♯ := (n = c1c2)

J(0 < n ≤ 4) + (t = c)K♯ :=



0 < n ≤ 4 c = 0
0 < n ≤ 8 0 < c ≤ 4
true otherwise

J(0 < n ≤ 4) × (t = c)K♯ :=



0 < n ≤ 4 c = 1
0 < n ≤ 8 c = 2
true otherwise

J(0 < n ≤ 8) + (t = c)K♯ :=
{

0 < n ≤ 8 c = 0
true otherwise J(0 < n ≤ 8) × (t = c)K♯ :=

{
0 < n ≤ 8 c = 1
true otherwise

J
(∧

i pi
)
⋄
(∧

j pj
)
K♯ :=

d
i
d
j Jpi ⋄ pj K♯ ⋄ ∈ {+, ×}

In addition, the abstract transformer returns true if any of its arguments is true.

3.2 Abstract Finite Tree Automata

As mentioned earlier, abstract finite tree automata (AFTA) generalize concrete FTAs by associating
abstract – rather than concrete – values with each symbol in the grammar. Because an abstract
value can representmany different concrete values, multiple states in a CFTA might correspond to a
single state in the AFTA. Therefore, AFTAs typically have far fewer states than their corresponding
CFTAs, allowing us to construct and analyze them much more efficiently than CFTAs.
States in an AFTA are of the form q

φ⃗
s where s is a symbol in the grammar and φ⃗ is a vector

of abstract values. If there is a transition f (q
φ⃗1
s1 , · · · ,q

φ⃗n
sn) → q

φ⃗
s in the AFTA, it is always the

case that Jf (φ1j , · · · ,φnj)K♯ ⊑ φ j . Since our abstract transformers are sound, this means that φ j
overapproximates the result of running f on the concrete values represented by φ1j , · · · ,φnj .

Let us now consider the AFTA construction rules shown in Fig. 5. Similar to CFTAs, our construc-
tion requires the set of input-output examples e⃗ as well as the grammar G = (T ,N ,P ,s0) defining
the DSL. In addition, the AFTA construction requires the abstract semantics of the DSL constructs
(i.e., Jf (· · ·)K♯) as well as a set of predicates P ⊆ U over which we construct our abstraction.

The first two rules from Fig. 5 are very similar to their counterparts from the CFTA construction
rules: According to the Var rule, the states Q of the AFTA include a state qφ⃗x where x is the input

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 63. Publication date: January 2018.

Program Synthesis using Abstraction Refinement 63:9

variable and φ⃗ is the abstraction of the input examples e⃗in with respect to predicates P. Similarly,
the Const rules states that qφ⃗t ∈ Q whenever t is a constant (terminal) in the grammar and φ⃗ is the
abstraction of [t = JtK, · · · ,t = JtK] with respect to predicates P. The next rule, labeled Final in
Fig. 5, defines the final states of the AFTA. Assuming the start symbol in the grammar is s0, then
q
φ⃗
s0 is a final state whenever the concretization of φ⃗ includes the output examples.
The last rule, labeled Prod, deals with grammar productions of the form s → f (s1, · · · ,sn). Sup-

pose that the AFTA contains states qφ⃗1
s1 , · · · ,q

φ⃗n
sn , which, intuitively, means that symbols s1, · · · ,sn

can take abstract values φ⃗1, · · · ,φ⃗n . In the Prod rule, we first “run" the abstract transformer for f
on abstract values φ1j , · · · ,φnj to obtain an abstract value Jf (φ1j , · · · ,φnj)K♯ over the universeU .
However, since the set of predicates P may be a strict subset of the universeU , Jf (φ1j , · · · ,φnj)K♯
may not be a valid abstract value with respect to predicates P. Hence, we apply the abstraction
function α P to Jf (φ1j , · · · ,φnj)K♯ to find the strongest conjunction φ j of predicates over P that
overapproximates Jf (φ1j , · · · ,φnj)K♯ . Since symbol s in the grammar can take abstract value φ⃗, we
add the state qφ⃗s to the AFTA, as well as the transition f (q

φ⃗1
s1 , · · · ,q

φ⃗n
sn) → q

φ⃗
s .

Example 3.2. Consider the same DSL that we used in Example 2.3 as well as the universe and
abstract transformers given in Example 3.1. Now, let us consider the set of predicates P = {true,t =
2,t = 3,x = c} where c stands for any integer value. Fig. 6 shows the AFTA constructed for the
input-output example 1→ 9 over predicates P. Since the abstraction of x = 1 over P is x = 1, the
AFTA includes a state qx=1x , shown simply as x = 1. Since P only has true for symbol n, the AFTA
contains a transition id(qx=1x) → qtruen , where qtruen is abbreviated as true in Fig. 6. The AFTA also
includes transitions +(qtruen ,t = c) → qtruen and ×(qtruen ,t = c) → qtruen for c ∈ {2,3}. Observe that
qtruen is the only final state since n is the start symbol and the concretization of true includes 9 (the
output example). Thus, the language of this AFTA includes all programs that start with id(x).

Theorem 3.3. (Soundness of AFTA) LetA be the AFTA constructed for examples e⃗ and grammar
G using the abstraction defined by finite set of predicates P (including true). If Π is a program that is
consistent with examples e⃗ , then Π is accepted by A.

Proof. The proof can be found in the extended version of this paper [Wang et al. 2017a]. □

4 SYNTHESIS USING ABSTRACTION REFINEMENT

Fig. 6. AFTA in Example 3.2.

We now turn our attention to the top-level synthesis algorithm us-
ing abstraction refinement. The key idea underlying our technique
is to construct an abstract FTA using a coarse initial abstraction.
We then iteratively refine this abstraction and its corresponding
AFTA until we either find a program that is consistent with the
input-output examples or prove that there is no DSL program that
satisfies them. In the remainder of this section, we first explain
the top-level synthesis algorithm and then describe the auxiliary
procedures in later subsections.

4.1 Top-level Synthesis Algorithm

The high-level structure of our refinement-based synthesis algorithm is shown in Fig. 7. The Learn
procedure from Fig. 7 takes as input a set of examples e⃗ , a grammar G defining the DSL, an initial
set of predicates P, and the universe of all possible predicatesU . We implicitly assume that we
also have access to the concrete and abstract semantics of the DSL. Also, it is worth noting that
the initial set of predicates P is optional. In cases where the domain expert does not specify P,

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 63. Publication date: January 2018.

63:10 Xinyu Wang, Isil Dillig, and Rishabh Singh

the initial abstraction includes true, predicates of the form x = c where c is any value that has the
same type as x , and predicates of the form t = JtK where t is a constant (terminal) in the grammar.

Our synthesis algorithm consists of a refinement loop (lines 2–9), in which we alternate between
AFTA construction, counterexample generation, and predicate learning. In each iteration of the
refinement loop, we first construct an AFTA using the current set of predicates P (line 3). If the
language of the AFTA is empty, we have a proof that there is no DSL program that satisfies the
input-output examples; hence, the algorithm returns null in this case (line 4). Otherwise, we use a
heuristic ranking algorithm to choose a “best” program Π that is accepted by the current AFTA
A (line 5). In the remainder of this section, we assume that programs are represented as abstract
syntax trees where each node is labeled with the corresponding DSL construct. We do not fix a
particular ranking algorithm for Rank, so the synthesizer is free to choose between any number
of different ranking heuristics as long as Rank returns a program that has the lowest cost with
respect to a deterministic cost metric.
Once we find a program Π accepted by the current AFTA, we run it on the input examples e⃗in

(line 6). If the result matches the expected outputs e⃗out, we return Π as a solution of the synthesis
algorithm. Otherwise, we refine the current abstraction so that the spurious program Π is no
longer accepted by the refined AFTA. Towards this goal, we find a single input-output example e
that is inconsistent with program Π (line 7), i.e., a counterexample, and then construct a proof of
incorrectness I of Π with respect to the counterexample e (line 8). In particular, I is a mapping
from the AST nodes in Π to abstract values over universeU and provides a proof (over the abstract
semantics) that program Π is inconsistent with example e . More formally, a proof of incorrectness
I must satisfy the following definition:

Definition 4.1. (Proof of Incorrectness) Let Π be the AST of a program that does not satisfy
example e . Then, a proof of incorrectness of Π with respect to e has the following properties:
(1) If v is a leaf node of Π with label t , then (t = JtKein) ⊑ I (v).
(2) If v is an internal node with label f and children v1, · · · ,vn , then:

Jf (I (v1), · · · ,I (vn))K♯ ⊑ I (v)

(3) If I maps the root node of Π to φ, then eout < γ (φ).

Here, the first two properties state that I constitutes a proof (with respect to the abstract
semantics) that executing Π on input ein yields an output that satisfies I (root(Π)). The third
property states thatI proves that Π is spurious, since eout does not satisfyI (root(Π)). The following
theorem states that a proof of incorrectness of a spurious program always exists.

Theorem 4.2. (Existence of Proof) Given a spurious program Π that does not satisfy example e ,
we can always find a proof of incorrectness of Π satisfying the properties from Definition 4.1.

Proof. The proof can be found in the extended version of this paper [Wang et al. 2017a]. □

Our synthesis algorithm uses such a proof of incorrectness I to refine the current abstraction.
In particular, the predicates that we use in the next iteration include all predicates that appear in
I in addition to the old set of predicates P. Furthermore, as stated by the following theorem, the
AFTA constructed in the next iteration is guaranteed to not accept the spurious program Π from
the current iteration.

Theorem 4.3. (Progress) Let Ai be the AFTA constructed during the i’th iteration of the Learn
algorithm from Fig. 7, and let Πi be a spurious program returned by Rank, i.e., Πi is accepted by Ai
and does not satisfy input-output examples e . Then, we have Πi < L (Ai+1) and L (Ai+1) ⊂ L (Ai).

Proof. The proof can be found in the extended version of this paper [Wang et al. 2017a]. □

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 63. Publication date: January 2018.

Program Synthesis using Abstraction Refinement 63:11

1: procedure Learn(e⃗,G,P,U)
input: Input-output examples e⃗ , context-free grammar G, initial predicates P, and universeU .
output: A program consistent with the examples.

