Bottom-up Synthesis of Recursive Functional Programs using Angelic Execution ANDERS MILTNER, UT Austin, USA ADRIAN TREJO NUÑEZ, UT Austin, USA ANA BRENDEL, UT Austin, USA SWARAT CHAUDHURI, UT Austin, USA ISIL DILLIG, UT Austin, USA We present a novel bottom-up method for the synthesis of functional recursive programs. While bottom-up synthesis techniques can work better than top-down methods in certain settings, there is no prior technique for synthesizing recursive programs from logical specifications in a purely bottom-up fashion. The main challenge is that effective bottom-up methods need to execute sub-expressions of the code being synthesized, but it is impossible to execute a recursive subexpression of a program that has not been fully constructed yet. In this paper, we address this challenge using the concept of *angelic semantics*. Specifically, our method finds a program that satisfies the specification under angelic semantics (we refer to this as *angelic synthesis*), analyzes the assumptions made during its angelic execution, uses this analysis to strengthen the specification, and finally reattempts synthesis with the strengthened specification. Our proposed angelic synthesis algorithm is based on version space learning and therefore deals effectively with many incremental synthesis calls made during the overall algorithm. We have implemented this approach in a prototype called Burst and evaluate it on synthesis problems from prior work. Our experiments show that Burst is able to synthesize a solution to 95% of the benchmarks in our benchmark suite, outperforming prior work. #### 1 INTRODUCTION Methods for program synthesis from formal specifications typically come in two flavors: *top-down* and *bottom-up*. Top-down methods [Feser et al. 2015; Frankle et al. 2016; Gulwani 2011; Kitzelmann et al. 2006; Osera and Zdancewic 2015; Polikarpova et al. 2016; Summers 1977] iterate through a sequence of *partial programs*, starting with an "empty" program and progressively refining them through the addition of new code. In contrast, bottom-up methods [Albarghouthi et al. 2013; Alur et al. 2015a; Odena et al. 2020; Udupa et al. 2013] maintain a pool of *complete programs* and progressively generate new programs by composing existing ones. Top-down and bottom-up approaches have complementary strengths. For example, top-down methods work well when the specification can be naturally decomposed into subgoals through an analysis of partial programs. However, they can run into imprecision or computational complexity issues when the specification or the language semantics are complicated. In contrast, a bottom-up approach only needs to evaluate complete sub-expressions of a program, which is generally a much easier task than that of reasoning about partial programs. Unfortunately, it is difficult to apply bottom-up synthesis to programming languages that permit recursion. This is because effective bottom-up approaches need to execute all sub-expressions of the target program; however, for recursive programs, sub-expressions can call the function being synthesized, whose semantics are still unknown. One way to overcome this issue is to assume that the specification is *trace-complete*, i.e., that the result of each such evaluation is part of the specification. (Indeed, such a strategy is followed in the ESCHER [Albarghouthi et al. 2013] system for the bottom-up synthesis of recursive programs.) However, trace-completeness is a restrictive assumption, and writing trace-complete specifications can be cumbersome and unintuitive. Authors' addresses: Anders Miltner, UT Austin, Austin, TX, USA, amiltner@cs.utexas.edu; Adrian Trejo Nuñez, UT Austin, Austin, TX, USA, atrejo@cs.utexas.edu; Ana Brendel, UT Austin, Austin, TX, USA, anabrendel@utexas.edu; Swarat Chaudhuri, UT Austin, Austin, TX, USA, swarat@cs.utexas.edu; Isil Dillig, UT Austin, Austin, TX, USA, isil@cs.utexas.edu. In this paper, we propose a new approach to bottom-up program synthesis that addresses this difficulty. The key insight behind our solution is to use $angelic\ execution\ [Broy\ and\ Wirsing\ 1981]$ to evaluate recursive sub-expressions of the program being synthesized. Specifically, our method first performs $angelic\ synthesis$ to find a program P that satisfies the specification under the assumption that recursive calls can return any value that is consistent with the specification. For example, if the specification is $0 \le f(x) \le x$, the angelic synthesizer assumes that a recursive call f(2) can return any of the integers 0, 1, or 10, although in reality it can only return 11 one of these. Thus, when performing angelic synthesis of a function 12, we only need access to 12 specification rather than its full 13 implementation. One complication with this approach is that a program P that angelically satisfies its specification φ may not *actually* satisfy φ . To deal with this difficulty, our method combines angelic synthesis with *specification strengthening* and back-tracking search. In more detail, given an angelic synthesis result P, our synthesis technique first checks if P satisfies φ under the standard semantics. If so, then P is returned as a solution. Otherwise, our method analyzes the assumptions made in angelic executions of P, uses this information to strengthen the specification, and re-attempts synthesis with the strengthened specification. If synthesis is unsuccessful with the strengthened specification, it backtracks and tries a different strengthening, continuing this process until it either finds the right program or exhausts the search space. As illustrated by the above discussion, our end-to-end approach requires gradually strengthening the specification and making many calls to an *angelic synthesizer*. Thus, for our approach to be practical, it is important to have an angelic synthesis technique that can reuse partial synthesis results. Additionally, it must be possible to easily analyze assumptions made in angelic executions in order determine how to strengthen the specification. Motivated by these considerations, we propose an angelic synthesis technique based on *finite tree automata* [Wang et al. 2017a,b]. Our proposed angelic synthesizer handles incremental specifications by taking the intersection of previously constructed tree automata (for weaker specifications) with new automata constructed from the additional specifications. This incremental nature of the angelic synthesizer allows our approach to efficiently handle a series of increasingly more complex specifications. Furthermore, by inspecting runs of the tree automaton, we can easily and efficiently analyze the assumptions made by the angelic synthesizer. We have implemented our technique in a tool called Burst¹ and evaluate it on 45 benchmarks from prior work [Osera and Zdancewic 2015] using three types of specifications, namely (1) input-output examples, (2) reference implementations, and (3) logical formulas. Our evaluation shows that Burst can synthesize more functions than prior work on all three types of specifications. In particular, our tool is able to synthesize 96% (43) of the functions from input/output examples, 96% (43) of the functions from reference implementations, and 93% (41) of the functions from logical specifications. We also compare Burst against a simpler variant that does not perform specification strengthening, and we show that our proposed backtracking search technique is useful in practice. In summary, this paper makes the following contributions: - We present the first bottom-up synthesis procedure that can handle general recursion and general logical specifications, and does not require the restrictive trace-completeness assumption. - We introduce a new form of angelic program synthesis that combines the use of angelic program semantics and specification strengthening and can make use of efficient version space representations. Some of the insights in our algorithm may be applicable outside the immediate setting that we target. ¹Bottom-Up Recursive SynThesizer Fig. 1. First example T_1 Fig. 2. Second example T_2 • Our artifactual contribution is an implementation of our approach, called Burst. We have conducted an extensive experimental evaluation on synthesis benchmarks from prior work. Our experiments show that Burst significantly outperforms the state-of-the-art in the synthesis of recursive programs on several counts. ## 2 OVERVIEW In this section, we give an overview of our method with the aid of a motivating example. Our goal in this example is to synthesize a recursive implementation of the right_spine procedure, which takes as input a tree and produces a list that is obtained by traversing the rightmost children of a node, starting from the root and continuing until a leaf node is reached. As an example, Figures 1 and 2 show two trees T_1 and T_2 , and a partial input-output specification for right_spine is given as follows: right_spine($$T_1$$) = [1;0] right_spine(T_2) = [2] (1) Note that our method can work with specifications that are not input-output examples (see Section 2.4); here, we simply choose it for simplicity of presentation. We now explain how our technique synthesizes this right_spine procedure in a bottom-up fashion. ## 2.1 High Level Algorithm Our algorithm works in a refinement loop that performs two major steps: (1) it synthesizes a program that *angelically* satisfies the specification, and (2) strengthens the specification based on the assumptions made in the angelic execution. In this subsection, we illustrate the high-level approach on right_spine, leaving the details of angelic synthesis to Section 2.2. *Iteration 1.* The algorithm starts by invoking the angelic synthesizer to find a program that *angelically* satisfies the specification shown in Equation 1. As we will discuss later, the angelic synthesizer outputs the following program in this iteration:
``` let rec P1(x) = match x with | Nil -> [] | Node(1,v,r) -> P1(r) ``` Clearly, this program does not actually satisfy the specification, but it does satisfy the specification under the angelic semantics: Since the specification from Eq. 1 does not constrain the output of the recursive call on $T_1^R$ , the angelic synthesizer assumes that the recursive call to P1 can return anything, including [1;0], for the right subtree of $T_1$ . Thus, program P1 satisfies the specification under the angelic semantics of recursion. Next, our algorithm checks whether the candidate program satisfies the specification under the actual semantics. Since $P1(T_1) = P1(T_2) = []$ , it clearly does not, and our algorithm analyzes the assumptions made in the angelic execution to determine how to strengthen the specification. In this case, the angelic execution assumes that the recursive call on the right-subtrees $T_1^R$ and $T_2^R$ return [1;0] and [2] respectively. Thus, our algorithm re-attempts synthesis using the following strengthened specification: $$\begin{aligned} \operatorname{right_spine}(T_1) &= [1;0] & \operatorname{right_spine}(T_2) &= [2] \\ \operatorname{right_spine}(T_1^R) &= [1;0] & \operatorname{right_spine}(T_2^R) &= [2] \end{aligned} \end{aligned}$$ *Iteration 2a.* In the next recursive call, our algorithm invokes the angelic synthesizer to find a program consistent with the specification shown in Eq. 2 but it fails. Iteration 2b. Since synthesis was unsuccessful for Eq. 2, our algorithm backtracks and tries a different strengthening. Specifically, since we could not find a program where the recursive calls on $T_1^R$ and $T_2^R$ return [1;0] and [2] respectively, we now strengthen the specification using the negation of these assumptions. This yields the following specification for the next recursive call to the synthesizer: $$\begin{aligned} & \operatorname{right_spine}(T_1) = [1;0] & \operatorname{right_spine}(T_2) = [2] \\ \neg & (\operatorname{right_spine}(T_1^R) = [1;0] & \wedge & \operatorname{right_spine}(T_2^R) = [2]) \end{aligned} \tag{3}$$ In this case, the angelic synthesizer returns the following program: This program is again incorrect but it does satisfy Eq. 3 under the angelic semantics. Indeed, a "witness" to angelic satisfaction is: $$P2(T_1^R) = [0] \land P2(T_2^R) = []$$ Note that this assumption is allowed under the angelic semantics since these return values on $T_1^R$ and $T_2^R$ are both consistent with Eq. 3. Thus, using the witness to angelic satisfaction, we now strengthen the specification as follows: $$\label{eq:right_spine} \begin{split} \operatorname{right_spine}(T_1) &= [1;0] & \operatorname{right_spine}(T_2) &= [2] \\ \neg(\operatorname{right_spine}(T_1^R) &= [1;0] & \wedge & \operatorname{right_spine}(T_2^R) &= [2]) \\ \operatorname{right_spine}(T_1^R) &= [0] & \operatorname{right_spine}(T_2^R) &= [] \end{split} \tag{4}$$ *Iteration 3b.