2: while true do ▷ Refinement loop.
3: A := ConstructAFTA(e⃗,G,P);
4: if L (A) = ∅ then return null;
5: Π := Rank(A);
6: if JΠKe⃗in = e⃗out then return Π;
7: e := FindCounterexample(Π, e⃗); ▷ e ∈ e⃗ and JΠKein , eout.
8: I := ConstructProof(Π,e,P,U);
9: P := P

⋃
ExtractPredicates(I);

Fig. 7. The top-level structure of our synthesis algorithm using abstraction refinement.

Example 4.4. Consider the AFTA constructed in Example 3.2, and suppose the program returned
by Rank is id (x). Since this program is inconsistent with the input-output example 1 → 9, our
algorithm constructs the proof of incorrectness shown in Fig. 8. In particular, the proof labels the
root node of the AST with the new abstract value 0 < n ≤ 8, which establishes that id (x) is spurious
because 9 < γ (0 < n ≤ 8). In the next iteration, we add 0 < n ≤ 8 to our set of predicates P and
construct the new AFTA shown in Fig. 8. Observe that the spurious program id(x) is no longer
accepted by the refined AFTA.

Theorem 4.5. (Soundness and Completeness) If there exists a DSL program that satisfies the
input-output examples e⃗ , then the Learn procedure from Fig. 7 will return a program Π such that
JΠKe⃗in = e⃗out.

Proof. The proof can be found in the extended version of this paper [Wang et al. 2017a]. □

4.2 Constructing Proofs of Incorrectness

AST ProofAFTA Refined
AFTA

Fig. 8. Proof of incorrectness for Example 3.2.

In the previous subsection, we saw how proofs of in-
correctness are used to rule out spurious programs
from the search space (i.e., language of the AFTA).
We now discuss how to automatically construct
such proofs given a spurious program.

Our algorithm for constructing a proof of incor-
rectness is shown in Fig. 9. The ConstructProof
procedure takes as input a spurious program Π rep-
resented as an AST with vertices V and an input-
output example e such that JΠKein , eout. The pro-
cedure also requires the current abstraction defined
by predicatesP as well as the universe of all predicatesU . The output of this procedure is a mapping
from the vertices V of Π to new abstract values proving that Π is inconsistent with e .
At a high level, the ConstructProof procedure processes the AST top-down, starting at the

root node r . Specifically, we first find an annotation I (r) for the root node such that eout < γ (I (r)).
In other words, the annotation I (r) is sufficient for showing that Π is spurious (property (3) from
Definition 4.1). After we find an annotation for the root node r (lines 2–4), we add r to worklist and
find suitable annotations for the children of all nodes in the worklist. In particular, the loop in lines
6–15 ensures that I satisfies properties (1) and (2) from Definition 4.1.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 63. Publication date: January 2018.

63:12 Xinyu Wang, Isil Dillig, and Rishabh Singh

1: procedure ConstructProof(Π,e,P,U)
input: A spurious program Π represented as an AST with vertices V .
input: A counterexample e such that JΠKein , eout.
input: Current set of predicates P and the universe of predicatesU .
output: A proof I of incorrectness of Π represented as mapping from V to abstract values overU .

▷ Find annotation I (r) for root r such that eout < γ (I (r)).
2: φ :=EvalAbstract(Π,ein,P);
3: ψ :=StrengthenRoot

(
s0 = JΠKein,φ,s0 , eout,U

)
;

4: I (root(Π)) := φ ∧ψ ;
▷ Process all nodes other than root.

5: worklist :=
{
root(Π)

}
;

6: while worklist , ∅ do
▷ Find annotation I (vi) for each vi s.t Jf (I (v1), · · · ,I (vn))K♯ ⊑ I (cur).

7: cur := worklist.remove();
8: Π⃗ := ChildrenASTs(cur);

9: ϕ⃗ :=
[
si = ci

��� ci = JΠi Kein,i ∈ [1, |Π⃗ |],si = Symbol(Πi)
]
;

10: φ⃗ :=
[
φi

��� φi = EvalAbstract(Πi ,ein,P),i ∈ [1, |Π⃗ |]
]
;

11: ψ⃗ := StrengthenChildren

(
ϕ⃗,φ⃗,I (cur),U , label(cur)

)
;

12: for i = 1, · · · , |Π⃗ | do
13: I (root(Πi)) := φi ∧ψi ;
14: if ¬IsLeaf(root(Πi)) then
15: worklist.add(root(Πi));

16: return I;

Fig. 9. Algorithm for constructing proof of incorrectness of Π with respect to example e . In the algorithm,

ChildrenASTs(v) returns the sub-ASTs rooted at the children ofv . The function Symbol(Π) yields the grammar

symbol for the root node of Π.

EvalAbstract(Leaf(x),ein,P) = αP (x = ein)

EvalAbstract(Leaf(t),ein,P) = αP
(
t = JtK

)
EvalAbstract(Node(f , Π⃗),ein,P) = αP

(
Jf
(
EvalAbstract(Π1,ein,P), · · · ,EvalAbstract

(
Π
|Π⃗ |
,ein,P)

)
K♯
)

Fig. 10. Definition of auxiliary EvalAbstract procedure used in ComputeProof algorithm from Fig. 9.

Node(f , Π⃗) represents an internal node with label f and subtrees Π⃗.

Let us now consider the ConstructProof procedure in more detail. To find the annotation for
the root node r , we first compute r ’s abstract value in the domain defined by predicates P. Towards
this goal, we use a procedure called EvalAbstract, shown in Fig. 10, which symbolically executes Π
on ein using the abstract transformers (over P). The return value φ of EvalAbstract at line 2 has
the property that eout ∈ γ (φ), since the AFTA constructed using predicates P yields the spurious
program Π. We then try to strengthen φ using a new formulaψ over predicatesU such that the
following properties hold:

(1) (s0 = JΠKein) ⇒ ψ where s0 is the start symbol of the grammar,
(2) φ ∧ψ ⇒ (s0 , eout).

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 63. Publication date: January 2018.

Program Synthesis using Abstraction Refinement 63:13

1: procedure StrengthenRoot(p+, p−, φ, U)
input: Predicates p+ and p−, formula φ , and universe U .
output: Formula ψ ∗ such that p+ ⇒ (φ ∧ψ ∗) ⇒ p−.

2: Φ :=
{
p ∈ U ��� p+ ⇒ p

}
; Ψ := Φ; ▷ Construct universe of relevant predicates.

3: for i = 1, · · · , k do ▷ Generate all possible conjunctions up to length k .
4: Ψ := Ψ

⋃ {
ψ ∧ p ��� ψ ∈ Ψ, p ∈ Φ

}
;

5: ψ ∗ := p+; ▷ Find most general formula with desired property.
6: for ψ ∈ Ψ do
7: if ψ ∗ ⇒ ψ and (φ ∧ψ) ⇒ p− then ψ ∗ := ψ ;

8: return ψ ∗;

Fig. 11. Algorithm for finding a strengthening for the root.

1: procedure StrengthenChildren(ϕ⃗, φ⃗, φp , U, f)

input: Predicates ϕ⃗ , formulas φ⃗ , formula φp , and universe U .
output: Formulas ψ⃗ ∗ such that ∀i ∈ [1, |ψ⃗ ∗ |]. ϕi ⇒ ψ ∗i and Jf (φ1 ∧ψ ∗1 · · · , φn ∧ψ

∗
n)K♯ ⇒ φp .

2: Φ⃗ :=
[
Φi

��� Φi =
{
p ∈ U ��� ϕi ⇒ p

}]
; Ψ⃗ := Φ⃗ ▷ Construct universe of relevant predicates.

3: for i = 1, · · · , k do ▷ Generate all possible conjunctions up to length k .
4: for j = 1, · · · , |Ψ⃗ | do
5: Ψj := Ψj

⋃ {
ψ ∧ p ��� ψ ∈ Ψj , p ∈ Φj

}

6: ψ⃗ ∗ := ϕ⃗ ; ▷ Find most general formula with desired property.
7: for all ψ⃗ where ψi ∈ Ψi do
8: if ∀i ∈ [1, |ϕ⃗ |]. ψ ∗i ⇒ ψi and Jf (φ1 ∧ψ1, · · · , φn ∧ψn)K♯ ⇒ φp then ψ⃗ ∗ := ψ⃗ ;

9: return ψ⃗ ∗;

Fig. 12. Algorithm for finding a strengthening for nodes other than the root.

Here, the first property says that the output of Π on input ein should satisfyψ ; otherwiseψ would
not be a correct strengthening. The second property says thatψ , together with the previous abstract
value φ, should be strong enough to show that Π is inconsistent with the input-output example e .

While any strengtheningψ that satisfies these two properties will be sufficient to prove that Π
is spurious, we would ideally want our strengthening to rule out many other spurious programs.
For this reason, we wantψ to be as general (i.e., logically weak) as possible. Intuitively, the more
general the proof, the more spurious programs it can likely prove incorrect. For example, while
a predicate such as s0 = JΠKein can prove that Π is incorrect, it only proves the spuriousness of
programs that produce the same concrete output as Π on ein. On the other hand, a more general
predicate that is logically weaker than s0 = JΠKein can potentially prove the spuriousness of other
programs that may not necessarily return the same concrete output as Π on ein.

To find such a suitable strengtheningψ , our algorithm makes use of a procedure called Strength-

enRoot, described in Fig. 11. In a nutshell, this procedure returns the most general conjunctive
formulaψ using at most k predicates inU such that the above two properties are satisfied. Since
ψ , together with the old abstract value φ, proves the spuriousness of Π, our proof I maps the root
node to the new strengthened abstract value φ ∧ψ (line 4 of ConstructProof).
The loop in lines 5–15 of ConstructProof finds annotations for all nodes other than the root

node. Any AST node cur that has been removed from the worklist at line 7 has the property that cur
is in the domain of I (i.e., we have already found an annotation for cur). Now, our goal is to find a
suitable annotation for cur’s children such that I satisfies properties (1) and (2) from Definition 4.1.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 63. Publication date: January 2018.

63:14 Xinyu Wang, Isil Dillig, and Rishabh Singh

To find the annotation for each childvi of cur, we first compute the concrete and abstract values (ϕi
and φi from lines 9–10) associated with eachvi . We then invoke the StrengthenChildren procedure,
shown in Fig. 12, to find a strengthening ψ⃗ such that:
(1) ∀i ∈ [1, |ψ⃗ |]. ϕi ⇒ ψi
(2) Jf (φ1 ∧ψ1, · · · ,φn ∧ψn)K♯ ⇒ I (cur)
Here, the first property ensures that I satisfies property (1) from Definition 4.1. In other words,

the first condition says that our strengthening overapproximates the concrete output of subprogram
Πi rooted at vi on input ein. The second condition enforces property (2) from Definition 4.1. In
particular, it says that the annotation for the parent node is provable from the annotations of the
children using the abstract semantics of the DSL constructs.
In addition to satisfying these afore-mentioned properties, the strengthening ψ⃗ returned by

StrengthenChildren has some useful generality guarantees. In particular, the return value of
the function is pareto-optimal in the sense that we cannot obtain a valid strengthening ψ⃗ ′ (with a
fixed number of conjuncts) by weakening any of theψi ’s in ψ⃗ . As mentioned earlier, finding such
maximally general annotations is useful because it allows our synthesis procedure to rule out many
spurious programs in addition to the specific one returned by the ranking algorithm.

Example 4.6. To better understand how we construct proofs of incorrectness, consider the AFTA
shown in Fig. 13(1). Suppose that the ranking algorithm returns the program id (x) + 2, which is
clearly spurious with respect to the input-output example 1→ 9. Fig. 13(2)-(4) show the AST for the
program id(x) + 2 as well as the old abstract and concrete values for each AST node. Note that the
abstract values from Fig. 13(3) correspond to the results of EvalAbstract in the ConstructProof
algorithm from Fig. 9. Our proof construction algorithm starts by strengthening the root node v1
of the AST. Since JΠKein is 3, the first argument of the StrengthenRoot procedure is provided as
n = 3. Since the output value in the example is 9, the second argument is n , 9. Now, we invoke the
StrengthenRoot procedure to find a formulaψ such that n = 3⇒ (true ∧ψ) ⇒ n , 9 holds. The
most general conjunctive formula overU that has this property is 0 < n ≤ 8; hence, we obtain the
annotation I (v1) = 0 < n ≤ 8 for the root node of the AST. The ConstructProof algorithm now
“recurses down" to the children of v1 to find suitable annotations for v2 and v3. When processing
v1 inside the while loop in Fig. 9, we have ϕ⃗ = [n = 1,t = 2] since 1,2 correspond to the concrete
values for v2,v3. Similarly, we have φ⃗ = [0 < n ≤ 8,t = 2] for the abstract values for v2 and v3. We
now invoke StrenthenChildren to find a ψ⃗ = [ψ1,ψ2] such that:

n = 1⇒ ψ1 t = 2⇒ ψ2
J+(0 < n ≤ 8 ∧ψ1, t = 2 ∧ψ2)K♯ ⇒ 0 < n ≤ 8

In this case, StrengthenChildren yields the solutionψ1 = 0 < n ≤ 4 andψ2 = true. Thus, we have
I (v2) = 0 < n ≤ 4 and I (v3) = (t = 2). The final proof of incorrectness for this example is shown
in Fig. 13(5).

Theorem 4.7. (Correctness of Proof) The mapping I returned by the ConstructProof proce-
dure satisfies the properties from Definition 4.1.

Proof. The proof can be found in the extended version of this paper [Wang et al. 2017a]. □

Complexity analysis. The complexity of our synthesis algorithm is mainly determined by the
number of iterations, and the complexity of FTA construction, ranking and proof construction. In
particular, the FTA can be constructed in time O (m) wherem is the size of the resulting FTA2 (before
any pruning). The complexity of performing ranking over an FTA depends on the ranking heuristic.
2FTA size is defined to be

∑
δ ∈∆ |δ | where |δ | = n + 1 for a transition δ of the form f (q1, · · · , qn) → q.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 63. Publication date: January 2018.

Program Synthesis using Abstraction Refinement 63:15

(1)

Proof of incorrectnessAST annotated with
concrete values

AST annotated with
old abstract values

AST

2

AFTA

(2) (3) (4) (5)

Fig. 13. Illustration of the proof construction process for Example 4.6.

For the one used in our implementation (see Section 6.1), the time complexity is O (m ·logd) wherem
is the FTA size and d is the number of states in the FTA. The complexity of proof construction for an
AST is O (l ·p) where l is the number of nodes in the AST and p is the number of conjunctions under
consideration. Therefore, the complexity of our synthesis algorithm is given by O (t · (l ·p+m · logd))
where t is the number of iterations of the abstraction refinement process.

5 A WORKING EXAMPLE

In the previous sections, we illustrated various aspects of our synthesis algorithm using the DSL
from Example 2.3 on the input-output example 1 7→ 9. We now walk through the entire algorithm
and show how it synthesizes the desired program (id(x) + 2) × 3. We use the abstract semantics
and universe of predicatesU given in Example 3.1, and we use the initial set of predicates P given
in Example 3.2. We will assume that the ranking algorithm always favors smaller programs over
larger ones. In the case of a tie, the ranking algorithm favors programs that use + and those that
use smaller constants.

Fig. 14 illustrates all iterations of the synthesis algorithm until we find the desired program. Let
us now consider Fig. 14 in more detail.
Iteration 1. As explained in Example 3.2, the initial AFTAA1 constructed by our algorithm accepts
all DSL programs starting with id(x). Hence, in the first iteration, we obtain the program Π1 = id (x)
as a candidate solution. Since this program does not satisfy the example 1 7→ 9, we construct a
proof of incorrectness I1, which introduces a new abstract value 0 < n ≤ 8 in our set of predicates.
Iteration 2. During the second iteration, we construct the AFTA labeled as A2 in Fig. 14, which
contains a new state 0 < n ≤ 8. While A2 no longer accepts the program id(x), it does accept the
spurious program Π2 = id(x) + 2, which is returned by the ranking algorithm. Then we construct
the proof of incorrectness for Π2, and we obtain a new predicate 0 < n ≤ 4.
Iteration 3. In the next iteration, we construct the AFTA labeled asA3. Observe thatA3 no longer
accepts the spurious program Π2 and also rules out two other programs, namely id (x) + 3 and
id (x)×2. Rank now returns the program Π3 = id (x)×3, which is again spurious. After constructing
the proof of incorrectness of Π3, we now obtain a new predicate n = 1.
Iteration 4. In the final iteration, we construct the AFTA labeled as A4, which rules out all
programs containg a single operator (+ or ×) as well as 12 programs that use two operators. When
we run the ranking algorithm on A4, we obtain the candidate program (id (x) + 2) × 3, which is
indeed consistent with the example 1 7→ 9. Thus, the synthesis algorithm terminates with the
solution (id (x) + 2) × 3.
Discussion. As this example illustrates, our approach explores far fewer programs compared to
enumeration-based techniques. For instance, our algorithm only tested four candidate programs

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 63. Publication date: January 2018.

63:16 Xinyu Wang, Isil Dillig, and Rishabh Singh

AFTA
construct ion

AST annotated with
old abstract values

AST annotated with
concrete values

Proof construct ion

 Rank

Predicates

Predicates

2

AST annotated with
old abstract values

AST annotated with
concrete values

Proof construct ion

Predicates

 3

AST annotated with
old abstract values

AST annotated with
concrete values

Proof construct ion

Program: id(x)

Program: id(x) + 2

Program: id(x) * 3

Predicates

Program: (id(x) + 2) * 3

Iteration 1: The constructed AFTA isA1, Rank returns Π1, Π1 is spurious, and the proof of incorrectness is I1.

AFTA
construct ion

AST annotated with
old abstract values

AST annotated with
concrete values

Proof construct ion

 Rank

Predicates

Predicates

2

AST annotated with
old abstract values

AST annotated with
concrete values

Proof construct ion

Predicates

 3

AST annotated with
old abstract values

AST annotated with
concrete values

Proof construct ion

Program: id(x)

Program: id(x) + 2

Program: id(x) * 3

Predicates

Program: (id(x) + 2) * 3

Iteration 2: The constructed AFTA isA2, Rank returns Π2, Π2 is spurious, and the proof of incorrectness is I2.

AFTA
construct ion

AST annotated with
old abstract values

AST annotated with
concrete values

Proof construct ion

 Rank

Predicates

Predicates

2

AST annotated with
old abstract values

AST annotated with
concrete values

Proof construct ion

Predicates

 3

AST annotated with
old abstract values

AST annotated with
concrete values

Proof construct ion

Program: id(x)

Program: id(x) + 2

Program: id(x) * 3

Predicates

Program: (id(x) + 2) * 3

Iteration 3: The constructed AFTA isA3, Rank returns Π3, Π3 is spurious, and the proof of incorrectness is I3.

AFTA
construct ion

AST annotated with
old abstract values

AST annotated with
concrete values

Proof construct ion

 Rank

Predicates

Predicates

2

AST annotated with
old abstract values

AST annotated with
concrete values

Proof construct ion

Predicates

 3

AST annotated with
old abstract values

AST annotated with
concrete values

Proof construct ion

Program: id(x)

Program: id(x) + 2

Program: id(x) * 3

Predicates

Program: (id(x) + 2) * 3

Iteration 4: The constructed AFTA is A4, and Rank returns the desired program.

Fig. 14. Illustration of the synthesis algorithm.

against the input-output examples, whereas an enumeration-based approach would need to explore
24 programs. However, since each candidate program is generated using abstract finite tree automata,
each iteration has a higher overhead. In contrast, the CFTA-based approach discussed in Section 2.2
always explores a single program, but the corresponding finite tree automaton may be very large.
Thus, our technique can be seen as providing a useful tuning knob between enumeration-based
synthesis algorithms and representation-based techniques (e.g., CFTAs and version space algebras)
that construct a data structure representing all programs consistent with the input-output examples.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 63. Publication date: January 2018.