* In the next (and last) iteration, when we invoke the angelic synthesizer on Eq. 4, it outputs the following program: This program satisfies the specification under the actual semantics; thus, the algorithm terminates with P3 as the (correct) solution. Fig. 3. An example FTA that accepts a program that brings the input $T_1$ to the valid output of [1;0]. #### 2.2 Angelic Synthesis using FTAs As illustrated by the above discussion, a key piece of our technique is the *angelic synthesizer* for finding a program that satisfies the specification under the angelic semantics. Inspired by prior work on bottom-up synthesis [Wang et al. 2017a,b], our angelic synthesizer constructs a *finite tree automaton (FTA)* that compactly represents a set of programs. In a nutshell, FTAs generalize standard automata by accepting trees instead of words. In our setting, the states in the automata correspond to concrete program values (e.g., lists like [1;0] or []), and the trees accepted by the automaton correspond to programs (i.e., abstract syntax trees). In order to explain our angelic synthesis approach, we first briefly review the construction from prior work [Wang et al. 2017b]. The idea is to construct a separate automaton for each input (e.g., $T_1$ from Fig 1) and then take the intersection of all of these automata. To construct each automaton, we start with the given input and obtain new states by applying language constructs to the existing states. For example, given states $q_2$ and $q_3$ representing integers 2 and 3 and the operator +, we generate a new state $q_5$ (for integer 5) by applying the transition $+(q_2,q_3) \rightarrow q_5$ . Since the accepting states of the FTA are those that satisfy the specification, the language of the constructed automaton includes exactly those programs that are consistent with the specification. As illustrated by the above discussion, such an FTA-based synthesis method is *bottom-up* in that it evaluates complete sub-expressions on the input and combines the values of these sub-expressions to generate new values. However, prior work cannot deal with recursive functions because it is not possible to evaluate a function that has not yet been synthesized. For example, consider the recursive call to right_spine(r) where r has value $T_1^R$ in our running example. Since right_spine has not yet been synthesized, we simply do not know what right_spine will return on $T_1^R$ . To deal with this challenge, our angelic synthesizer assumes that the result of the recursive call could be any value that is consistent with the specification. In particular, given a specification $\varphi$ and FTA states $q_1, \ldots, q_n$ , we assume that a recursive invocation expression $f(\overline{q})$ could evaluate to any $q_i$ as long as $q_i$ is consistent with $\varphi$ . For instance, Figure 3 shows an FTA with states $\{T_1, T_1^R, 1, [0], [1;0]\}$ for the angelic synthesis problem for Eq. 3. Here, there is a transition right_spine $(T_1^R) \to [0]$ since the call right_spine $(T_1^R) = [0]$ is consistent with Eq. 3. Note that edges in Figure 3 correspond to program syntax and $[1, \emptyset]$ is an accepting state, so the program right_spine $(x) = val(x) : right_spine(right_child(x))$ is accepted by this FTA. As illustrated by this discussion, the use of angelic semantics allows us to construct a bottom-up tree automaton despite not knowing what the recursive invocation will return on a given input. ``` P ::= \operatorname{rec} f(x) = e e := x | e_1 e_2 | unit | inl e | inr e l unl e l unr e | fst e \mid snd e | switch e_3 on inl _ \rightarrow e_1 | inr _ \rightarrow e_2 (e_1, e_2) v := unit | (v_1, v_2) \mid inl v | inr v ``` Fig. 4. A functional ML-like language with explicit recursion in which we synthesize programs. The nonterminal P denotes programs in this language, and the nonterminal v denotes values in this language. However, an obvious ramification of this is that programs accepted by the automaton may not satisfy the specification under the true semantics, which is why our method combines angelic synthesis with specification strengthening and backtracking search, as described in Section 2.1. # 2.3 Incremental Synthesis As we saw from Equations 1, 3, and 4 from Section 2.1, successive calls to the synthesis algorithm involve increasingly strong specifications. In particular, if the synthesis algorithm is invoked on specification $\varphi$ in the i'th iteration, then the specification in the i + 1'th iteration is of the form $\varphi \wedge \psi$ . We exploit this incremental nature of the algorithm to make angelic synthesis more efficient. In particular, recall that our angelic synthesizer based on FTAs constructs a different FTA for each input and then takes their intersection. Thus, given a specification $\varphi \wedge \psi$ where $\varphi$ is the old specification, we can simply construct a new FTA for $\psi$ and then take its intersection with the old FTA for $\varphi$ . Hence, performing angelic synthesis using FTAs allows us to reuse all the work from prior iterations. ## 2.4 Generalization to Arbitrary Logical Specs In our example so far, we illustrated the synthesis algorithm on the simple input-output examples from Eq. 1. However, our method can be generalized to more complicated logical specifications using the standard counterexample-guided inductive synthesis (CEGIS) paradigm. In particular, since our core synthesis algorithm takes as input *ground formulas* as opposed to input-output examples, it can be easily incorporated within the CEGIS loop to handle more general logical specifications. For instance, our method can produce the correct implementation of right_spine given the following logical specification: ``` \phi(in, out) := \text{no_left_subchildren}(in) \Rightarrow (\text{tree_size}(in) == \text{list_size}(out)) ``` where tree_size and list_size return the number of elements in a tree and list respectively, and no_left_subchildren returns true if the left child of every node in the tree is a leaf. ## 3 PROBLEM STATEMENT In this section, we present our problem statement, which is synthesizing recursive programs in a simple ML-like language with products and sums (see Figure 4). Without loss of generality, we assume that programs take a single input, as we can represent multiple inputs using tuples (i.e., pairs with nested pairs). Given a program P and a concrete input v, we use the notation [P](v) to denote the result of executing P on input v according to the semantics presented in Figure 5. $$\frac{e_2 \Downarrow v_2 \qquad e_1[\operatorname{rec} \ \mathsf{f}(x) = e_1/\mathsf{f}, v_2/x] \Downarrow v_3}{(\operatorname{rec} \ \mathsf{f}(x) = e_1) \ e_2 \Downarrow v_3}$$ $$\frac{e_1 \Downarrow v_1 \qquad e_2 \Downarrow v_2}{(e_1, e_2) \Downarrow (v_1, v_2)} \qquad \frac{e \Downarrow (v_1, v_2)}{\mathsf{fst} \ e \Downarrow v_1} \qquad \frac{e \Downarrow (v_1, v_2)}{\mathsf{snd} \ e \Downarrow v_2}$$ $$\frac{e \Downarrow v}{\mathsf{inl} \ e \Downarrow \mathsf{inl} \ v} \qquad \frac{e \Downarrow
v}{\mathsf{inr} \ e \Downarrow \mathsf{inr} \ v} \qquad \frac{e \Downarrow \mathsf{inl} \ v}{\mathsf{unl} \ e \Downarrow v} \qquad \frac{e \Downarrow \mathsf{inr} \ v}{\mathsf{unr} \ e \Downarrow v}$$ $$\frac{e \Downarrow \mathsf{inl} \ v}{\mathsf{switch} \ e_3 \ \mathsf{on} \ \mathsf{inl} \ 1 \longrightarrow e_1 \ \mathsf{inr} \ 2 \longrightarrow e_2 \Downarrow v_1} \qquad \frac{e_3 \Downarrow \mathsf{inr} \ v_3 \qquad e_2 \Downarrow v_2}{\mathsf{switch} \ e_3 \ \mathsf{on} \ \mathsf{inl} \ x_1 \longrightarrow e_1 \ \mathsf{inr} \ x_2 \longrightarrow e_2 \Downarrow v_2}$$ Fig. 5. Program Semantics. The symbols e range over expressions and v range over values. Both f and x denote arbitrary free variables. If $P = \operatorname{rec} f(x) = e$ and $P v \downarrow v'$ then [[P]](v) = v'. Our goal in this paper is to synthesize a *single* recursive procedure f from a given specification, which is represented as a *ground formula* $\varphi$ . We assume that $\varphi$ always contains a special uninterpreted function symbol f which refers to the function to be synthesized. More formally, we define *ground specifications* as follows: Definition 3.1. (Ground specification) A ground specification is a boolean combination of atomic formulas of the form f(i) op c where f denotes the function to be synthesized, i and c are constants (with i being the input), and op is a binary relation. *Definition 3.2.* (Satisfaction of ground spec) Given a program P defining function f, we say that P satisfies a ground specification $\varphi$ , denoted $P \models \varphi$ , iff the following condition holds: $$P \models \varphi \iff \models \varphi \big[ [[P]](x) / f(x) \big]$$ where the notation $\varphi[[P](x)/f(x)]$ denotes the formula $\varphi$ with every ground term $f(v_i)$ is replaced by $[P](v_i)$ . **Problem Statement**: Given a ground specification $\varphi$ , find program P such that $P \models \varphi$ . Note that ground specifications are quite powerful: synthesizers that can generate programs from ground specifications can also perform synthesis from a number of specification classes. For example we can always encode I/O examples as ground formulas. but not vice versa. *Example 3.3.* Consider the set of input-output examples $\{1\mapsto 2, 2\mapsto 3\}$ . We can encode this specification in our format using the ground formula $f(1)=2\land f(2)=3$ . In general, I/O examples correspond to specifications of the form: $$\bigwedge_{k} f(i_k) = o_k$$ where $(i_k, o_k)$ are input-output pairs. Furthermore, we can also lift synthesis from ground specifications to an even more general class of specifications using the well-known CEGIS paradigm (see Figure 6). Given a fixed set of inputs I and a general predicate $\varphi$ with variables (representing inputs), one can convert this into a ground formula of the form $\bigwedge_{i \in I} \varphi(i)$ where each i a counterexample returned by the verifier. Since the Fig. 6. Counterexample-guided inductive synthesis. Since the input to the inductive synthesizer is a ground formula, our approach can be lifted to a general class of specifications using the CEGIS paradigm. CEGIS paradigm invokes the verifier to add new counterexamples if the synthesized program is not correct, synthesis from ground formulas immediately provides a way to perform synthesis from more general logical specifications. *Example 3.4.* Consider the problem of synthesizing a function that returns a value greater than its input for all positive inputs. The specification for such a function is of the form $x > 0 \Rightarrow f(x) > x$ . While this specification is not a ground formula, we can embed our synthesis technique into the CEGIS paradigm and reduce it to inductively synthesizing programs from ground specifications of the form: $$\bigwedge_{k} f(i_k) > i_k$$ where each $i_i$ is a positive integer returned as a counterexample by a verifier. #### 4 ANGELIC RECURSION As mentioned earlier, our method is based on bottom-up synthesis, which requires the ability to execute sub-expressions of the program being synthesized. Since this is not feasible for recursive procedures, we introduce the notion of *angelic recursion* and *angelic satisfaction*. Definition 4.1. (Angelic recursion) Given a recursive procedure P, the angelic semantics of P with respect to specification $\varphi$ , denoted $[[P]]^{\varphi}$ , is defined in Figure 7. These semantics are very similar to the semantics in Figure 5; the key difference lies in how recursion is performed. When performing a recursive call f(v), the result can be any v' where f(v) = v' is consistent with the specification. Thus, $[[P]]^{\varphi}(v)$ yields a set of values V. Intuitively, angelic recursion is useful in our setting because it allows us to "execute" a recursive program without knowing the exact behavior of recursive calls. Example 4.2. Let P be the program rec f(x) = if x=0 then 1 else f(x-1) and suppose that $\varphi = f(0) > 0$ . Then, $[[P]]^{\varphi}(0) = \{1\}$ , and $[[P]]^{\varphi}(1) = \{y \mid y > 0\}$ . In particular, for input 1, f contains a recursive invocation on input 0, and the angelic semantics allows the recursive call to return any value greater than 0. Thus, $[[P]]^{\varphi}(1)$ is exactly the set of positive integers. Next, we define a notion of angelic satisfaction: Definition 4.3. (Angelic satisfaction on input) Given a program P defining function f, we say that P angelically satisfies specification $\varphi$ on input v, denoted $P \models_v^{\overline{v}} \varphi$ , iff the following condition holds: $$P \models_v^{\circledcirc} \varphi \iff \exists v'. \ v' \in \llbracket [P] \rrbracket^{\varphi}(v) \land \mathsf{SAT}(f(v) = v' \land \varphi)$$ Next, we generalize this notion of angelic satisfaction from a single input to all inputs: $$\frac{e \ \ \psi^{\varphi} \ v \qquad \text{SAT}(f(v) = v' \land \varphi)}{\text{f} \ e \ \ \psi^{\varphi} \ v'} \qquad \frac{e_1 \ \ \psi^{\varphi} \ v_1}{\text{unit}} \qquad \frac{e_1 \ \ \psi^{\varphi} \ v_1}{(e_1, e_2) \ \ \psi^{\varphi} \ (v_1, v_2)} \\ \frac{e \ \ \ \psi^{\varphi} \ (v_1, v_2)}{\text{fst} \ e \ \ \psi^{\varphi} \ v_1} \qquad \frac{e \ \ \ \psi^{\varphi} \ (v_1, v_2)}{\text{snd} \ e \ \ \psi^{\varphi} \ v_2} \\ \frac{e \ \ \ \psi^{\varphi} \ v_1}{\text{inl} \ e \ \ \psi^{\varphi} \ v_1} \qquad \frac{e \ \ \ \psi^{\varphi} \ \text{inl} \ v}{\text{unl} \ e \ \ \psi^{\varphi} \ v} \qquad \frac{e \ \ \ \psi^{\varphi} \ \text{inr} \ v}{\text{unr} \ e \ \ \psi^{\varphi} \ v} \\ \frac{e_3 \ \ \ \psi^{\varphi} \ \text{inl} \ v_3 \qquad e_1 \ \ \psi^{\varphi} \ v_1}{\text{switch} \ e_3 \ \text{on} \ \text{inl} \ x_1 \rightarrow e_1 \ \text{inr} \ x_2 \rightarrow e_2 \ \ \psi^{\varphi} \ v_2} \\ \frac{e_3 \ \ \ \psi^{\varphi} \ \text{inr} \ v_3 \qquad e_2 \ \ \psi^{\varphi} \ v_2}{\text{switch} \ e_3 \ \text{on} \ \text{inl} \ x_1 \rightarrow e_1 \ \text{inr} \ x_2 \rightarrow e_2 \ \ \psi^{\varphi} \ v_2} \\ \frac{P = \text{rec} \ \ f(x) = e \qquad e[v/x] \ \ \psi^{\varphi} \ v'}{v' \in [[P]]^{\varphi}(v)}$$ Fig. 7. Angelic Semantics. The key difference between angelic semantics and standard semantics lies in the first rule, for recursive calls. Definition 4.4. (Angelic satisfaction) A program P angelically satisfies specification $\varphi$ , denoted $P \models^{\overline{\otimes}} \varphi$ , iff for all possible inputs v, we have $P \models^{\overline{\otimes}} \varphi$ . Note that angelic satisfaction $(P \models^{\circ} \varphi)$ is a much weaker notion than standard satisfaction $(P \models \varphi)$ . This is illustrated by the following example: Example 4.5. Let P be the program rec f(x) = if x=0 then 1 else f(x-1) and suppose that $\varphi = f(0) > 0 \land f(1) > 1$ . Then, $P \models^{\textcircled{\tiny 3}} \varphi$ , as $\forall x. \ x+1 \in [[P]]^{\varphi}(x)$ . However, clearly, this program does not satisfy $\varphi$ with respect to the standard semantics because we have [[P]](1) = 1. If a program P angelically satisfies a specification $\varphi$ , we can define a *witness* to angelic satisfaction as follows: *Definition 4.6.* (Witness to angelic satisfaction) Let *P* be a program such that $P \models^{\textcircled{m}} \varphi$ . Then, a witness $\omega$ to angelic satisfaction of *P* is a formula $\bigwedge_i f(c_i) = c_i'$ such that, if $P \models \omega$ , then $P \models \varphi$ . Intuitively, a *witness* to angelic satisfaction specifies what the recursive calls in P must return in order for P to actually satisfy the specification. We discuss how to find these witnesses in Section 6.2.2. Example 4.7. Consider the program rec f(x) = if x=0 then 1 else f(x-1)+1 and the ground specification $f(1) > 1 \land f(2) > 2$ . This program angelically satisfies the specification in an execution where the recursive call returns f(0) = 1 and f(1) = 2. Thus, $f(0) = 1 \land f(1) = 2$ is a witness to angelic satisfaction. Of course, note that angelic witnesses are not unique. For example, $f(0) = 2 \land f(1) = 3$ is also a witness to angelic satisfaction. ``` input: Ground specification \gamma output: A program P or \bot global: \Omega is a learned anti-specification, initially \emptyset 1: procedure Synthesize(\chi) result \leftarrow SynthesizeAngelic(\chi \land \bigwedge_{\phi_i \in \Omega} \neg \phi_i) 2: match result with 3: | Failure(\kappa) \rightarrow 4: \Omega \leftarrow \Omega \cup \kappa 5: return 1 6: | Success(P, \omega) \rightarrow 7: if P \models \chi then return P else 9: P \leftarrow \text{Synthesize}(\chi \wedge \omega) 10: if P = \bot then return Synthesize(\chi \land \neg \omega) 11: else return P 12: ``` Algorithm 1. Core Recursive Synthesis Algorithm #### 5 SYNTHESIS ALGORITHM USING ANGELIC EXECUTION In this section, we describe our top-level synthesis algorithm based on angelic recursion. While this synthesis algorithm does not specify whether to construct programs in a top-down or bottom-up fashion, we emphasize that it is the use of *angelic recursion* that makes it
possible to implement its key components using a bottom-up approach (as we discuss in the next section). Algorithm 1 shows the high-level structure of our synthesis algorithm. The procedure Synthesize takes as input a ground specification $\chi$ and returns either a program P or $\bot$ to indicate that synthesis is unsuccessful. Internally, the algorithm also maintains a global variable, namely set $\Omega$ , that we refer to as an *anti-specification* which is used for pruning the search space. In particular, $\Omega$ is constructed in such a way that any program that satisfies $\phi \in \Omega$ is guaranteed to *not* satisfy the desired specification $\chi$ , i.e.: $$\forall P. \ \forall \phi \in \Omega. \ P \models \phi \Rightarrow P \not\models \chi \tag{5}$$ Since the contrapositive of Equation 5 is $$\forall P. \ \forall \phi \in \Omega. \ P \models \chi \Rightarrow P \not\models \phi$$ which implies that P must satisfy $\bigwedge_{\phi_i \in \Omega} \neg \phi_i$ in order to also satisfy $\chi$ , we can use $\Omega$ to construct a stronger specification and thereby reduce the search space. Our synthesis procedure starts by invoking a procedure call SynthesizeAngelic (line 2) which takes as input a specification that the returned program must satisfy under the angelic semantics. In particular, given a (ground) specification $\varphi$ , SynthesizeAngelic either returns failure or a program P that angelically satisfies $\varphi$ (i.e., $P \models^{\oplus} \varphi$ ). If the output is failure (meaning that there is no program in the search space that satisfies $\varphi$ ), SynthesizeAngelic also returns an anti-specification (i.e., set of formulas) $\kappa$ that serves as an "explanation" of why angelic synthesis failed. In particular, $\kappa$ has the property, for every $\psi \in \kappa$ , there is no program in the search space that satisfies $\psi$ . Thus, if SynthesizeAngelic returns Failure( $\kappa$ ), we add $\kappa$ to $\Omega$ (line 5). On the other hand, if SynthesizeAngelic returns a program P, our synthesis procedure checks whether P satisfies the specification $\chi$ under the true semantics (line 8). If so, then it returns P as a valid solution to the synthesis problem. Otherwise, it uses the witness $\omega$ to angelic satisfaction returned by SynthesizeAngelic to construct a stronger specification. In particular, recall that such a witness $\omega$ encodes assumptions that an angelic execution makes in order to satisfy the specification. Thus, we strengthen the specification as $\chi \wedge \omega$ and re-attempt synthesis by recursively invoking Synthesize on this stronger specification (line 10). If synthesis is successful, we return the resulting program as a solution (line 12); otherwise, we backtrack and recursively invoke Synthesize with the alternative specification $\chi \wedge \neg \omega$ (line 11), which ends up ruling out $\omega$ from the search space. Observe that the anti-specification $\Omega$ also grows during the recursive calls; thus, the second recursive call at line 11 actually prunes more programs than just those satisfying $\omega$ . The following theorems state the soundness and completeness of our synthesis algorithm. THEOREM 5.1. (Soundness) If Synthesize( $\chi$ ) returns a program P, then we have $P \models \chi$ . PROOF. Follows directly from line 8 of Algorithm 1. THEOREM 5.2. (Completeness) If Synthesize( $\chi$ ) returns $\bot$ , then there is no program that satisfies $\chi$ under the assumption that (1) SynthesizeAngelic complete, and (2) if SynthesizeAngelic returns Failure( $\kappa$ ), then $\kappa$ satisfies the assumption from Equation 5. PROOF. The proof is in Section B. *Remark.* A simpler alternative to the specification strengthening approach in Algorithm 1 would be to perform enumerative search over the angelic synthesis results as opposed to strengthening the specification. However, as we show empirically in Section 8, this simpler alternative is not as effective. In particular, many programs that angelically satisfy the specification are wrong due to *shared* incorrect assumptions about recursive calls; thus, our proposed algorithm allows ruling out many incorrect programs at the same time. ## 6 BOTTOM-UP ANGELIC SYNTHESIS USING TREE AUTOMATA Recall that our top-level synthesis procedure (Algorithm 1) uses a key procedure called SynthesizeAngelic to find a program that satisfies the specification under the angelic semantics. In this section, we describe a realization of the angelic synthesis algorithm using bottom-up finite tree automata. Towards this goal, we first review tree automata basics and then describe the angelic synthesis algorithm. # 6.1 Tree Automata Preliminaries A *finite tree automaton* is a state machine that describes sets of trees [Comon et al. 2007]. More formally, a finite tree automaton is defined as follows: Definition 6.1. **(FTA)** A bottom-up finite tree automaton (FTA) over alphabet $\Sigma$ is a tuple $\mathcal{A} = (Q, Q_f, \Delta)$ where Q is the set of states, $Q_f \subseteq Q$ are the final states, and $\Delta$ is a set of transitions of the form $\ell(q_1, \ldots, q_n) \to q$ where $q, q_1, \ldots, q_n \in Q$ and $\ell \in \Sigma$ . Following prior work [Wang et al. 2017a,b], the alphabet $\Sigma$ in our context corresponds to constructs in the underlying programming language; FTA states correspond to a finite set of values (i.e., constants); final states indicate values that satisfy a given specification; and transitions encode the semantics of the programming language. For instance, a transition $+(1,2) \rightarrow 3$ indicates that adding the integers 1 and 2 yields 3. Since tree automata accept trees, we view each term over alphabet $\Sigma$ as a tree T=(n,V,E) where n is the root node, V is a set of labeled vertices, and E is the set of edges. We say that a term T is accepted by an FTA if we can rewrite T to some state $q \in Q_f$ using transitions $\Delta$ . Finally, the language of a tree automaton $\mathcal A$ is denoted as $\mathcal L(\mathcal A)$ and consists of the set of all terms accepted by $\mathcal A$ . Fig. 8. An example tree accepted by the automaton described in Example 6.2. The the tree and the associated mapping L comprise an accepting run of the FTA. *Example 6.2.* Consider a tree automaton $\mathcal{A}$ with states $Q = \{q_0, q_1\}$ , final states $Q_f = \{q_0\}$ , and the following transitions: $$\Delta = \{x() \to q_1, \mathsf{xor}(q_i, q_i) \to q_0, \mathsf{xor}(q_i, q_j) \to q_1 \text{ if } i \neq j\}$$ where x has arity zero and xor is a binary function. $\mathcal{A}$ accepts boolean equations combining xor and x, where the resulting boolean equation evaluates to *false* when x is initially *true*. Next, we define the notion of an accepting run of an FTA: Definition 6.3. (Accepting run) An accepting run of an FTA $\mathcal{A} = (Q, Q_f, \Delta)$ is a pair (T, L) where T = (n, V, E) is a term that is accepted by $\mathcal{A}$ and L is a mapping from each node in V to an FTA state such that the following conditions are satisfied: - (1) $L(n) \in Q_f$ - (2) If n has children $n_1, \ldots, n_k$ such that L(n) = q and $L(n_1) = q_1, \ldots, L(n_k) = q_k$ , then Label $(n)(q_1, \ldots, q_k) \to q$ is a transition in $\Delta$ . *Example 6.4.