Program Synthesis using Abstraction Refinement 63:17

6 IMPLEMENTATION AND INSTANTIATIONS

We have implemented the synthesis algorithm proposed in this paper in a framework called
Blaze, written in Java. Blaze is parametrized over a DSL and its abstract semantics. We have also
instantiated Blaze for two different domains, string transformation and matrix reshaping. In what
follows, we describe our implementation of the Blaze framework and its instantiations.

6.1 Implementation of Blaze Framework

Our implementation of the Blaze framework consists of three main modules, namely FTA construc-
tion, ranking algorithm, and proof generation. Since our implementation of FTA construction and
proof generation mostly follows our technical presentation, we only focus on the implementation
of the ranking algorithm, which is used to find a “best" program that is accepted by the FTA. Our
heuristic ranking algorithm returns a minimum-cost AST accepted by the FTA, where the cost of
an AST is defined as follows:

Cost (Leaf(t)) = Cost (t)

Cost (Node(f , Π⃗)) = Cost (f) +
∑
i Cost (Πi)

In the above definition, Leaf(t) represents a leaf node of the AST labeled with terminal t , and
Node(f , Π⃗) represents a non-leaf node labeled with DSL operator f and subtrees Π⃗. Observe that
the cost of an AST is calculated using the costs of DSL operators and terminals, which can be
provided by the domain expert.

In our implementation, we identify aminimum-cost AST accepted by a finite tree automaton using
the algorithm presented by Gallo et al. [1993] for finding a minimum weight B-path in a weighted
hypergraph. In the context of the ranking algorithm, we view an FTA as a hypergraph where states
correspond to nodes and a transition f (q1, · · · ,qn) → q represents a B-arc ({q1, · · · ,qn }, {q}) where
the weight of the arc is given by the cost of DSL operator f . We also add a dummy node r to the
hypergraph and an edge with weight cost(s) from r to every node labeled qcs where s is a terminal
symbol in the grammar. Given such a hypergraph representation of the FTA, the minimum-cost
AST accepted by the FTA corresponds to a minimum-weight B-path from the dummy node r to a
node representing a final state in the FTA.

6.2 Instantiating Blaze for String Transformations

To instantiate the Blaze framework for a specific domain, the domain expert needs to provide
a (cost-annotated) domain-specific language, a universe of possible predicates to be used in the
abstraction, the abstract semantics of each DSL construct, and optionally an initial abstraction to
use when constructing the initial AFTA. We now describe our instantiation of the Blaze framework
for synthesizing string transformation programs.

Domain-specific language. Since there is significant prior work on automating string transfor-
mations using PBE [Gulwani 2011; Polozov and Gulwani 2015; Singh 2016], we directly adopt the
DSL presented by Singh [2016] as shown in Fig. 15. This DSL essentially allows concatenating
substrings of the input string x , where each substring is extracted using a start position p1 and an
end position p2. A position can either be a constant index (ConstPos(k)) or the (start or end) index
of the k’th occurrence of the match of token τ in the input string (Pos(x ,τ ,k,d)).
Universe. A natural abstraction when reasoning about strings is to consider their length; hence,
our universe of predicates in this domain includes predicates of the form len(s) = i , where s is a
symbol of type string and i represents any integer. We also consider predicates of the form s[i] = c
indicating that the i’th character in string s is c . Finally, recall from Section 3 that our universe
must include predicates of the form s = c , where c is a concrete value that symbol s can take. Hence,

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 63. Publication date: January 2018.

63:18 Xinyu Wang, Isil Dillig, and Rishabh Singh

String expr e := Str(f) | Concat(f ,e);
Substring expr f := ConstStr(s) | SubStr(x ,p1,p2);

Position p := Pos(x ,τ ,k,d) | ConstPos(k);
Direction d := Start | End;

Fig. 15. DSL for string transformations where τ represents a token, k is an integer, and s is a string constant.

Jf (s1 = c1, · · · , sn = cn)K♯ :=
(
s = Jf (c1, · · · , cn)K

)
JConcat(len(f) = i1, len(e) = i2)K♯ :=

(
len(e) = (i1 + i2)

)
JConcat(len(f) = i1, e[i2] = c)K♯ :=

(
e[i1 + i2] = c

)
JConcat(len(f) = i, e = c)K♯ :=

(
len(e) = (i + len(c)) ∧

∧
j=0,··· ,len(c)−1 e[i + j] = c[j]

)
JConcat(f [i] = c, p)K♯ :=

(
e[i] = c

)
JConcat(f = c, len(e) = i)K♯ :=

(
len(e) = (len(c) + i) ∧

∧
j=0,··· ,len(c)−1 e[j] = c[j]

)
JConcat(f = c1, e[i] = c2)K♯ :=

(
e[len(c1) + i] = c2 ∧

∧
j=0,··· ,len(c1)−1 e[j] = c1[j]

)
JStr(p)K♯ := p

Fig. 16. Abstract semantics for the DSL shown in Fig. 15.

our universe of predicates for the string domain is given by:

U =
{
len(s) = i | i ∈ N

}
∪
{
s[i] = c | i ∈ N,c ∈ Char]

}
∪
{
s = c | c ∈ Type(s)

}
∪

{
true, false

}

Abstract semantics. Recall from Section 3 that the DSL designer must provide an abstract
transformer Jf (φ1, · · · ,φn)K♯ for each grammar production s → f (s1, · · · ,sn) and abstract values
φ1, · · · ,φn . Since our universe of predicates can be viewed as the union of three different abstract
domains for reasoning string length, character position, and string equality, our abstract trans-
formers effectively define the reduced product of these abstract domains. In particular, we define a
generic transformer for conjunctions of predicates as follows:

f
(
(
∧
i1

pi1), · · · , (
∧
in

pin)
)
:=

l

i1

· · ·
l

in

f (pi1 , · · · ,pin)

Hence, instead of defining a transformer for every possible abstract value (which may have
arbitrarily many conjuncts), it suffices to define an abstract transformer for every combination
of atomic predicates. We show the abstract transformers for all possible combinations of atomic
predicates in Fig. 16.
Initial abstraction. Our initial abstraction includes predicates of the form len(s) = i , where s is a
symbol of type string and i is an integer, as well as the predicates in the default initial abstraction
(see Section 4.1 for the definition).

6.3 Instantiating Blaze for Matrix and Tensor Transformations

Motivated by the abundance of questions on how to perform various matrix and tensor transforma-
tions in MATLAB, we also use the Blaze framework to synthesize tensor manipulation programs.3
We believe this application domain is a good stress test for the Blaze framework because (a) tensors
are complex data structures which makes the search space larger, and (b) the input-output examples
in this domain are typically much larger in size. Finally, we wish to show that the Blaze framework
can be immediately used to generate a practical synthesis tool for a new unexplored domain by
providing a suitable DSL and its abstract semantics.
Domain-specific language. Our DSL for the tensor domain is inspired by existing MATLAB
functions and is shown in Fig. 17. In this DSL, tensor operators include Reshape, Permute, Fliplr,
3Tensors are generalization of matrices from 2 dimensions to an arbitrary number of dimensions.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 63. Publication date: January 2018.

Program Synthesis using Abstraction Refinement 63:19

Tensor expr t := id(x) | Reshape(t ,v) | Permute(t ,v) | Fliplr(t) | Flipud(t);
Vector expr v := [k1,k2] | Cons(k,v);

Fig. 17. DSL for matrix transformations where k is an integer.

Jf (s1 = c1, · · · , sn = cn)K♯ :=
(
s = Jf (c1, · · · , cn)K

)
JCons(k = i1, len(v) = i2)K♯ :=

(
len(v) = (i2 + 1)

)
JPermute(numDims(t) = i, p)K♯ :=

(
numDims(t) = i

)
JPermute(numElems(t) = i, p)K♯ :=

(
numElems(t) = i

)
JReshape(numDims(t) = i1, len(v) = i2)K♯ :=

(
numDims(t) = i2

)
JReshape(numDims(t) = i,v = c)K♯ :=

(
numDims(t) = len(c)

)
JReshape(numElems(t) = i, p)K♯ :=

(
numElems(t) = i

)
JReshape(t = c, len(v) = i)K♯ :=

(
numElems(t) = numElems(c)

)
JFlipud(p)K♯ := p
JFliplr(p)K♯ := p

Fig. 18. Abstract semantics the DSL shown in Fig. 17.

and Flipud and correspond to their namesakes in MATLAB4. For example, Reshape(t , v) takes a
tensor t and a size vector v and reshapes t so that its dimension becomes v . Similarly, Permute(t ,v)
rearranges the dimensions of tensor t so that they are in the order specified by vector v . Next,
fliplr(t) returns tensor t with its columns flipped in the left-right direction, and flipud(t)
returns tensor t with its rows flipped in the up-down direction. Vector expressions are constructed
recursively using the Cons(k,v) construct, which yields a vector with first element k (an integer),
followed by elements in vector v .

Example 6.1. Suppose that we have a vector v and we would like to reshape it in a row-wise
manner so that it yields a matrix with 2 rows and 3 columns5. For example, if the input vector is
[1,2,3,4,5,6], then we should obtain the matrix [1,2,3; 4,5,6] where the semi-colon indicates a new
row. This transformation can be expressed by the DSL program Permute(Reshape(v, [3,2]), [2,1]).

Universe of predicates. Similar to the string domain, a natural abstraction for vectors is to consider
their length. Therefore, our universe includes predicates of the form len(v) = i , indicating that
vector v has length i . In the case of tensors, our abstraction keeps track of the number of elements
and number of dimensions of the tensors. In particular, the predicate numDims(t) = i indicates
that t is an i-dimensional tensor. Similarly, the predicate numElems(t) = i indicates that tensor t
contains a total of i entries. Thus, the universe of predicates is given by:

U =

{
numDims(t) = i | i ∈ N

}
∪
{
numElems(t) = i | i ∈ N

}
{
len(v) = i | i ∈ N

}
∪
{
s = c | c ∈ Type(s)

}
∪

{
true, false

}

Abstract semantics. The abstract transformers for all possible combinations of atomic predicates
for the DSL constructs are given in Fig. 18. As in the string domain, we define a generic transformer
for conjunctions of predicates as follows:

f
(
(
∧
i1

pi1), · · · , (
∧
in

pin)
)
:=

l

i1

· · ·
l

in

f (pi1 , · · · ,pin)

Initial abstraction. We use the default initial abstraction (see Section 4.1 for the definition).
4See the MATLAB documentation https://www.mathworks.com/help/matlab/ref/x.html where x refers to the name of the
corresponding function.
5StackOverflow post link: https://stackoverflow.com/questions/16592386/reshape-matlab-vector-in-row-wise-manner.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 63. Publication date: January 2018.