* Figure 8 shows an accepting run (T, L) over the FTA described in Example 6.2, where T has nodes $\{n_0, n_1, n_2\}$ and edges from $n_0$ and $n_1$ to $n_2$ . The labels of $n_0$ and $n_1$ are x and the label of $n_2$ is xor. This run is accepting since $L(n_2) = q_0 \in Q_f$ . # 6.2 Angelic Synthesis Algorithm In this section, we describe an FTA-based implementation of the SynthesizeAngelic procedure that is invoked at line 2 of Algorithm 1. This procedure, which is summarized in Algorithm 2, takes as input a ground specification $\chi$ and returns one of two things: If angelic synthesis is successful, the output is a program P that angelically satisfies $\chi$ , together with a witness $\omega$ to angelic satisfaction. On the other hand, if there is no program that angelically satisfies $\chi$ , SynthesizeAngelic returns a set of ground formulas $\kappa$ that serve as an anti-specification satisfying Equation 5. The algorithm starts by converting the specification $\chi$ to disjunctive normal form (DNF) at line 3 and iterates over each of the DNF clauses (line 3–17). If there is a program P that angelically satisfies any clause $\varphi$ , then it returns P (and its corresponding witness $\omega$ ) as a solution (line 16). On the other hand, if it exhausts all clauses without successfully finding a program, the algorithm returns Failure at line 18. In more detail, each clause $\varphi$ is a conjunction of atomic predicates of the form f(v) op v' where v and v' are constants (since $\chi$ is a ground specification). The nested loop at lines 6–12 iterates over all of these predicates, builds an FTA $\mathcal A$ for each of them (line 8), and constructs a version space $\mathcal A^*$ satisfying *all* of them by taking the intersection of all FTAs (line 10). If the language of the resulting automaton $\mathcal A^*$ becomes empty (line 12), then this means there is no program satisfying the current clause so the algorithm moves on to the next clause. On the other hand, if the final version space $\mathcal{A}^*$ is non-empty after processing an entire clause (line 13), then we know that there exists a program that satisfies this clause under the angelic ``` input: A ground specification \gamma output: Success(P, \omega) for program P and angelic witness \omega; Failure(\kappa) for anti-specification \kappa 1: procedure SynthesizeAngelic(\chi) \kappa \leftarrow \emptyset for each \varphi \in \mathsf{DNFClauses}(\chi) do 3: first ← true 4: \psi \leftarrow \text{true} 5: for each f(v) op v' \in \varphi do 6: \psi \leftarrow \psi \wedge f(v) \ op \ v' 7: \mathcal{A} \leftarrow \text{BuildAngelicFTA}(v, \varphi) 8: if first then \mathcal{A}^* \leftarrow
\mathcal{A} 9: else \mathcal{A}^* \leftarrow Intersect(\mathcal{A}^*, \mathcal{A}) 10: first \leftarrow false 11: if \mathcal{L}(\mathcal{A}^*) = \emptyset then break 12: if \mathcal{L}(\mathcal{A}^*) \neq \emptyset then 13. (P, L) \leftarrow \text{GetAcceptingRun}(\mathcal{A}^*) 14: \omega \leftarrow \text{GetWitness}(P, L) 15. return Success(P, \omega) 16: else \kappa \leftarrow \kappa \cup \{\psi\} 17: return Failure(\kappa) 18. ``` Algorithm 2. Angelic synthesis procecdure based on tree automata semantics. In this case, the algorithm finds an accepting run of this FTA, extracts a witness $\omega$ to angelic satisfaction by calling the GetWitness procedure at line 15, and returns "success" at line 16. Finally, if the algorithm exhausts all DNF clauses without finding a program, it returns Failure at line 18. In particular, the anti-specification $\kappa$ at line 18 consists of a set of *unsynthesizable cores* (UC), where each UC $\psi$ is a conjunction of predicates such that there is no program P that angelically satisfies $\psi$ . Thus, it is always safe to strengthen the specification using the negation of an unsynthesizable core. In the remainder of this subsection, we discuss the BuildangelicFTA and GetWitness procedures in more detail. 6.2.1 FTA Construction using Angelic Semantics. We now explain BuildangelicFTA procedure that takes as input a value $v_{in}$ and a DNF clause $\varphi$ and returns an FTA $\mathcal A$ whose language is the set of all programs that angelically satisfy $\varphi$ on input $v_{in}$ . That is: $$P \in \mathcal{L}(\mathcal{A}) \iff P \models_{v_{in}}^{\mathfrak{S}} \varphi$$ This procedure is summarized in Figure 9 using inference rules that stipulate which states and transitions should be part of the constructed FTA. In particular, states in the FTA are of the form $q_v$ where v is a value that arises when angelically executing some program P on input $v_{in}$ . In addition, there is a special state $\bot$ that denotes the value of expressions that are never evaluated on input $v_{in}$ . Since our language contains conditionals in the form of switch statements, this special state $\bot$ is useful for representing the unknown value of branches that are never evaluated during an execution. Next, we explain each of the rules from Figure 9 in more detail: $$\frac{\operatorname{INIT}}{q_{v_{in}} \in Q \quad \mathsf{x}() \to q_{v_{in}} \in \Delta} \qquad \frac{\operatorname{Final}}{q_{v} \in Q} \quad \operatorname{SAT}(\varphi \wedge f(v_{in}) = v)}{q_{v} \in Q_{f}}$$ $$\frac{\operatorname{UNIT}}{q_{\operatorname{unit}} \in Q \quad \operatorname{unit}() \to q_{\operatorname{unit}} \in \Delta} \qquad \frac{q_{v_{1}} \in Q \quad q_{v_{2}} \in Q}{q_{(v_{1},v_{2})} \in Q} \qquad \frac{q_{v_{1}} \in Q \quad q_{v_{2}} \in Q}{q_{(v_{1},v_{2})} \in Q} \qquad \frac{q_{(v_{1},v_{2})} \in Q}{q_{v_{1}} \in Q \quad \operatorname{fst}(q_{v_{1},v_{2}}) \to q_{v_{1}} \in \Delta} \qquad \frac{\operatorname{SND}}{q_{v_{2}} \in Q \quad \operatorname{snd}(q_{(v_{1},v_{2})}) \to q_{v_{2}} \in \Delta}} \qquad \frac{\operatorname{SND}}{q_{v_{2}} \in Q \quad \operatorname{snd}(q_{(v_{1},v_{2})}) \to q_{v_{2}} \in \Delta}} \qquad \frac{\operatorname{INR}}{q_{v_{1}} \circ Q \quad \operatorname{Inl}(v) \to q_{\operatorname{inl}} \circ \in \Delta}} \qquad \frac{\operatorname{INR}}{q_{\operatorname{inl}} \circ Q \quad \operatorname{Inl}(v) \to q_{\operatorname{inl}} \circ \in \Delta}} \qquad \frac{\operatorname{INR}}{q_{\operatorname{inl}} \circ Q \quad \operatorname{Inl}(v) \to q_{\operatorname{inl}} \circ \in \Delta}} \qquad \frac{\operatorname{Uneval} \operatorname{Prod}}{\operatorname{Inl}(v) \to q_{\operatorname{inl}} \circ \in Q} \qquad \frac{\operatorname{Uneval} \operatorname{Prod}}{\operatorname{Inl}(v) \to q_{\operatorname{inl}} \circ \in \Delta}} \operatorname{Inl}(v) \to \to$$ Fig. 9. Inference rules for BuildAngelicFTA( $v_{in}$ , $\varphi$ ). - The first rule, labeled Init, adds the state $q_{v_{in}}$ to the FTA and adds a transition $x() \to q_{v_{in}}$ . Since x represents the program input, this rule essentially corresponds to binding x to value $v_{in}$ . - The next rule, labeled Final, marks the final states of the FTA. In particular, since we want the language of the FTA to be those programs that angelically satisfy $\varphi$ on input $v_{in}$ , we mark a state $q_v$ as accepting if $f(v_{in}) = v$ is consistent with the given specification $\varphi$ . - The next four rules (UNIT, ..., INR) add FTA states and transitions for the different contructors in our language. For example, according to the PAIR rule, if $q_{v_1}$ and $q_{v_2}$ are FTA states, then we also add $q_{(v_1,v_2)}$ as a state of the FTA as well as a corresponding transition for the pair constructor. - The rule labeled Angelic Recursion encodes angelic execution semantics. In particular, if $q_{v_1}$ is an FTA state, then we add a transition $f(q_{v_1}) \to q_{v_2}$ as long as the formula $f(v_1) = v_2$ is consistent with $\varphi$ . - The last two rules encode the semantics of switch statements. In particular, there is a transition $\operatorname{switch}(q_{v_0}, q_{v_1}, \bot) \to q_{v_1}$ (resp. $\operatorname{switch}(q_{v_0}, \bot, q_{v_2}) \to q_{v_2}$ ) iff the inl (resp. inr) branch of the switch statement is executed on $v_0$ and produces value $v_1$ (resp. $v_2$ ). As mentioned earlier, the special state $\bot$ encodes the unknown value of expressions that are not evaluated, and the UNEVAL PROD rule is used to propagate such "unevaluated" values. The following theorem states the soundness of our angelic synthesis procedure for a specific input $v_{in}$ : $$\frac{P = (n, V, E) \quad \mathsf{Label}(n) = \mathsf{f}}{\mathsf{L} \vdash (n', V, E) \leadsto \omega' \quad L(n) = (v_1, \dots, v_k) \quad L(n') = (v_1', \dots, v_k')}{L \vdash P \leadsto \omega' \land \bigwedge_{i \in [1 \dots k]} f(v_i') = v_i}$$ $$\frac{P = (n, V, E)}{\text{Label}(n) \neq f} \qquad \frac{P = (n, V, E)}{\text{Children}(n) = [n_1, \dots, n_k]} \quad \forall i \in [1 \dots k]. \ L \vdash (n_i, V, E) \leadsto \omega_i}{L \vdash P \leadsto \land_{i \in [1 \dots k]} \omega_i}$$ Fig. 10. Inference rules describing the GetWitness procedure. Theorem 6.5. If BuildAngelicFTA $(v_{in}, \varphi)$ returns $\mathcal{A}$ , then $P \models_{v_{in}}^{\mathfrak{G}} \varphi$ for every $P \in \mathcal{L}(\mathcal{A})$ . PROOF. The proof is in Section B. The following theorem generalizes this from individual inputs to ground specifications: Theorem 6.6. Let $\varphi$ be a ground formula such that: $$V = \{v_i \mid f(v_i) \in \mathsf{Terms}(\varphi)\}\$$ Then, if BuildAngelicFTA $(v_i, \varphi)$ returns $\mathcal{A}_i$ for inputs $V = \{v_1, \ldots, v_n\}$ , then, for every $P \in \mathcal{L}(\mathcal{A}_1) \cap \ldots \cap \mathcal{L}(\mathcal{A}_n)$ , we have $P \models^{\overline{\otimes}} \varphi$ . PROOF. As the definition of angelic satisfaction simply requires satisfaction on every individual input, this comes directly from Theorem 6.5 and the definition of intersection. 6.2.2 Finding Witnesses to Angelic Satisfaction. In this section, we describe our procedure for finding witnesses to angelic satisfaction. In particular, given an accepting run (P,L) of the tree automaton where P is a program (represented as an AST) and L is a mapping from AST nodes to FTA states, GetWitness returns a witness $\omega$ of the form $\bigwedge_i f(v_i) = v_i'$ that identifies all assumptions made during the angelic execution associated with labeling function L. Before we explain the rules from Figure 10, we note that L maps each AST node to a tuple $(v_1, \ldots, v_n)$ where each $v_i$ is a value. In particular, while the states for each individual FTA consist of individual values, recall that Algorithm 2 takes the intersection of several FTAs. Thus, after n intersection operations, the states of the FTA correspond n-tuples of the form $(v_1, \ldots, v_n)$ . With this in mind, Figure 10 presents the GetWitness procedure using inference rules that derive judgments of the form $L \vdash P \leadsto \omega$ . The meaning of this judgment is that $\omega$ is a witness to angelic satisfaction of P in the angelic execution associated with labeling function L. The first rule in Figure 10 deals with recursive invocations of procedure f. In this case, the root node of the AST is a node n labeled with f, and f has a single child f (since f takes a single argument). Now, suppose that f maps f to the tuple f and f to f returns value f on input f in this case, the root node of the assumption that the recursive call to f returns value f on input f in this resulting witness includes the conjunct f in this rule also computes a witness f for the sub-AST rooted at f (i.e., f in the final witness is therefore the conjunction of f and f in the final witness is therefore the conjunction of f and f in the final witness is therefore the conjunction of f and f in the final witness is therefore the conjunction of f and f in the final witness is therefore the conjunction of f and f in the final witness is therefore the conjunction of f and f in the final witness is the final witness in the first f in the final witness is the first f in the final witness in the first f in the final witness is the first f in the final witness in the first f The second rule in Figure 10 deals with the scenario where the top-level expression is *not* a recursive call to f. However, since the sub-expressions may contain recursive calls, we recurse down to the children and obtain witnesses for the sub-expressions. The resulting witness is the conjunction of witnesses for all sub-expressions. #### 7 IMPLEMENTATION We have implemented our proposed technique in a tool called Burst that is implement in OCaml. In this section, we discuss some important implementation details and optimizations omitted from the technical development. #### 7.1 Finitization of FTA States Recall that our angelic synthesis technique uses finite tree