63:20 Xinyu Wang, Isil Dillig, and Rishabh Singh

7 EVALUATION

We evaluate Blaze by using it to automate string and matrix manipulation tasks collected from
on-line forums and existing PBE benchmarks. The goal of our evaluation is to answer the following
questions:
• Q1:How does Blaze perform on different synthesis tasks from the string andmatrix domains?
• Q2: How many refinement steps does Blaze take to find the correct program?
• Q3:What percentage of its running time does Blaze spend in FTA vs. proof construction?
• Q4: How does Blaze compare with existing synthesis techniques?
• Q5:What is the benefit of performing abstraction refinement in practice?

7.1 Results for the String Domain

In our first experiment, we evaluate Blaze on all 108 string manipulation benchmarks from the
PBE track of the SyGuS competition [Alur et al. 2015]. We believe that the string domain is a good
testbed for evaluating Blaze because of the existence of mature tools like FlashFill [Gulwani 2011]
and the presence of a SyGuS benchmark suite for string transformations.
Benchmark information. Among the 108 SyGuS benchmarks related to string transformations,
the number of examples range from 4 to 400, with an average of 78.2 and a median of 14. The
average input example string length is 13.6 and the median is 13.0. The maximum (resp. minimum)
string length is 54 (resp. 8).
Experimental setup. We evaluate Blaze using the string manipulation DSL shown in Fig. 15 and
the predicates and abstract semantics from Section 6.2. For each benchmark, we provide Blazewith
all input-output examples at the same time.6 We also compare Blaze with the following existing
synthesis techniques:
• FlashFill: This tool is the state-of-the-art synthesizer for automating string manipulation
tasks and is shipped inMicrosoft PowerShell as the “convert-string” commandlet. It propagates
examples backwards using the inverse semantics of DSL operators, and adopts the VSA data
structure to compactly represent the search space.
• ENUM-EQ: This technique based on enumerative search has been adopted to solve different
kinds of synthesis problems [Albarghouthi et al. 2013; Alur et al. 2015; Cheung et al. 2012;
Udupa et al. 2013]. It enumerates programs according to their size, groups them into equiva-
lence classes based on their (concrete) input-output behavior to compress the search space,
and returns the first program that is consistent with the examples.
• CFTA: This is an implementation of the synthesis algorithm presented in Section 2. It uses
the concrete semantics of the DSL operators to construct an FTA whose language is exactly
the set of programs that are consistent with the input-output examples.

To allow a fair comparison, we evaluate ENUM-EQ and CFTA using the same DSL and ranking
heuristics that we use to evaluate Blaze. For FlashFill, we use the “convert-string” commandlet
from Microsoft Powershell that uses the same DSL.
Because the baseline techniques mentioned above perform much better when the examples

are provided in an interactive fashion 7, we evaluate them in the following way: Given a set of
examples E for each benchmark, we first sample an example e in E, use each technique to synthesize
a program P that satisfies e , and check if P satisfies all examples in E. If not, we sample another

6However, Blaze typically uses a fraction of these examples when performing abstraction refinement.
7Because Blaze is not very sensitive to the number of examples, we used Blaze in a non-interactive mode by providing all
examples at once. Since the baseline tools do not scale as well in the number of examples, we used them in an interactive
mode, with the goal of casting them in the best light possible.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 63. Publication date: January 2018.

Program Synthesis using Abstraction Refinement 63:21

Benchmark |e⃗ | Tsyn (sec) TA Trank TI Tother #Iters |Qfinal | |∆final | |Πsyn |

bikes 6 0.05 0.05 0.00 0.00 0.00 1 52 135 13
dr-name 4 0.16 0.09 0.02 0.01 0.04 17 95 513 19
firstname 4 0.08 0.08 0.00 0.00 0.00 1 71 350 13
initials 4 0.11 0.09 0.00 0.01 0.01 14 68 209 32
lastname 4 0.10 0.10 0.00 0.00 0.00 3 79 450 13

name-combine-2 4 0.20 0.12 0.02 0.01 0.05 45 101 549 32
name-combine-3 6 0.16 0.10 0.01 0.02 0.03 26 80 305 32
name-combine-4 5 0.30 0.14 0.03 0.05 0.08 62 114 725 35
name-combine 6 0.16 0.10 0.02 0.02 0.02 20 87 427 29

phone-1 6 0.07 0.07 0.00 0.00 0.00 2 43 79 13
phone-10 7 1.99 0.69 0.34 0.30 0.66 539 471 4754 48
phone-2 6 0.06 0.06 0.00 0.00 0.00 3 43 77 13
phone-3 7 0.25 0.12 0.03 0.05 0.05 59 88 355 35
phone-4 6 0.23 0.10 0.03 0.04 0.06 63 155 1256 45
phone-5 7 0.08 0.08 0.00 0.00 0.00 1 53 114 13
phone-6 7 0.10 0.10 0.00 0.00 0.00 2 53 112 13
phone-7 7 0.08 0.08 0.00 0.00 0.00 3 53 108 13
phone-8 7 0.11 0.11 0.00 0.00 0.00 4 53 106 13
phone-9 7 1.09 0.34 0.19 0.15 0.41 269 454 7355 61
phone 6 0.07 0.07 0.00 0.00 0.00 1 43 80 13

reverse-name 6 0.14 0.08 0.01 0.02 0.03 20 83 414 29
univ_1 6 1.34 0.61 0.21 0.12 0.40 149 348 9618 32
univ_2 6 T/O — — — — — — — —
univ_3 6 3.69 1.63 0.57 0.15 1.34 405 467 18960 22
univ_4 8 T/O — — — — — — — —
univ_5 8 T/O — — — — — — — —
univ_6 8 T/O — — — — — — — —
Median 6 0.14 0.10 0.01 0.01 0.02 17 80 355 22
Average 6.1 0.46 0.22 0.06 0.04 0.14 74.3 137.1 2045.7 25.3

Fig. 19. Blaze results for the string domain, where |e⃗ | shows the number of examples and Tsyn gives synthesis
time in seconds. The next columns labeledTx show the time for FTA construction, ranking, proof construction,

and all remaining parts (e.g. FTA minimization). #Iters shows the number of refinement steps, and |Qfinal | and

|∆final | show the number of states and transitions in the final AFTA. The last column labeled |Πsyn | shows the

size of the synthesized program (measured by number of AST nodes). The timeout is set to be 10 minutes.

example e ′ in E for which P does not produce the desired output, and repeat the synthesis process
using both e and e ′. The synthesizer terminates when it either successfully learns a program that
satisfies all examples, proves that no program in the DSL satisfies the examples, or times out in 10
minutes.
Blaze results. Fig. 19 summarizes the results of our evaluation of Blaze in the string domain.
Because it is not feasible to give statistics for all 108 SyGuS benchmarks, we only show the detailed
results for one benchmark from each of the 27 categories. Note that the four benchmarks within a
category are very similar and only differ in the number of provided examples. The main take-away
message from our evaluation is that Blaze can successfully solve 70% of the benchmarks in under a
second, and 85% of the benchmarks in under 4 seconds, with a median running time of 0.14 seconds.
In comparison, the best solver, i.e., EUSolver [Alur et al. 2017], in the SyGuS’16 competition is able
to solve in total 45 benchmarks within the timeout of 60 minutes [Alur et al. 2016].
For most benchmarks, Blaze spends the majority of its running time on FTA construction,

whereas the time on proof construction is typically negligible. This is because the number of
predicates that are considered in the proof construction phase is usually quite small. It takes Blaze
an average of 74 refinement steps before it finds the correct program. However, the median number
of refinement steps is much smaller (17). Furthermore, as expected, there is a clear correlation
between the number of iterations and total running time. Finally, we can observe that the synthesized
programs are non-trival, with an average size of 25 in terms of the number of AST nodes.
Comparison. Fig. 20 compares the running times of Blaze with FlashFill, ENUM-EQ, and CFTA
on all 108 SyGuS benchmarks. Overall, Blaze solves the most number of benchmarks (90), with

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 63. Publication date: January 2018.

63:22 Xinyu Wang, Isil Dillig, and Rishabh Singh

0.01

0.1

1

10

100

1000

1 8 15 22 29 36 43 50 57 64 71 78 85 92

Ti
m
e%
(s
ec
)

#%Solved%benchmarks%(total%108)

BLAZE FlashFill ENUMCEQ CFTA

#
So
lv
ed

Av
er
ag
e
tim

e
(s
ec
)

Blaze 90 0.49
FlashFill 87 7.66
ENUM-EQ 54 4.25

CFTA 56 73.91

Fig. 20. Comparison with existing techniques. A data point (X ,Y) means that X benchmarks are solved

within a maximum running time of Y seconds (per benchmark). The timeout is set to be 10 minutes.

an average running time of 0.49 seconds. Furthermore, any benchmark that can be solved using
FlashFill, ENUM-EQ, or CFTA can also be solved by Blaze.
Compared to CFTA, Blaze solves 60% more benchmarks (90 vs. 56) and outperforms CFTA by

363x (in terms of running time) on the 56 benchmarks that can be solved by both techniques. This
result demonstrates that abstraction refinement helps scale up the CFTA-based synthesis technique
to solve more benchmarks in much less time.