automata to find a program that satisfies the specification under the angelic semantics. Further, recall that states in the tree automaton correspond to concrete values, of which there may be infinitely many. Similar to prior work [Wang et al. 2017b], our implementation bounds the number of automaton states using a parameter k that controls the number of applications of the inference rules from Figure 9. By default, this parameter is set to 4. Another complication in our setting is due to the use of angelic recursion in the inference rules in Figure 9. In particular, recall that, under the angelic semantics, a recursive call can return any value that satisfies the specification; so, for example, if the specification is *true*, there are infinitely many concrete values that satisfy it. In our implementation, we get around this issue by constructing FTAs for all inputs in increasing size up to N where N is the size of the largest input 2 . Then, for any recursive call f on input c, we assume that the return value of f(c) can be anything that *both* satisfies the specification *and* that is marked as accepting in the FTA for input c. Since each FTA has finitely many states, this allows us to implement the Angelic Recursion rule from Figure 9 without introducing infinitely many states. # 7.2 Program Selection In general, there may be many programs that satisfy the given specification, and most synthesis algorithms use heuristics to choose which program to return to the user. One of these heuristics is to prefer smaller programs, and, inspired by the effectiveness of this heuristic in prior work [Feser et al. 2015; Lubin et al. 2020; Osera and Zdancewic 2015], Burst also returns the smallest program in terms of AST size. However, to provide such a minimality guarantee, our implementation slightly deviates from the core synthesis procedure shown in Algorithm 1. In particular, our actual implementation maintains a priority queue over specifications sorted according to the size of the minimal solution for the corresponding angelic synthesis problem and explores these programs in increasing order or size. Thus, our implementation guarantees that the program returned to the user is the smallest one among those that satisfy the specification. The interested reader can see the pseudo-code in Algorithm 3 in Section A of the appendix. ## 7.3 Improving the CEGIS Loop Recall that our technique can perform synthesis from logical specifications by integrating our proposed approach within a CEGIS loop. While the standard CEGIS paradigm only uses ground formulas for inductive synthesis, our approach can actually utilize the original logical specification when performing angelic synthesis. In particular, when deciding which values can be returned by a recursive call, our implementation utilizes the original logical specification as opposed to the weaker ground specifications. For example, suppose that the original specification is f(x) < x and our current counterexamples include 3 and 4 (i.e., ground specification is $f(3) < 3 \land f(4) < 4$ ). While the ground specification does not constrain the output of recursive call f(2), we can use the original specification to constrain the return value of f(2) to be either 0 or 1 (assuming that x is a natural number). ²If there is no ground specification for some of these inputs, we mark all states as accepting ## 7.4 Termination of Synthesized Programs To ensure that our synthesized programs terminate, our implementation utilizes a well-founded default ordering on our values. In particular, Burst ensures that it generates terminating programs by only permitting recursive calls on values that are *strictly smaller* than the input. If $v_{in}$ is provided as an input, recursive calls to f can only be applied to values v when $v < v_{in}$ . This prevents generating infinite loops like let rec f(x) = f(x+1). #### 7.5 Optimizations Our implementation also utilizes a few standard optimizations described in prior synthesis literature. Since it is common to perform type-directed pruning in synthesis [Feser et al. 2015; Osera and Zdancewic 2015], we construct our FTAs to only accept well-typed programs. Inspired by prior work that utilizes eta-long beta-normal form [Frankle et al. 2016; Lubin et al. 2020; Osera and Zdancewic 2015], we also modify our FTA construction rules to only accept such normalized programs. #### 8 EVALUATION In this section, we describe a series of experimental evaluations that are designed to answer the following research questions: - **RQ1.** Is Burst able to effectively synthesize programs from a variety of different specifications? - **RQ2.** How does Burst compare against prior work in terms of synthesis efficiency and correctness of synthesized programs? - **RQ3.** How important is it to combine angelic synthesis with specification strengthening? All experiments described in this section are performed on a 2.5 GHz Intel Core i7 processor with 16 GB of 1600 MHz DDR3 running macOS Big Sur with a time limit of 120 seconds. #### 8.1 Benchmarks and Baselines To answer the research questions listed above, we use Burst to synthesize 45 recursive functional programs from prior work [Lubin et al. 2020; Osera and Zdancewic 2015] and compare it against the following baselines: - (1) **SMyth** [Lubin et al. 2020], which is a top-down type-directed programming-by-example tool. In particular, SMYTH generalizes MYTH [Osera and Zdancewic 2015] to handle input-output examples that are not trace-complete. - (2) Synquid [Polikarpova et al. 2016], which performs synthesis from liquid types. - (3) Leon [Kneuss et al. 2013], which is a synthesizer that performs synthesis from logical specifications. # 8.2 Specifications To evaluate whether Burst can handle a variety of different specifications and to compare it against different tools, we consider three classes of specifications for each of our 45 benchmarks: - (1) **IO:** These are input-output examples written by developers of SMYTH [Lubin et al. 2020]. - (2) **Ref:** These are reference implementations written by us. - (3) **Logical:** These are logical specifications that specify pre- and post-conditions (or, in the case of Synquid, refinement types) on the function to be synthesized. While Burst can perform synthesis from all three classes of specifications listed above, not all baselines can effectively handle these different specifications. Thus, we only compare against SMYTH on the **IO** and **Ref** specifications and against Leon and Synquid for the **Logical** specifications. Note that SMYTH can be adapted to perform synthesis from a reference implementation by integrating it inside a CEGIS loop and obtaining input-output examples from the reference implementation. Furthermore, while Leon and Synquid can, *in principle*, handle **IO** specifications, prior work has shown that they are not effective when used for this purpose [Lubin et al. 2020]. Thus, we only compare against Leon and Synquid on the **Logical** specifications. ## 8.3 Synthesis from Input/Output Specifications Figure 11 presents the results of our comparison against SMYTH on synthesis tasks from **IO** specifications. Here, the column labeled "Time" shows the synthesis time in seconds, and a cross mark (X) indicates failure (e.g., time-out). The column labeled "Correct?" shows whether the synthesized program is the one intended by the user. In particular, when synthesis is successful, the returned program always satisfies the provided IO examples, however, it may or may not be the program by the user. Thus, this additional column allows us to evaluate how generalizable the synthesis results of these tools are. As we can see from Figure 11, Burst is able to synthesize a program consistent with the IO examples in all but 2 cases, whereas SMYTH fails on 4 benchmarks. For the benchmarks that can be solved by both tools, the running time of both tools is quite fast (a few seconds or less) with the exception of a few outliers. Finally, the programs synthesized by Burst and SMYTH are roughly equal in terms of generalization power: for Burst, there are 5 cases where the synthesized program is not the intended one, and for SMYTH, there are 4 such cases. Failure Analysis. Next, we analyze the two benchmarks that Burst fails on and provide some intuition about why it is unable to solve them. For the benchmarks called list-take and list-sorted-insert, Burst times out because the specification does not in any way constrain the outputs of the many possible recursive calls. This both makes FTA creation quite slow and also causes the algorithm to explore many different strengthenings of the specification. **Result #1:** When synthesizing programs from IO specifications, Burst is competitive with SMYTH, a state-of-the-art tool for synthesizing recursive programs from input-output examples. In particular, Burst can solve two more benchmarks despite not specializing in IO specifications. # 8.4 Synthesis from Reference Implementation In this section, we use Burst to synthesize programs from reference implementations and compare against SMYTH. We incorporate both tools into a CEGIS loop and, for each candidate program, check whether it is equivalent to our reference implementation. If not, we ask the verifier for a concrete counterexample I and obtain its corresponding output O by running the reference implementation on I. We then add (I,O) as a new input-output example and continue this process until the synthesizer program is indeed equivalent to the reference implementation.³ The results of this evaluation are shown in Figure 12. In particular, the column labeled "Time" indicates synthesis time in seconds, with X indicating failure as before. The second column labeled "# iters" shows the number of iterations of the CEGIS loop for those benchmarks that can be synthesized. As we can see from this figure, Burst successfully solves all but two of the benchmarks with an average
synthesis time of 4.49 seconds and 4.37 CEGIS iterations on average. In contrast, SMYTH fails to solve 12 of these benchmarks, and it takes an average of 3.07 seconds and 4.52 ³We actually use bounded testing instead of verification; however, we manually confirmed that the generated programs are indeed equivalent to the reference implementation. | Test | Burst | | SМұтн | | |-------------------------|----------|----------|----------|----------| | | Time (s) | Correct? | Time (s) | Correct? | | bool-always-false | 0.02 | ✓ | 0.04 | <b>√</b> | | bool-always-true | 0.04 | ✓ | 0.04 | ✓ | | bool-band | 0.04 | ✓ | 0.04 | ✓ | | bool-bor | 0.04 | ✓ | 0.04 | ✓ | | bool-impl | 0.04 | ✓ | 0.03 | ✓ | | bool-neg | 0.03 | ✓ | 0.02 | ✓ | | bool-xor | 0.04 | ✓ | 0.04 | ✓ | | list-append | 0.19 | ✓ | 0.04 | ✓ | | list-compress | 1.12 | ✓ | X | N/A | | list-concat | 0.07 | ✓ | 0.04 | ✓ | | list-drop | 1.90 | ✓ | 0.08 | ✓ | | list-even-parity | 0.07 | X | 0.07 | X | | list-filter | 0.64 | X | 6.21 | X | | list-fold | 0.20 | X | 1.49 | Х | | list-hd | 0.04 | ✓ | 0.04 | ✓ | | list-inc | 0.07 | ✓ | 0.07 | ✓ | | list-last | 0.08 | ✓ | 0.04 | ✓ | | list-length | 0.04 | ✓ | 0.03 | ✓ | | list-map | 0.08 | ✓ | 0.49 | Х | | list-nth | 1.97 | ✓ | 0.07 | ✓ | | list-pairwise-swap | 13.10 | ✓ | 0.31 | ✓ | | list-rev-append | 2.01 | ✓ | 0.08 | ✓ | | list-rev-fold | 0.07 | ✓ | 0.07 | ✓ | | list-rev-snoc | 2.22 | ✓ | 0.04 | ✓ | | list-rev-tailcall | 0.14 | Х | 0.05 | ✓ | | list-snoc | 2.61 | ✓ | 0.05 | ✓ | | list-sort-sorted-insert | 0.14 | ✓ | 0.05 | ✓ | | list-sorted-insert | Х | N/A | 1.64 | ✓ | | list-stutter | 6.44 | ✓ | 0.04 | ✓ | | list-sum | 0.19 | ✓ | 0.08 | ✓ | | list-take | Х | N/A | 0.07 | ✓ | | list-tl | 0.04 | ✓ | 0.03 | ✓ | | nat-add | 0.26 | ✓ | 0.04 | ✓ | | nat-iseven | 0.07 | X | 0.04 | ✓ | | nat-max | 0.33 | ✓ | 0.13 | ✓ | | nat-pred | 0.04 | ✓ | 0.03 | ✓ | | tree-binsert | 2.16 | ✓ | X | N/A | | tree-collect-leaves | 1.17 | ✓ | 0.08 | ✓ | | tree-count-leaves | 0.33 | ✓ | 0.80 | ✓ | | tree-count-nodes | 0.18 | ✓ | 0.39 | ✓ | | tree-inorder | 10.74 | ✓ | 0.08 | ✓ | | tree-map | 0.58 | ✓ | 1.02 | ✓ | | tree-nodes-at-level | 