Compared to ENUM-EQ, the improvement of Blaze is moderate for relatively simple benchmarks.
In particular, for the 40 benchmarks that ENUM-EQ can solve in under 1 second, Blaze (only) shows
a 1.5x improvement in running time. However, for more complex synthesis tasks, the performance
of Blaze is significantly better than ENUM-EQ. For the 54 benchmarks that can be solved by both
techniques, we observe a 16x improvement in running time. Furthermore, Blaze can solve 36
benchmarks on which ENUM-EQ times out. We believe this result demonstrates the advantage of
using abstract values for search space reduction.

Finally, Blaze also compares favorably with FlashFill, the state-of-the-art technique for automat-
ing string transformation tasks. In particular, Blaze achieves very competitive performance for
the benchmarks that both techniques can solve. Furthermore, Blaze can solve 3 benchmarks on
which FlashFill times out. Since FlashFill is a domain-specific synthesizer that has been crafted
specifically for automating string manipulation tasks, we believe these results demonstrate that
Blaze can compete with domain-specific state-of-the-art synthesizers.
Outlier analysis. All techniques, including Blaze, time out on 18 benchmarks for the univ_x
category. We investigated the cause of failure for these benchmarks and found that the desired
program for most of these benchmarks cannot be expressed in the underlying DSL.

7.2 Results for the Matrix Domain

In our second experiment, we evaluate Blaze on matrix and tensor transformation benchmarks
obtained from on-line forums. Because tensors are more complicated data structures than strings,
the search space in this domain tends to be larger on average compared to the string domain.
Furthermore, since automating matrix transformations is a useful (yet unexplored) application of
programming-by-example, we believe this domain is an interesting target for Blaze.
To perform our evaluation, we collected 39 benchmarks from two on-line forums, namely

StackOverflow and MathWorks.8 Our benchmarks were collected using the following methodology:
8MathWorks (https://www.mathworks.com/matlabcentral/answers/) is a help forum for MATLAB users.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 63. Publication date: January 2018.

https://www.mathworks.com/matlabcentral/answers/

Program Synthesis using Abstraction Refinement 63:23

Benchmark Tsyn (sec) TA Trank TI Tother #Iters |Qfinal | |∆final | |Πsyn |

stackoverflow-1 0.29 0.14 0.02 0.08 0.05 39 125 993 10
stackoverflow-2 2.74 0.86 0.10 1.52 0.26 319 279 4483 22
stackoverflow-3 0.72 0.20 0.03 0.43 0.06 57 143 1334 14
stackoverflow-4 13.32 0.31 0.04 12.89 0.08 166 165 959 22
stackoverflow-5 1.34 0.57 0.08 0.48 0.21 222 236 2595 18
stackoverflow-6 0.42 0.17 0.02 0.17 0.06 48 129 1012 10
stackoverflow-7 2.04 0.59 0.07 1.20 0.18 217 244 2607 18
stackoverflow-8 2.04 0.83 0.08 0.90 0.23 288 280 3447 18
stackoverflow-9 1.67 0.90 0.08 0.44 0.25 114 374 5389 16
stackoverflow-10 0.23 0.12 0.01 0.06 0.04 28 114 715 10
stackoverflow-11 0.74 0.34 0.05 0.24 0.11 106 155 1004 18
stackoverflow-12 0.82 0.12 0.02 0.63 0.05 38 124 929 10
stackoverflow-13 0.59 0.17 0.02 0.34 0.06 49 143 1227 12
stackoverflow-14 52.94 1.36 0.11 51.24 0.23 385 324 4321 22
stackoverflow-15 0.41 0.12 0.01 0.24 0.04 31 121 611 14
stackoverflow-16 5.02 0.38 0.06 4.45 0.13 228 172 1083 22
stackoverflow-17 2.54 0.79 0.09 1.42 0.24 319 279 4483 22
stackoverflow-18 0.54 0.25 0.03 0.18 0.08 65 144 1201 14
stackoverflow-19 0.73 0.36 0.06 0.17 0.14 142 162 1180 18
stackoverflow-20 1.31 0.36 0.05 0.78 0.12 165 160 786 18
stackoverflow-21 1.01 0.52 0.06 0.27 0.16 180 195 1566 18
stackoverflow-22 0.21 0.10 0.01 0.07 0.03 19 106 526 10
stackoverflow-23 1.24 0.26 0.04 0.85 0.09 108 181 2493 14
stackoverflow-24 0.62 0.14 0.02 0.41 0.05 52 138 1183 12
stackoverflow-25 0.81 0.20 0.03 0.51 0.07 72 170 2201 14
mathworks-1 0.71 0.15 0.02 0.48 0.06 55 137 1103 12
mathworks-2 0.88 0.11 0.02 0.71 0.04 34 126 848 14
mathworks-3 1.07 0.58 0.06 0.27 0.16 180 195 1566 18
mathworks-4 3.94 0.22 0.03 3.62 0.07 89 195 2589 14
mathworks-5 0.45 0.15 0.02 0.22 0.06 45 134 963 12
mathworks-6 1.30 0.42 0.07 0.63 0.18 195 222 2100 18
mathworks-7 0.21 0.10 0.01 0.06 0.04 28 116 717 10
mathworks-8 0.27 0.13 0.02 0.07 0.05 39 125 993 10
mathworks-9 1.73 0.23 0.03 1.39 0.08 104 160 955 10
mathworks-10 1.57 0.30 0.05 1.10 0.12 145 172 1176 14
mathworks-11 9.40 5.72 0.50 1.83 1.35 613 583 25924 22
mathworks-12 1.25 0.36 0.07 0.66 0.16 187 203 1799 18
mathworks-13 2.49 1.45 0.17 0.41 0.46 462 295 2574 15
mathworks-14 11.10 6.18 1.19 0.60 3.13 827 678 34176 22

Median 1.07 0.30 0.04 0.48 0.09 108 165 1201 14
Average 3.35 0.67 0.09 2.36 0.23 165.6 205.2 3225.9 15.5

Fig. 21. Blaze results for matrix domain. We use the same notation explained in the caption of Fig. 19.

We searched for the keyword "matlab matrix reshape” and then sorted the results according to their
relevance. We then looked at the first 100 posts from each forum and retained posts that contain at
least one example as well as the target program is in one of the responses.
Benchmark information. Since the overwhelming majority of forum entries contain a single
example, we only provide one input-output example for each benchmark. The number of entries in
the input tensor ranges from 6 to 640. The average number is 73.5, and the median is 36. Among all
benchmarks, 29 involve transforming the input example into tensors of dimension great than 2.
Experimental setup. We evaluate Blaze using the DSL shown in Fig. 17 and the abstract semantics
presented in Section 6.3. Similar to the string domain, we also compare Blaze with ENUM-EQ
and CFTA. However, since there is no existing domain-specific synthesizer for automating matrix
transformation tasks, we implemented a specialized VSA-based synthesizer for our matrix domain
by instantiating the Prose framework [Polozov and Gulwani 2015]. In particular, we provide precise
witness functions for all the operators in our DSL, which allows Prose to effectively decompose the
synthesis task. To allow a fair comparison, we use the same DSL for all the synthesizers, as well as
the same ranking heuristics. We also experiment with all baseline synthesizers in the interactive
setting, as we did for the string domain. The timeout is set to be 10 minutes.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 63. Publication date: January 2018.

63:24 Xinyu Wang, Isil Dillig, and Rishabh Singh

0.1

1

10

100

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Ti
m
e%
(s
ec
)

#%Solved%benchmarks%(total%39)

BLAZE PROSE ENUMDEQ CFTA

#
So
lv
ed

Av
er
ag
e
tim

e
(s
ec
)

Blaze 39 3.35
Prose 36 113.13

ENUM-EQ 38 147.88
CFTA 27 252.80

Fig. 22. Comparison with existing techniques.

Blaze results. The results of our evaluation on Blaze are summarized in Fig. 21. As shown in
the figure, Blaze can successfully solve all benchmarks with an average (resp. median) synthesis
time of 3.35 (resp. 1.07) seconds. Furthermore, Blaze can solve 46% of the benchmarks in under 1
second, and 87% of the benchmarks in under 5 seconds. These results demonstrate that Blaze is
also practical for automating matrix/tensor reshaping tasks.

Looking at Fig. 21 in more detail, Blaze takes an average of 165 refinement steps to find a correct
program. Unlike the string domain where Blaze spends most of its time in FTA construction, proof
construction also seems to take significant time in the matrix domain. We conjecture this is because
Blaze needs to search for predicates in a large space. The final AFTA constructed by Blaze contains
an average of 205 states, and the average AST size of synthesized programs is 16.
Comparison. As shown in Fig. 22, Blaze significantly outperforms all existing techniques, both
in terms of the number of solved benchmarks as well as the running time. In particular, we observe
a 262x improvement over CFTA, a 115x improvement over ENUM-EQ, and a 90x improvement over
Prose in terms of the running time. Therefore, this experiment also demonstrates the advantage of
using abstract values and abstraction refinement in the matrix domain.
Outlier analysis. The benchmark named “stackoverflow-14” takes 53 seconds because the input
example tensor is the largest one we have in our benchmark set (with 640 entries). As a result, in
the proof construction phase Blaze needs to search for the desired formula in a space that contains
over 105 conjunctions. This makes the synthesis process computationally expensive.

7.3 Discussion

The reader may wonder why Blaze performs much better in the matrix domain compared to
VSA-based techniques (FlashFill and Prose) than in the string domain. We conjecture that this
discrepancy can be explained by considering the size of the search space measured in terms of the
number of (intermediate) concrete values produced by the DSL programs. For the string domain,
the search space size is dominated by the number of substrings, and FlashFill constructs n2 nodes
for substrings in the VSA data structure, where n is the length of the output example. For the matrix
domain, the search space size is mostly determined by the number of intermediate matrices; in
the worst case Prose would have to explore O (n!) nodes, where n is the number of entries in the
example matrix. Hence, the size of the search space in the matrix domain is potentially much larger
for VSA-based techniques than that in the string domain. In contrast, Blaze performs quite well in
both application domains, since it uses abstract values (instead of concrete values) to represent
equivalence classes.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 63. Publication date: January 2018.

Program Synthesis using Abstraction Refinement 63:25

8 RELATEDWORK

In this section, we compare our technique against related approaches in the synthesis and verifica-
tion literature.

CEGAR in Model Checking. Our approach is inspired by the use of counterexample-guided
abstraction refinement in software model checking [Ball et al. 2011; Beyer et al. 2007; Henzinger
et al. 2004, 2003]. The idea here is to start with a coarse abstraction of the program and then perform
model checking over this abstraction. Since any errors encountered using this approach may be
spurious, the model checker then looks for a counterexample trace and refines the abstraction
if the error is indeed spurious. While there are many ways to perform refinement, a popular
approach is to refine the abstraction using interpolation, which provides a proof of unsatisfiability
of a trace [Henzinger et al. 2004]. Our approach is very similar to CEGAR-based model checkers
in that we perform abstraction refinement whenever we find a spurious program as opposed to a
spurious error trace. In addition, the proofs of incorrectness that we utilize in this paper can be
viewed as a form of tree interpolant [McMillan and Rybalchenko 2013; Rümmer et al. 2013].

Abstraction in Program Synthesis. The only prior work that uses abstraction refinement in
the context of synthesis is the abstraction-guided synthesis (AGS) technique of Vechev et al. for
learning efficient synchronization in concurrent programs [Vechev et al. 2010]. Unlike Blaze
which aims to learn an entire program from scratch using input-output examples, AGS requires
an input concurrent program and only performs small modifications to the program by adding
synchronization primitives. In more detail, AGS first performs an abstraction of the program and
checks whether there are any counterexample (abstract) interleavings that violate the given safety
constraint. If there is no violation, it returns the current program. Otherwise, it non-deterministically
chooses to either refine the abstraction or modify the program by adding synchronization primitives
such that the abstract interleaving is removed. AGS can be viewed as a program repair technique for
concurrent programs and cannot be used for synthesizing programs from input-output examples.
Other synthesizers that bear similarities to the approach proposed in this paper include Syn-

qid [Polikarpova et al. 2016] andMorpheus [Feng et al. 2017]. In particular, both of these tech-
niques use specifications of DSL constructs in the form of refinement types and first-order formulas
respectively, and use these specifications to refute programs that do not satisfy the specification.
Similarly, Blaze uses abstract semantics of DSL constructs, which can be viewed as specifications.
However, unlike Synqid, the specifications in Blaze and Morpheus overapproximate the behav-
ior of the DSL constructs. Blaze further differs from both of these techniques in that it performs
abstraction refinement and learns programs using finite tree automata.
There is a line of work that uses abstractions in the context of component-based program

synthesis [Gascón et al. 2017; Tiwari et al. 2015]. These techniques annotate each component
with a “decoration” that serves as an abstraction of the semantics of that component. The use of
such abstractions simplifies the synthesis task by reducing a complex ∃∀ problem to a simpler ∃∃
constraint solving problem, albeit at the cost of the completeness. In contrast to these techniques,
our method uses abstractions to construct a more compact abstract FTA and performs abstraction
refinement to rule out spurious programs.
The use of abstraction refinement has also been explored in the context of superoptimizing

compilers [Phothilimthana et al. 2016]. In particular, Phothilimthana et al. use test cases to construct
an (underapproximate) abstraction of program behavior and “refine” this abstraction by iteratively
including more test cases. However, since this abstraction is heuristically applied to “promising”
parts of the candidate space, this method may not be able to find the desired equivalent program.
This technique differs significantly from our method in that they use an orthogonal definition of
abstraction and perform abstraction refinement in a different heuristic-guided manner.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 63. Publication date: January 2018.

63:26 Xinyu Wang, Isil Dillig, and Rishabh Singh

Another related technique is Storyboard Programming [Singh and Solar-Lezama 2011] for
learning data structure manipulation programs from examples by combining abstract interpretation
and shape analysis. However, it differs from Blaze in that the user needs to manually provide
precise abstractions for input-output examples as well as abstract transformers for data structure
operations. Furthermore, there is no automated refinement phase.

Programming-by-Example (PBE). The problem of automatically learning programs that are
consistent with a set of input-output examples has been the subject of research for the last four
decades [Shaw et al. 1975]. Recent advances in algorithmic and logical reasoning techniques have
led to the development of PBE systems in several domains including regular expression based
string transformations [Gulwani 2011; Singh 2016], data structure manipulations [Feser et al. 2015;
Yaghmazadeh et al. 2016], network policies [Yuan et al. 2014], data filtering [Wang et al. 2016],
file manipulations [Gulwani et al. 2015], interactive parser synthesis [Leung et al. 2015], and
synthesizing map-reduce distributed programs [Smith and Albarghouthi 2016]. It has also been
studied from different perspectives, such as type-theoretic interpretation [Frankle et al. 2016; Osera
and Zdancewic 2015; Scherer and Rémy 2015], version space learning [Gulwani 2011; Polozov and
Gulwani 2015], and deep learning [Devlin et al. 2017; Parisotto et al. 2016].
Our method, SYNGAR, presents a new approach to example-guided program synthesis using

abstraction refinement. Unlike most of the earlier PBE approaches that prune the search space using
the concrete semantics of DSL operators [Albarghouthi et al. 2013; Udupa et al. 2013], SYNGAR,
instead, uses their abstract semantics and iteratively refines the abstraction until it finds a program
that satisfies the input-output examples. Although we instantiate SYNGAR in two domains, namely
string and matrix transformations, we believe the SYNGAR approach can be used to complement
many previous PBE systems to make synthesis more efficient.

Counterexample-guided Inductive Synthesis (CEGIS). Counterexample guided inductive syn-
thesis (CEGIS) [Solar-Lezama 2008; Solar-Lezama et al. 2006] is a popular algorithm used for solving
synthesis problems of the form ∃P ∀i : ϕ (P ,i) where the goal is to synthesize a program P such that
the specification ϕ holds for all inputs i . The main idea of the algorithm is to reduce the solving
of the second-order formula to two first-order formulas: i) ∃P : ϕ (P , I1, · · · , Ik) (synthesis), and
ii) ∃i : ¬ϕ (P ,i) (verification). The first phase learns a program P that is consistent with a finite
set of inputs (I1, · · · , Ik), whereas the second phase performs verification on the learnt candidate
program P to find a counterexample input i that violates the specification. If such an input i exists,
the input is added to the set of current inputs and the synthesis phase is repeated. This iterative
process continues until either the verification check succeeds (i.e., the learnt program P satisfies the
specification) or if the synthesis check fails (i.e., there is no program that satisfies the specification).
CEGIS bears similarities to SYNGAR in that both approaches are guided by counterexamples

(i.e., incorrect programs). However, the two approaches are very different in that CEGIS performs
abstraction over the specification, whereas SYNGAR performs abstraction over the DSL constructs.
In particular, the input-output examples used in the synthesis phase of CEGIS under-approximate
the specification, whereas the abstract finite tree automata in SYNGAR over-approximate the set of
programs that are consistent with the specification. Since SYNGAR is intended for example-guided
synthesis, we believe that it can be used to complement the synthesis phase in CEGIS.

Finite Tree Automata (FTA). Tree automata, which generalize finite word automata, date back
to 1968 and were originally used for proving the existence of a decision procedure for weak
monadic second-order logic [Thatcher and Wright 1968]. Since then, tree automata have been
found applications in the analysis of XML documents [Hosoya and Pierce 2003; Martens and
Niehren 2005], software verification [Abdulla et al. 2008; Gallagher and Puebla 2002; Kafle and

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 63. Publication date: January 2018.

Program Synthesis using Abstraction Refinement 63:27

Gallagher 2015; Monniaux 1999] and natural language processing [Knight and May 2009; May
and Knight 2008]. Recent work by Kafle and Gallagher is particularly related in that they use
counterexample-guided abstraction refinement to solve a system of constrained Horn Clauses and
perform refinement using finite tree automata [Gallagher and Puebla 2002]. In contrast to their
approach, we use finite tree automata for synthesis rather than for refinement.
Finite tree automata have also found interesting applications in the context of program syn-

thesis. For example, Parthasarathy uses finite tree automata as a theoretical basis for reactive
synthesis [Madhusudan 2011]. Specifically, given an ω-specification of the reactive system, their
technique constructs a tree automaton that accepts all programs that meet the specification. Recent
work by Wang et al. also uses finite tree automata for synthesizing data completion scripts from
input-output examples [Wang et al. 2017b]. In this work, we generalize the technique of Wang et
al. by showing how it can be used to synthesize programs over any arbitrary DSL described in a
context-free grammar. We also introduce the concept of abstract finite tree automata (AFTA) and
describe a method for counterexample-guided synthesis using AFTAs.

9 CONCLUSION

We proposed a new synthesis methodology, called SYNGAR, for synthesizing programs that are
consistent with a given set of input-output examples. The key idea is to find a program that
satisfies the examples according to the abstract semantics of the DSL constructs and then check the
correctness of the learnt program with respect to the concrete semantics. Our approach returns the
synthesized program if it satisfies the examples, and automatically refines the abstraction otherwise.
Our method performs synthesis using abstract finite tree automata and refines the abstraction by
constructing a proof of incorrectness of the learnt program for a given input-output example.
We have implemented the proposed methodology in a synthesis framework called Blaze and

instantiated it for two different domains, namely string and matrix transformations. Our evaluation
shows that Blaze is competitive with FlashFill in the string domain and that it outperforms Prose
by 90x in the matrix domain. Our evaluation also shows the advantages of using abstract semantics
and performing abstraction refinement.

10 LIMITATIONS AND FUTUREWORK

While our proposed SYNGAR framework can be realized using different synthesis algorithms, the
FTA-based method described in this paper has three key limitations: First, our current synthesis
method does not support let bindings, thus, it cannot be used to synthesize programs over DSLs
that allow variable introduction. Second, our method treats λ-abstractions as constants; hence, it
may not perform very well for DSLs that encourage heavy use of higher-order combinators. Third,
our method requires abstract values to be drawn from a decidable logic – i.e., we assume that it
is possible to over-approximate values of intermediate DSL expressions using formulas from a
decidable logic. In future work, we plan to develop new abstract synthesis algorithms that support
DSLs with richer language features, including let bindings. We also plan to explore more efficient
techniques for synthesizing programs over DSLs that make heavy use of higher-order combinators.