39.69 | ✓ | Х | N/A | | tree-postorder | 3.97 | ✓ | Х | N/A | | tree-preorder | 0.29 | <b>✓</b> | 0.13 | 1 | Fig. 11. The results of running Burst and SMYTH on the IO benchmark suite. A cross mark under the Time column indicates failure (i.e., either timeout or terminating without finding a solution). Under the "Correct?" column " $\checkmark$ " indicates that the synthesized program is the desired one, and " $\checkmark$ " indicates that the synthesized program matches the IO examples but not the user intent. | Test | BURST Time (s) # Iters | | SMYTH | | | |-------------------------|------------------------|-----|--------------|---------|--| | Test | | | Time (s) | # Iters | | | bool-always-false | 0.02 | 0 | 0.02 | 0 | | | bool-always-true | 0.02 | 1 | 0.03 | 1 | | | bool-band | 13.39 | 3 | 0.04 | 3 | | | bool-bor | 0.04 | 4 | 0.04 | 4 | | | bool-impl | 0.03 | 3 | 0.05 | 3 | | | bool-neg | 0.03 | 2 | 0.02 | 2 | | | bool-xor | 0.02 | 2 | 0.05 | 3 | | | list-append | 0.54 | 6 | 0.58 | 8 | | | list-compress | 1.55 | 9 | Х | N/A | | | list-concat | 1.38 | 4 | 1.60 | 4 | | | list-drop | 0.69 | 5 | Х | N/A | | | list-even-parity | 0.19 | 5 | 0.26 | 7 | | | list-filter | 1.20 | 8 | Х | N/A | | | list-fold | 1.21 | 6 | X | N/A | | | list-hd | 0.29 | 2 | 0.31 | 2 | | | list-inc | 0.55 | 3 | 0.70 | 2 | | | list-last | 0.46 | 3 | 0.57 | 5 | | | list-length | 0.41 | 4 | 0.47 | 3 | | | list-map | 0.82 | 4 | X | N/A | | | list-nth | 0.51 | 7 | 0.59 | 5 | | | list-pairwise-swap | 0.53 | 6 | Х | N/A | | | list-rev-append | 14.55 | 5 | Х | N/A | | | list-rev-fold | 1.00 | 2 | X | N/A | | | list-rev-snoc | 6.94 | 4 | X | N/A | | | list-rev-tailcall | Х | N/A | 0.68 | 9 | | | list-snoc | 0.62 | 3 | 0.68 | 7 | | | list-sort-sorted-insert | 2.12 | 5 | 1.98 | 6 | | | list-sorted-insert | 1.57 | 6 | 14.22 | 12 | | | list-stutter | 1.42 | 3 | 0.59 | 4 | | | list-sum | 1.03 | 2 | 1.02 | 2 | | | list-take | 17.12<br>0.31 | 9 | 0.63<br>0.27 | 7 | | | nat-add | 0.31 | 6 | 0.27 | 6 | | | nat-iseven | 0.12 | 4 | 0.13 | 4 | | | nat-max | 2.28 | 5 | 0.04 | 7 | | | nat-pred | 0.03 | 2 | 0.03 | 2 | | | tree-binsert | 22.10 | 8 | X | N/A | | | tree-collect-leaves | 9.09 | 5 | 8.29 | 5 | | | tree-count-leaves | 23.57 | 4 | 8.63 | 4 | | | tree-count-nodes | 8.48 | 4 | 8.25 | 4 | | | tree-inorder | 13.98 | 5 | 11.72 | 6 | | | tree-map | 8.98 | 5 | X | N/A | | | tree-nodes-at-level | Х | N/A | 26.75 | 5 | | | tree-postorder | 21.94 | 8 | X | N/A | | | tree-preorder | 11.72 | 4 | 11.89 | 5 | | | 1 | | | 1 | | | Fig. 12. The results of running BURST and SMYTH on the **Ref** benchmark suite. A cross mark under the Time column indicates failure (i.e., either timeout or terminating without finding a solution). The column labeled "# Iters" shows the number of iterations within the CEGIS loop. CEGIS iterations. Overall, we believe these results indicate that Burst is able to deal better with the random examples generated by the verifier compared to SMYTH. $^{^4}$ Recall that the IO examples used in the previous experiment are written by the SMYTH developers. [,] Vol. 1, No. 1, Article . Publication date: July 2021. Failure Analysis. The reason that BURST fails on tree-nodes-at-level is similar to that for pure IO examples: the verifier returns IO pairs for which the results of the many possible recursive calls are highly under-constrained, resulting in slow FTA construction as well as many strengthening steps. BURST fails on list-rev-tailcall due to our requirement for ensuring termination of synthesized programs (see Section 7.4). Concretely, list-rev-tailcall needs to make a recursive call on ([2],[1]) for input ([1;2],[]), but our default ordering does not consider ([2],[1]) to be strictly less than ([1;2],[]). **Result #2**: Burst is able to synthesize 96% of the programs from a reference implementation. In contrast, SMYTH is only able to synthesize 73%. ## 8.5 Synthesis from Logical Specifications Figure 13 shows the results of our evaluation on logical specifications for each of Burst, Synquid, and Leon. As before, the column labeled "Time" shows the synthesis time for each tool, and the column labeled "Correct?" shows whether the tools were able to generate the intended program from the given specification. As we can see in this table, Burst solves more benchmarks than Leon and significantly more compared to Synquid. In what follows, we explain the failure cases of each tool and contrast them with each other. Failure Analysis for Burst. The two unique failure cases for Burst are nat-add and nat-max. For the first one, given the unary encoding of two natural numbers, the goal is to add them, and for the second one, the goal is to return the maximum. While these benchmarks look very easy at first glance, Burst fails on them because the specification is very under-constrained. For example, the specification of nat-max only states that the output should be greater than or equal to both inputs, but under the angelic semantics of recursion, this results in many possible outputs of the recursive calls and causes a blow-up. This is a common theme for Burst across all types of specifications: Since it constructs a version space based on angelic semantics, synthesis becomes more difficult when the specification is "loose" for arguments used in recursive calls. Behavior of Synquid. At first glance, Synquid seems to perform surprisingly poorly on these benchmarks. Upon further investigation, we found that Synquid is only able to successfully synthesize programs from highly stylized specifications. For example, consider our specification for the list-compress benchmark shown in Figure 14. While Synquid is unable to synthesize a program from this specification within the given time limit, it *can* synthesize the desired program from the specification shown in Figure 15. These specifications are semantically equivalent; however, Synquid's behavior on them is very different. Thus, while it may be possible to re-engineer our specifications so that Synquid performs successful synthesis, coming up with specifications that are Synquid-friendly is a highly non-trivial task. Comparisons to Leon. Leon performs better than Synouid for our specifications; however, it solves 34 benchmarks compared to the 41 of Burst. Overall, Leon tends to perform relatively poorly on benchmarks with nontrivial branching (e.g., list-compress and tree-binsert). This behavior is likely due to their condition abduction procedure failing to infer the correct branch conditions when they are deeply nested. On the higher-order benchmarks (list-filter, list-map), Leon either reports an error or returns a wrong solution that does not satisfy the provided logical specification. **Result #3**: Burst is able to synthesize 93% of the benchmarks from logical specifications and solves more benchmarks than both Leon (76%) and Synquid (49%). | Test | Bu | RST | LE | ON | Syn | QUID | |-------------------------|----------|----------|----------|----------|----------|----------| | | Time (s) | Correct? | Time (s) | Correct? | Time (s) | Correct? | | bool-always-false | 0.08 | ✓ | 0.04 | ✓ | 0.30 | <b>√</b> | | bool-always-true | 0.03 | ✓ | 0.07 | ✓ | 0.31 | <b>√</b> | | bool-band | 0.03 | ✓ | 6.57 | ✓ | 0.32 | ✓ | | bool-bor | 0.05 | ✓ | 6.62 | ✓ | 0.30 | <b>√</b> | | bool-impl | 0.04 | <b>✓</b> | 6.61 | ✓ | 0.31 | <b>√</b> | | bool-neg | 0.03 | ✓ | 1.63 | ✓ | 0.29 | <b>√</b> | | bool-xor | 0.04 | ✓ | 3.60 | ✓ | 0.31 | <b>√</b> | | list-append | 0.88 | ✓ | 44.28 | ✓ | 0.51 | <b>√</b> | | list-compress | 9.61 | ✓ | X | N/A | Х | N/A | | list-concat | 2.28 | ✓ | 11.57 | Х | 0.39 | <b>√</b> | | list-drop | 1.13 | ✓ | 51.04 | ✓ | 0.58 | <b>√</b> | | list-even-parity | 0.19 | ✓ | 42.82 | ✓ | Х | N/A | | list-filter | 1.51 | ✓ | Х | N/A | Х | N/A | | list-fold | 3.44 | ✓ | X | N/A | Х | N/A | | list-hd | 0.32 
 ✓ | 3.82 | ✓ | 0.29 | <b>√</b> | | list-inc | 1.68 | ✓ | 5.30 | ✓ | 0.48 | <b>√</b> | | list-last | 0.43 | ✓ | 12.30 | ✓ | Х | N/A | | list-length | 0.40 | ✓ | 8.45 | ✓ | Х | N/A | | list-map | 2.87 | ✓ | Х | N/A | X | N/A | | list-nth | 1.13 | ✓ | Х | N/A | Х | N/A | | list-pairwise-swap | 0.90 | ✓ | 37.27 | Х | Х | N/A | | list-rev-append | 1.53 | ✓ | 12.87 | ✓ | X | N/A | | list-rev-fold | 1.97 | ✓ | 13.87 | ✓ | Х | N/A | | list-rev-snoc | 1.43 | Х | 13.57 | Х | Х | N/A | | list-rev-tailcall | Х | N/A | Х | N/A | X | N/A | | list-snoc | 0.87 | ✓ | 27.68 | ✓ | 0.40 | ✓ | | list-sort-sorted-insert | 11.79 | ✓ | 7.53 | ✓ | X | N/A | | list-sorted-insert | 4.78 | ✓ | X | N/A | X | N/A | | list-stutter | 3.11 | ✓ | 8.36 | ✓ | 0.44 | <b>✓</b> | | list-sum | 1.04 | ✓ | 12.15 | ✓ | 0.44 | ✓ | | list-take | 11.02 | Х | X | Х | 0.47 | ✓ | | list-tl | 0.36 | ✓ | 2.55 | ✓ | 0.30 | <b>✓</b> | | nat-add | Х | N/A | 19.38 | ✓ | X | N/A | | nat-iseven | 0.03 | ✓ | 9.11 | ✓ | 0.34 | ✓ | | nat-max | Х | N/A | 25.48 | Х | 0.56 | ✓ | | nat-pred | 0.02 | ✓ | 2.77 | ✓ | 0.31 | ✓ | | tree-binsert | Х | N/A | Х | N/A | Х | N/A | | tree-collect-leaves | 8.29 | ✓ | 9.01 | ✓ | X | N/A | | tree-count-leaves | 8.16 | ✓ | 5.71 | ✓ | 9.77 | Х | | tree-count-nodes | 13.49 | ✓ | 5.31 | ✓ | 16.26 | Х | | tree-inorder | 64.82 | ✓ | 5.86 | ✓ | X | N/A | | tree-map | 11.79 | ✓ | Х | N/A | X | N/A | | tree-nodes-at-level | 42.73 | ✓ | Х | N/A | X | N/A | | tree-postorder | 23.21 | ✓ | 10.42 | ✓ | X | N/A | | tree-preorder | 18.99 | ✓ | 8.12 | ✓ | X | N/A | Fig. 13. The results of running Burst, Synquid, and Leon on the **Logical** benchmark suite. The result "**X**" under "Time" indicates failure (in this case, timeout). Under the "Correct?" column,"**Y**" (resp. "**X**") indicates that the synthesized program was (resp. not) the intended one. ``` data List where Nil :: List Cons :: Nat -> List -> List measure heads :: List -> Set Nat where Nil -> [] Cons x xs -> [x] measure no_adjacent_dupes :: List -> Bool where Nil -> True Cons x xs -> !(x in heads xs) && no_adjacent_dupes xs compress :: xs: List a -> {List | elems xs == elems _v && no_adjacent_dupes _v} compress = ?? ``` Fig. 14. Our list-compress benchmark specification for Synquid. ``` data PList a PList a -> Bool> where Nil :: PList a Cons :: x: a -> xs: {PList a | p x _v} -> PList a measure heads :: PList a -> Set a where Nil -> [] Cons x xs -> [x] type List a = PList a <{True}> type CList a = PList a <{!(_0 in heads _1)}> compress :: xs:List a -> {CList a | elems xs == elems _v} compress = ?? ``` Fig. 15. Alternative list-compress benchmark specification for Synquid. ## 8.6 Ablation Study for Specification Strengthening Our proposed synthesis algorithm combines angelic synthesis with specification strengthening. However, an alternative approach is to perform enumerative search over all programs that angelically satisfy the specification. That is, one could repeatedly sample solutions to the angelic synthesis problem and test whether they satisfy the specification until we exhaust the search space or find the correct program. In this section, we perform an ablation study to evaluate the benefit of specification strengthening compared to a simpler enumerative search baseline. The results of this ablation study are presented in Figure 16, where $Burst^{\dagger}$ is a variant of Burst that performs basic enumerative search instead of backtracking search with specification strengthening. As we can see from this table, Burst with specification strengthening solves more benchmarks within the given time limit, and this difference is particularly pronounced for the IO and Ref specifications. For Logical specifications, the difference between Burst and $Burst^{\dagger}$ is less stark due to the optimization described in Section 7.3. | | IO | Ref | Logical | |--------------------|-----|-----|---------| | Burst | 96% | 96% | 93% | | Burst [†] | 73% | 78% | 84% | Fig. 16. Number of benchmarks that can be solved within the time limit for each of the three specifications. **Result #4**: The variant of Burst that performs enumerative search over angelic synthesis results solves fewer benchmarks than Burst (with specification strengthening) for all three specification types. #### 9 RELATED WORK The prior work most related to this paper can be divided into four overlapping categories: (i) bottom-up synthesis, (ii) version-space-based synthesis, (iii) synthesis of functional recursive programs, and (iv) synthesis based on angelic semantics. Now we elaborate on these