ACKNOWLEDGMENTS

We would like to thank members in the UToPiA group for their insightful comments, as well as the
anonymous reviewers for their constructive feedback. This work was supported in part by NSF
Award #1712060, NSF Award #1453386 andAFRLAward #8750-14-2-0270. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of the U.S. Government.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 63. Publication date: January 2018.

63:28 Xinyu Wang, Isil Dillig, and Rishabh Singh

REFERENCES

Parosh A Abdulla, Ahmed Bouajjani, Lukáš Holík, Lisa Kaati, and Tomáš Vojnar. 2008. Composed bisimulation for tree
automata. In International Conference on Implementation and Application of Automata. Springer, 212–222.

Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. 2013. Recursive Program Synthesis. In International Conference on
Computer Aided Verification (CAV). Springer, 934–950.

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund Raghothaman, Sanjit A Seshia, Rishabh Singh,
Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2015. Syntax-guided synthesis. Dependable Software
Systems Engineering 40 (2015), 1–25.

Rajeev Alur, Dana Fisman, Rishabh Singh, and Armando Solar-Lezama. 2016. SyGuS-Comp 2016: Results and Analysis. In
SYNT. 178–202.

Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017. Scaling Enumerative Program Synthesis via Divide and
Conquer. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
Springer, 319–336.

Thomas Ball, Vladimir Levin, and Sriram K Rajamani. 2011. A decade of software model checking with SLAM. Commun.
ACM 54, 7 (2011), 68–76.

Dirk Beyer, Thomas A Henzinger, Ranjit Jhala, and Rupak Majumdar. 2007. The software model checker Blast. International
Journal on Software Tools for Technology Transfer 9, 5-6 (2007), 505–525.

Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. 2012. Using program synthesis for social recommendations. In
Proceedings of the 21st ACM international conference on Information and knowledge management. ACM, 1732–1736.

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages (POPL). 238–252.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and Pushmeet Kohli. 2017.
RobustFill: Neural Program Learning under Noisy I/O. arXiv preprint arXiv:1703.07469 (2017).

Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri. 2017. Component-based Synthesis of
Table Consolidation and Transformation Tasks from Examples. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). ACM, 422–436.

John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing Data Structure Transformations from Input-output
Examples. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI). ACM, 229–239.

Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic. 2016. Example-directed Synthesis: A Type-
theoretic Interpretation. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL). ACM, 802–815.

John Gallagher and German Puebla. 2002. Abstract interpretation over non-deterministic finite tree automata for set-based
analysis of logic programs. Practical Aspects of Declarative Languages (2002), 243–261.

Giorgio Gallo, Giustino Longo, Stefano Pallottino, and Sang Nguyen. 1993. Directed Hypergraphs and Applications. Discrete
Appl. Math. 42, 2-3 (1993), 177–201.

Adrià Gascón, Ashish Tiwari, Brent Carmer, and Umang Mathur. 2017. Look for the Proof to Find the Program: Decorated-
Component-Based Program Synthesis. In International Conference on Computer Aided Verification (CAV). Springer,
86–103.

Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-output Examples. In Proceedings of the
38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). ACM, 317–330.

Sumit Gulwani, Mikaël Mayer, Filip Niksic, and Ruzica Piskac. 2015. StriSynth: synthesis for live programming. In Proceedings
of the 37th International Conference on Software Engineering (ICSE). IEEE, 701–704.

ThomasA. Henzinger, Ranjit Jhala, RupakMajumdar, and Kenneth L.McMillan. 2004. Abstractions from Proofs. In Proceedings
of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). ACM, 232–244.

Thomas A Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. 2003. Software verification with BLAST. In
International SPIN Workshop on Model Checking of Software. Springer, 235–239.

Haruo Hosoya and Benjamin C Pierce. 2003. XDuce: A statically typed XML processing language. ACM Transactions on
Internet Technology (TOIT) 3, 2 (2003), 117–148.

Bishoksan Kafle and John P Gallagher. 2015. Tree automata-based refinement with application to Horn clause verification.
In International Workshop on Verification, Model Checking, and Abstract Interpretation (VMCAI). Springer, 209–226.

Kevin Knight and Jonathan May. 2009. Applications of weighted automata in natural language processing. In Handbook of
Weighted Automata. Springer, 571–596.

Alan Leung, John Sarracino, and Sorin Lerner. 2015. Interactive Parser Synthesis by Example. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). ACM, 565–574.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 63. Publication date: January 2018.

Program Synthesis using Abstraction Refinement 63:29

Parthasarathy Madhusudan. 2011. Synthesizing reactive programs. In LIPIcs-Leibniz International Proceedings in Informatics,
Vol. 12. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Wim Martens and Joachim Niehren. 2005. Minimizing tree automata for unranked trees. In International Workshop on
Database Programming Languages. Springer, 232–246.

Jonathan May and Kevin Knight. 2008. A Primer on Tree Automata Software for Natural Language Processing. (2008).
Kenneth L McMillan and Andrey Rybalchenko. 2013. Solving constrained Horn clauses using interpolation. Tech. Rep.

MSR-TR-2013-6 (2013).
David Monniaux. 1999. Abstracting cryptographic protocols with tree automata. In International Static Analysis Symposium.

Springer, 149–163.
Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-example-directed Program Synthesis. In Proceedings of the 36th

ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). ACM, 619–630.
Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Pushmeet Kohli. 2016. Neuro-

symbolic program synthesis. arXiv preprint arXiv:1611.01855 (2016).
Phitchaya Mangpo Phothilimthana, Aditya Thakur, Rastislav Bodik, and Dinakar Dhurjati. 2016. Scaling Up Superopti-

mization. In Proceedings of the 21st International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). ACM, 297–310.

Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program Synthesis from Polymorphic Refinement Types.
In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). ACM,
522–538.

Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: A Framework for Inductive Program Synthesis. In Proceedings of
the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA). ACM, 107–126.

Philipp Rümmer, Hossein Hojjat, and Viktor Kuncak. 2013. Classifying and solving horn clauses for verification. InWorking
Conference on Verified Software: Theories, Tools, and Experiments. Springer, 1–21.

Gabriel Scherer and Didier Rémy. 2015. Which Simple Types Have a Unique Inhabitant?. In Proceedings of the 20th ACM
SIGPLAN International Conference on Functional Programming (ICFP). ACM, 243–255.

David E. Shaw, William R. Swartout, and C. Cordell Green. 1975. Inferring LISP Programs from Examples. In Proceedings of
the 4th International Joint Conference on Artificial Intelligence (IJCAI). 260–267.

Rishabh Singh. 2016. Blinkfill: Semi-supervised programming by example for syntactic string transformations. Proceedings
of the VLDB Endowment 9, 10 (2016), 816–827.

Rishabh Singh and Sumit Gulwani. 2016. Transforming Spreadsheet Data Types Using Examples. In Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). ACM, 343–356.

Rishabh Singh and Armando Solar-Lezama. 2011. Synthesizing data structure manipulations from storyboards. In Proceedings
of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering (ESEC/FSE).
289–299.

Calvin Smith and Aws Albarghouthi. 2016. MapReduce Program Synthesis. In Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI). ACM, 326–340.

Armando Solar-Lezama. 2008. Program synthesis by sketching. Ph.D. Dissertation.
Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat. 2006. Combinatorial Sketching for

Finite Programs. In Proceedings of the 12th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS). ACM, 404–415.

James W Thatcher and Jesse B Wright. 1968. Generalized finite automata theory with an application to a decision problem
of second-order logic. Theory of Computing Systems 2, 1 (1968), 57–81.

Ashish Tiwari, Adrià Gascón, and Bruno Dutertre. 2015. Program Synthesis Using Dual Interpretation. In International
Conference on Automated Deduction. Springer, 482–497.

Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-Haim, Milo M. K. Martin, and Rajeev Alur. 2013.
TRANSIT: specifying protocols with concolic snippets. In Proceedings of the 34th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI). 287–296.

Martin T. Vechev, Eran Yahav, and Greta Yorsh. 2010. Abstraction-guided synthesis of synchronization. In Proceedings of the
37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). 327–338.

Xinyu Wang, Isil Dillig, and Rishabh Singh. 2017a. Program Synthesis using Abstraction Refinement. arXiv preprint
arXiv:1710.07740 (2017).

Xinyu Wang, Isil Dillig, and Rishabh Singh. 2017b. Synthesis of Data Completion Scripts Using Finite Tree Automata. Proc.
ACM Program. Lang. 1, OOPSLA (Oct. 2017), 62:1–62:26.

Xinyu Wang, Sumit Gulwani, and Rishabh Singh. 2016. FIDEX: Filtering Spreadsheet Data using Examples. In Proceedings of
the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA). ACM, 195–213.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 63. Publication date: January 2018.

63:30 Xinyu Wang, Isil Dillig, and Rishabh Singh

Navid Yaghmazadeh, Christian Klinger, Isil Dillig, and Swarat Chaudhuri. 2016. Synthesizing Transformations on Hierar-
chically Structured Data. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). ACM, 508–521.

Yifei Yuan, Rajeev Alur, and Boon Thau Loo. 2014. NetEgg: Programming network policies by examples. In Proceedings of
the 13th ACM Workshop on Hot Topics in Networks. ACM, 20.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 63. Publication date: January 2018.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Background on Finite Tree Automata
	2.2 Synthesis using Concrete Finite Tree Automata

	3 Abstract Finite Tree Automata
	3.1 Abstractions
	3.2 Abstract Finite Tree Automata

	4 Synthesis using Abstraction Refinement
	4.1 Top-level Synthesis Algorithm
	4.2 Constructing Proofs of Incorrectness

	5 A Working Example
	6 Implementation and Instantiations
	6.1 Implementation of Blaze Framework
	6.2 Instantiating Blaze for String Transformations
	6.3 Instantiating Blaze for Matrix and Tensor Transformations

	7 Evaluation
	7.1 Results for the String Domain
	7.2 Results for the Matrix Domain
	7.3 Discussion

	8 Related work
	9 Conclusion
	10 Limitations and Future Work
	Acknowledgments
	References