categories of work. For a broader survey of program synthesis, see Gulwani et al. [2017]. Bottom-up Synthesis. Bottom-up enumeration is a classic approach to program synthesis. A canonical example is Transit [Udupa et al. 2013]. Transit grows a pool of programs of increasing complexity, ensuring that no program in the pool is observationally equivalent to another program in the pool. The Stun [Alur et al. 2015b] approach generalizes this method by decomposing the input-output specification into multiple parts, synthesizing programs that work for these subspecifications in a bottom-up way, then combining these programs using a form of anti-unification. Bustle [Odena et al. 2020] offers another generalization, using a learning algorithm to guide bottom-up exploration. However, none of these methods handle programs with general recursion. ESCHER [Albarghouthi et al. 2013] is a bottom-up inductive synthesis approach that handles recursion. The algorithm here combines a forward search, in which terms are generated bottom-up, with a procedure for inferring conditional statements. However, a key limitation of this approach is that it requires a trace-complete specification to handle recursive calls. Version-Space-Based Synthesis. Version space approaches to synthesis use an efficient data structure to represent the set of all programs that satisfy a specification. Early techniques [Lau et al. 2003] proved hard to scale. Flashfill [Gulwani 2011], which represented version spaces using a form of e-graphs [Downey et al. 1980], was a major leap forward. Flashfill's success led to followup methods, for example, FlashExtract [Le and Gulwani 2014], FlashRelate [Barowy et al. 2015], and Refazer [Rolim et al. 2017]. This line of work culminated in FlashMeta [Polozov and Gulwani 2015], a framework for version-space-based synthesis that supports the above methods as instantiations. Unlike Burst, these methods all construct versions spaces top-down. They work backward from the desired output for a specific input, iteratively producing subgoals describing the unknown parts of the target program, and then construct version spaces for these subgoals. The use of tree automata (FTAs) as a version space representation was first explored by Madhusudan [2011] in the setting of reactive synthesis. Subsequently, the Dace [Wang et al. 2017b], Relish [Wang et al. 2018], and Blaze [Wang et al. 2017a] systems used tree automata to represent version spaces in the synthesis of functional programs. Like Burst, these three approaches proceed bottom-up: rather than starting from the desired outputs and producing subgoals for incomplete programs, they start from the input values and propagate these inputs through a space of programs. However, for reasons explained earlier, these methods cannot handle general recursion. *Synthesis of Recursive Programs.* The synthesis of (functional) recursive programs has a long history. Most methods in this area consider synthesis from examples, but synthesis from richer specifications, such as refinement types, has also been considered. The Thesys [Summers 1977] and Igor2 [Kitzelmann et al. 2006] systems are two early examples of work of this sort. Given a a set of examples, these methods first synthesize straight-line programs in a top-down manner, then identify patterns within a given program, then generalize these patterns into a recursive program. More recently, the Myth [Osera and Zdancewic 2015] and $\lambda^2$ [Feser et al. 2015] systems introduced types as a means of directing an inductive synthesis process. Myth2 [Frankle et al. 2016] extended Myth with more complex types of refinement types, including negative examples, intersection, and union types. All these approaches are top-down; also, all of them, except for $\lambda^2$ , rely on trace-completeness to handle recursive calls. While $\lambda^2$ does not assume trace-completeness, it only applies deductive reasoning to limited forms of recursion assuming trace-completeness, and defaults to brute-force enumeration when handling general recursion or on non-trace-complete examples. SMYTH [Lubin et al. 2020] is a generalization of MYTH that also performs top-down deduction-aided search, but does not have the trace-completeness requirement. To handle non-trace-complete specifications, SMYTH generates partial programs, then propagates constraints from partial programs to the remaining holes. This propagation is both complex and domain-specific, and incomplete. By contrast, BURST relies on a single generalizable principle of angelic recursion, and is complete. Leon [Kneuss et al. 2013] performs synthesis modulo recursive functions. Leon takes a pre-/post-condition specification and searches for a recursive function that can satisfy it. Leon solves this task using a term generation engine that produces candidate programs, a condition abduction engine that synthesizes branches, and a verification engine that evaluates candidate solutions. Leon's term generation runs similarly (though not exactly, due to the lack of angelic execution) to our Burst † ablation; it does not search through programs based on recursive results but simply based on increasing cost. Its condition abduction engine is top-down and quite distinct from ours. Synquid [Polikarpova et al. 2016] synthesizes programs from polymorphic refinement types. Such types are expressive and allow the specification of desired
functions in a way that is both compositional and tight. However, while Synquid can synthesize nearly any function from a carefully crafted refinement type, there are many kinds of realizable specifications on which it simply gives up. In particular, Synquid cannot synthesize from specifications that are non-inductive, including many of the specifications in our benchmark suite. More generally, Burst and Synquid address different problems: Synquid focuses on always being able to synthesize from a well-written refinement type, while Burst focuses on best-effort synthesis from arbitrary logical specifications. The recent Cypress [Itzhaky et al. 2021] system targets synthesis of recursive programs from separation logic specifications. Cypress generates a satisfying straight-line program, then "folds" that program into a generalized recursive procedure. We attempted a similar strategy in our setting but found the space of possible foldings to be prohibitively large. In contrast, our synthesis algorithm follows a lazier strategy: instead of synthesizing the full search space, then finding ways to fold it together, we overapproximate the search space and then discover ways to refine it. Angelic Synthesis. While angelic non-determinism has been used to expose synthesizers to programmers, there is almost no work on the use of angelic semantics as a core part of a synthesis algorithm. The one approach that we know of is France [Shi et al. 2019], which adds control structures to the well-studied problem of component-based synthesis. France first identifies candidate partial programs by synthesizing programs with no control structures, but instead with angelic placeholders, then attempts to place appropriate control structures in place of the angelic placeholders. In contrast, Burst does not have angelic placeholders but instead updates the generated code itself to fulfill the requirements put in place by angelic recursion. #### 10 CONCLUSION In this paper, we presented a new technique for synthesizing recursive functional programs. Our approach differs from prior work in this space as it performs synthesis in a *bottom-up* fashion. Our algorithm first performs *angelic synthesis* wherein recursive calls may return any value consistent with the specification. This result may be spurious, so our method analyzes the assumptions made in angelic executions and gradually strengthens the specification to find the correct program. We have implemented the proposed algorithm in a tool called Burst and showed that it can synthesize programs from a variety of specifications, including examples, reference implementations, and logical formulas. Our comparison against three synthesizers (SMYTH, LEON, and SYNQUID) shows that Burst advances the state-of-the-art in synthesizing recursive functional programs. #### **REFERENCES** Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. 2013. Recursive Program Synthesis. In *Computer Aided Verification*, Natasha Sharygina and Helmut Veith (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 934–950. Rajeev Alur, Pavol Černỳ, and Arjun Radhakrishna. 2015a. Synthesis through unification. In *International Conference on Computer Aided Verification*. Springer, Springer International Publishing, 163–179. Rajeev Alur, Pavol Černỳ, and Arjun Radhakrishna. 2015b. Synthesis through unification. In *International Conference on Computer Aided Verification*. Springer, 163–179. Daniel W Barowy, Sumit Gulwani, Ted Hart, and Benjamin Zorn. 2015. FlashRelate: extracting relational data from semi-structured spreadsheets using examples. ACM SIGPLAN Notices 50, 6 (2015), 218–228. M. Broy and M. Wirsing. 1981. On the algebraic specification of nondeterministic programming languages. In *CAAP '81*, Egidio Astesiano and Corrado Böhm (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 162–179. H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi. 2007. Tree Automata Techniques and Applications. Available on: http://www.grappa.univ-lille3.fr/tata. release October, 12th 2007. Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. 1980. Variations on the Common Subexpression Problem. J. ACM 27, 4 (Oct. 1980), 758–771. https://doi.org/10.1145/322217.322228 John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing Data Structure Transformations from Input-Output Examples. SIGPLAN Not. 50, 6 (June 2015), 229–239. https://doi.org/10.1145/2813885.2737977 Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic. 2016. Example-Directed Synthesis: A Type-Theoretic Interpretation. SIGPLAN Not. 51, 1 (Jan. 2016), 802–815. https://doi.org/10.1145/2914770.2837629 Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-output examples. In *Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011,* Thomas Ball and Mooly Sagiv (Eds.). ACM, 317–330. https://doi.org/10.1145/1926385.1926423 Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program Synthesis. Foundations and Trends® in Programming Languages 4, 1-2 (2017), 1–119. https://doi.org/10.1561/2500000010 Shachar Itzhaky, Hila Peleg, Nadia Polikarpova, Reuben NS Rowe, and Ilya Sergey. 2021. Cyclic program synthesis. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation. 944–959. Emanuel Kitzelmann, Ute Schmid, Roland Olsson, and Leslie Pack Kaelbling. 2006. Inductive synthesis of functional programs: An explanation based generalization approach. *Journal of Machine Learning Research* 7, 2 (2006). Etienne Kneuss, Ivan Kuraj, Viktor Kuncak, and Philippe Suter. 2013. Synthesis modulo Recursive Functions. In *Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages & Applications* (Indianapolis, Indiana, USA) (OOPSLA '13). Association for Computing Machinery, New York, NY, USA, 407–426. https://doi.org/10.1145/2509136.2509555 Tessa Lau, Pedro Domingos, and Daniel S Weld. 2003. Learning programs from traces using version space algebra. In *Proceedings of the 2nd international conference on Knowledge capture*. 36–43. Vu Le and Sumit Gulwani. 2014. Flashextract: A framework for data extraction by examples. In *Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation*. 542–553. Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh. 2020. Program Sketching with Live Bidirectional Evaluation. Proc. ACM Program. Lang. 4, ICFP, Article 109 (Aug. 2020), 29 pages. https://doi.org/10.1145/3408991 Parthasarathy Madhusudan. 2011. Synthesizing reactive programs. In Computer Science Logic (CSL'11)-25th International Workshop/20th Annual Conference of the EACSL. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. Augustus Odena, Kensen Shi, David Bieber, Rishabh Singh, and Charles Sutton. 2020. BUSTLE: Bottom-up program-Synthesis Through Learning-guided Exploration. arXiv preprint arXiv:2007.14381 (2020). Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-example-directed program synthesis. In *Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation, Portland, OR, USA, June 15-17, 2015*, David Grove and Stephen M. Blackburn (Eds.). ACM, 619–630. https://doi.org/10.1145/2737924.2738007 Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program synthesis from polymorphic refinement types. In *Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016,* Chandra Krintz and Emery Berger (Eds.). ACM, 522–538. https://doi.org/10.1145/2908080.2908093 Oleksandr Polozov and Sumit Gulwani. 2015. Flashmeta: A framework for inductive program synthesis. In *Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications*. 107–126. Reudismam Rolim, Gustavo Soares, Loris D'Antoni, Oleksandr Polozov, Sumit Gulwani, Rohit Gheyi, Ryo Suzuki, and Björn Hartmann. 2017. Learning syntactic program transformations from examples. In 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE). IEEE, 404–415. Kensen Shi, Jacob Steinhardt, and Percy Liang. 2019. Frangel: component-based synthesis with control structures. *Proceedings of the ACM on Programming Languages* 3, POPL (2019), 1–29. Phillip D Summers. 1977. A methodology for LISP program construction from examples. *Journal of the ACM (JACM)* 24, 1 (1977), 161–175. Abhishek Udupa, Arun Raghavan, Jyotirmoy V Deshmukh, Sela Mador-Haim, Milo MK Martin, and Rajeev Alur. 2013. TRANSIT: specifying protocols with concolic snippets. *ACM SIGPLAN Notices* 48, 6 (2013), 287–296. Xinyu Wang, Isil Dillig, and Rishabh Singh. 2017a. Program Synthesis Using Abstraction Refinement. *Proc. ACM Program. Lang.* 2, POPL, Article 63 (Dec. 2017), 30 pages. https://doi.org/10.1145/3158151 Xinyu Wang, Isil Dillig, and Rishabh Singh. 2017b. Synthesis of Data Completion Scripts Using Finite Tree Automata. *Proc. ACM Program. Lang.* 1, OOPSLA, Article 62 (Oct. 2017), 26 pages. https://doi.org/10.1145/3133886 Yuepeng Wang, Xinyu Wang, and Isil Dillig. 2018. Relational Program Synthesis. Proc. ACM Program. Lang. 2, OOPSLA, Article 155 (Oct. 2018), 27 pages. https://doi.org/10.1145/3276525 #### A ADDITIONAL ALGORITHMS ``` input: Ground specification \gamma output: A queue element (pri, P, \omega, \chi), or \bot. procedure MakeQE(\chi) res \leftarrow SynthesizeAngelic(\gamma) match res with | Failure(_) \rightarrow return \perp | Success(P, \omega) \rightarrow pri \leftarrow |P| return (pri, P, \omega, \chi) input: Ground specification \chi output: A program P, or \perp. procedure Synthesize(\chi) PQ \leftarrow \text{Empty} PQ.Push(MakeQE(\chi)) while PQ ≠ Empty do (_, P, \omega, \chi) \leftarrow PQ.Pop() if P \models \chi then
return P else PQ.Push(MakeQE(\chi \wedge \omega)) PQ.Push(MakeQE(\chi \land \neg \omega)) ``` Algorithm 3. Recursive Synthesis Algorithm Guaranteeing Optimality #### **B** PROOFS # B.1 Completeness of Synthesize We prove the completeness of Synthesize by introducing the following definition and using it to prove the claim. *Definition B.1.* We define RESPECTS( $e \downarrow v, \varphi$ ) as the following. $$\frac{\text{Respects}(e_2 \Downarrow v_2, \varphi) \qquad \text{Respects}(e_1[v_2/x] \Downarrow v_3, \varphi) \qquad \text{SAT}(\varphi \land f(v_2) = v_3)}{\text{Respects}((\text{rec } f(x) = e_1) \ e_2 \Downarrow v_3, \varphi)}$$ The following lemma relates the semantics in Figure 7 and the RESPECTS relation. Lemma B.2. $$RESPECTS(e \parallel v, \varphi) \implies e \parallel^{\varphi} v$$ PROOF. We proceed by structural induction on the evaluation of Respects. Case Unit: By the angelic semantics it always holds that unit $\downarrow^{\varphi}$ unit. Case Tuple Construction: Suppose the last rule applied was $$\frac{\text{Respects}(e_1 \Downarrow v_1, \varphi) \qquad \text{Respects}(e_2 \Downarrow v_2, \varphi)}{\text{Respects}((e_1, e_2) \Downarrow (v_1, v_2), \varphi)}$$ By IH, $e_1 \downarrow^{\varphi} v_1$ and $e_2 \downarrow^{\varphi} v_2$ . By the angelic semantics, we have the following derivation: $$\frac{e_1 \, \Downarrow^{\varphi} \, v_1 \qquad e_2 \, \Downarrow^{\varphi} \, v_2}{(e_1, e_2) \, \Downarrow^{\varphi} \, (v_1, v_2)}$$ Therefore, $(e_1, e_2) \downarrow^{\varphi} (v_1, v_2)$ . Case Function Application: Suppose the last rule applied was: $$\frac{\text{Respects}(e_2 \Downarrow v_2, \varphi) \qquad \text{Respects}(e_1[\text{rec } f(x) = e_1/f, v_2/x] \Downarrow v_3, \varphi) \qquad \text{SAT}(\varphi \land f(v_2) = v_3)}{\text{Respects}((\text{rec } f(x) = e_1) \ e_2 \Downarrow v_3, \varphi)}$$ By IH, $e_2 \downarrow \varphi v_2$ . It also holds that $SAT(\varphi \land f(v_2) = v_3)$ . By the angelic semantics, we have the following derivation: $$\frac{e_2 \downarrow^{\varphi} v_2 \qquad \mathsf{SAT}(\varphi \land f(v_2) = v_3)}{f(e_2) \downarrow^{\varphi} v_3}$$ Therefore, $f(e_2) \downarrow^{\varphi} v_3$ . The rest of the rules follow similarly. LEMMA B.3. If $P \models \varphi$ and $P \leftarrow \text{rec } f(x) = e$ , then for all v, v' where $v' \in [[P]](v)$ , it holds that $RESPECTS(P(v) \downarrow v', \varphi)$ . PROOF. By induction on the derivation of $P(v) \parallel v'$ . Case Unit: If P(v) = unit, then unit $\parallel \text{unit}$ . It follows that Respects(unit $\parallel \text{unit}, \varphi$ ). Case Tuple Construction: Suppose the last rule applied was $$\frac{e_1 \Downarrow v_1 \qquad e_2 \Downarrow v_2}{(e_1, e_2) \Downarrow (v_1, v_2)}$$ By IH, Respects $(e_1 \downarrow v_1, \varphi)$ and Respects $(e_2 \downarrow v_2, \varphi)$ . By the semantics of RESPECTS, we have the following derivation: $$\frac{\text{Respects}(e_1 \Downarrow v_1, \varphi) \qquad \text{Respects}(e_2 \Downarrow v_2, \varphi)}{\text{Respects}((e_1, e_2) \Downarrow (v_1, v_2), \varphi)}$$ Therefore, Respects $((e_1, e_2) \downarrow (v_1, v_2), \varphi)$ . Case Function Application: Suppose the last rule applied was: $$\frac{e_2 \Downarrow v_2 \qquad e_1[\texttt{rec } \texttt{f}(x) = e_1/f, v_2/x], v_2/x] \Downarrow v_3}{(\texttt{rec } \texttt{f}(x) = e_1) \ e_2 \Downarrow v_3}$$ By IH, RESPECTS( $e_2 \Downarrow v_2, \varphi$ ) and RESPECTS( $e_1[\text{rec } f(x) = e_1/f, v_2/x] \Downarrow v_3, \varphi$ ). It also holds that SAT( $\varphi \land f(v_2) = v_3$ ) which follows from the fact that $P \models \varphi$ . By the semantics of RESPECTS, we have the following derivation: $$\frac{\text{Respects}(e_2 \Downarrow v_2, \varphi) \qquad \text{Respects}(e_1[\text{rec } f(x) = e_1/f, v_2/x] \Downarrow v_3, \varphi) \qquad \text{SAT}(\varphi \land f(v_2) = v_3)}{\text{Respects}((\text{rec } f(x) = e_1) \ e_2 \Downarrow v_3, \varphi)}$$ Therefore, Respects $(f(e_2) \downarrow v_3, \varphi)$ . The rest of the rules follow similarly. Lemma B.4. If $P \models \varphi$ then then $P \models^{\circledcirc} \varphi$ PROOF. By the previous two lemmas, the conclusion follows. Let v be a value. We want to show there exists a value v' such that $v' \in [[P]](v)$ . By Lemma B.3, RESPECTS( $e[v/x] \parallel v', \varphi$ ). By Lemma B.2, $e[v/x] \downarrow^{\varphi} v'$ , thus $v' \in [[P]](v)$ . Theorem B.5. (Completeness) Suppose that (1) SynthesizeAngelic is complete, and (2) if SynthesizeAngelic returns Failure( $\kappa$ ), then $\kappa$ satisfies the assumption from Equation 5. If Synthesize( $\chi$ ) returns $\perp$ , then there is no program that satisfies $\chi$ . PROOF OF THEOREM 5.2. The statement of the completeness of SynthesizeAngelicis as follows: If SynthesizeAngelic( $\chi$ ) returns Failure( $\kappa$ ), then there is no program P such that $P \models^{\textcircled{\tiny 5}} \chi$ . Assume that there is a program S such that $S \models \chi$ . Suppose that SynthesizeAngelic $(\chi \land \land \phi_i \in \Omega \neg \phi_i)$ returns Failure( $\kappa$ ). By assumption (1), there is no program P such that $P \models^{\textcircled{\tiny{a}}} \chi$ . By Theorem B.4, there is no program P such that $P \models \chi$ . Thus, $S \not\models \chi$ which contradicts our assumption. Thus, SynthesizeAngelic $(\chi \land \bigwedge_{\phi_i \in \Omega} \neg \phi_i)$ always returns Success $(P, \omega)$ . If $P \models \chi$ then the algorithm returns $P \neq \bot$ and the conclusion holds. Suppose that $P \not\models \chi$ . Then it must be the case that either Synthesize( $\chi \land \omega$ ) $\neq \bot$ or Synthesize( $\chi \land \neg \omega$ ) $\neq \bot$ , otherwise it would contradict assumption (1) and the assumption that there is some program S such that $S \models \chi$ . Furthermore, recursive calls do not destroy the invariant that $\Omega$ is an anti-specification due to assumption (2). Thus, the algorithm returns some program $P \neq \bot$ and the conclusion holds. Therefore, the theorem holds in all cases. ## B.2 Completeness of BuildAngelicFTA LEMMA B.6. If BUILDANGELICFTA $(v_{in}, \varphi)$ returns $\mathcal{A}$ and (T, L) is an run on $\mathcal{A}$ where $L(\text{root}(T)) \neq \bot$ , then $T \Downarrow^{\varphi} v$ where $L(\text{root}(T)) = q_v$ PROOF. By induction on the tree T. Assume the root is a node n with children $\{n_1, \ldots, n_k\}$ . Proceed by cases on Label(T). Case Label(n) = x: By inversion, then $L(n) = q_{v_{in}} \cdot x[v_{in}] \downarrow^{\varphi} v_{in}$ , as desired. Case Label(n) = unit: By inversion, then $L(n) = q_{unit}$ . $unit[v_{in}] \downarrow^{\varphi} unit$ , as desired. Case Label(n) = switch on inl/inr: By inversion, then either it comes from a left or a right $\bot$ rule. Without loss of generality, assume it's a right $\bot$ rule, since the left side follows a symmetric argument. Then, $L(n) = q_{v_1}$ and children(n) = $[n_1, n_2, n_3]$ where $L(n_1) = q_{\text{inl } v_3}$ , $L(n_2) = q_{v_1}$ , and $L(n_3) = \bot$ . By IH, $n_1[v/x] \Downarrow^{\varphi} \text{ inl } v_3$ and $n_2[v/x] \Downarrow^{\varphi} v_1$ . Thus, we have the following deduction: $$\frac{n_1[v/x] \Downarrow^{\varphi} \mathsf{inl} \ v_3 \qquad n_2[v/x] \Downarrow^{\varphi} v_1}{\mathsf{switch} \ n_1[v/x] \ \mathsf{on} \ \mathsf{inl} \ _ \to n_2[v/x] \mid \mathsf{inr} \ _ \to n_3[v/x] \Downarrow^{\varphi} (v_1, v_2)}$$ Since we can rewrite switch $n_1[v/x]$ on inl _ $\rightarrow n_2[v/x]$ | inr _ $\rightarrow n_3[v/x]$ as (switch $n_1$ on inl _ $\rightarrow n_2$ | inr _ $\rightarrow n_3$ )[v/x], then we have the conclusion as desired. Case label(n) = f: By inversion, then $L(n) = q_{v'}$ , and children(n) = n', where $L(n') = q_v$ and SAT( $\varphi \land f(v) = v'$ ). By IH, $n'[v/x] \downarrow^{\varphi} v$ . So we have the following deduction: $$\frac{n'[v/x] \, \Downarrow^{\varphi} v \qquad \mathsf{SAT}(\varphi \wedge f(v) = v')}{f \; n'[v/x] \, \Downarrow^{\varphi} v'}$$ As f(n'[v/x]) = (f(n')[v/x]), we have $(f(n')[v/x]) \downarrow^{\varphi} v'$ , as desired. Case Label(n) = (*,*): By inversion, then $L(n) = q_{(v_1,v_2)}$ , and children(n) = [ $n_1, n_2$ ], where $L(n_1) = q_{v_1}$ and $L(n_2) = q_{v_2}$ . By IH, $n_1[v/x] \Downarrow^{\varphi} v_1$ and $n_2[v/x] \Downarrow^{\varphi} v_2$ . So we have the following deduction: $$\frac{n_1[v/x] \, \Downarrow^{\varphi} v_1 \qquad n_2[v/x] \, \Downarrow^{\varphi} v_2}{(n_1[v/x], n_2[v/x]) \, \Downarrow^{\varphi} (v_1, v_2)}$$ $(n_1[v/x], n_2[v/x]) = (n_1, n_2)[v/x], \text{ so } (n_1, n_2)[v/x] \parallel^{\varphi} (v_1, v_2), \text{ as desired.}$ All remaining cases can proceed similarly to (*, *). Theorem B.7. If BuildAngelicFTA $(v_{in}, \varphi)$ returns $\mathcal{A}$ , then $P \models_{v_{in}}^{\mathfrak{D}} \varphi$ for every $P \in \mathcal{L}(\mathcal{A})$ . PROOF OF THEOREM 6.5. Assuming that P terminates on every input, this follows from the previous lemma. Figure 7, Figure 9 Assume that BuildAngelicFTA( $v_{in}$ , $\varphi$ ) returns $\mathcal{A}$ and let $P \in \mathcal{L}(\mathcal{A})$ . $$P \models_{v_{in}}^{\mathfrak{G}} \varphi \iff \exists v. \ v \in [[P]]^{\varphi}(v_{in}) \land \mathsf{SAT}(f(v_{in}) = v \land \varphi)$$ Let $P \in \mathcal{L}(A)$ , then there is a mapping L such that (P, L) is a run and $L(\operatorname{root}(P)) \in Q_f$ . Then by inversion, it follows that $L(\operatorname{root}(P)) = q_v$ for some v where $\operatorname{SAT}(\varphi \wedge f(v_{in}) = v)$ . Theorem B.8. The following theorem generalizes this from individual inputs to ground specifications: Let $\varphi$ be a ground formula such that: $$V = \{v_i \mid f(v_i) \in \mathsf{Terms}(\varphi)\}$$ Then, if BuildAngelicFTA $(v_i, \varphi)$ returns $\mathcal{A}_i$ for inputs $V = \{v_1, \ldots, v_n\}$ , then, for every $P \in \mathcal{L}(\mathcal{A}_1) \cap \ldots \cap \mathcal{L}(\mathcal{A}_n)$ , we have $P \models^{\textcircled{\tiny 0}} \varphi$ . Proof of Theorem 6.6. Follows directly from Theorem 6.5.