
Reasoning About the Unknown in Static Analysis

Isil Dillig Thomas Dillig Alex Aiken
{isil, tdillig, aiken}@cs.stanford.edu

Computer Science Department
Stanford University

ABSTRACT
Static program analysis techniques cannot know certain val-
ues, such as the value of user input or network state, at anal-
ysis time. While such unknown values need to be treated as
non-deterministic choices made by the program’s execution
environment, it is still possible to glean very useful infor-
mation about how such statically unknown values may or
must influence computation. We give a method for integrat-
ing such non-deterministic choices with an expressive static
analysis. Interestingly, we cannot solve the resulting recur-
sive constraints directly, but we give an exact method for
answering all may and must queries. We show experimen-
tally that the resulting solved forms are concise in practice,
enabling us to apply the technique to very large programs,
including an entire operating system.

1. INTRODUCTION
Preventing software errors is a central challenge in soft-

ware engineering. The many tool-based approaches to the
problem can be grouped roughly into two categories. Dy-
namic analysis techniques discover properties by monitoring
program executions for particular inputs; standard testing is
the most commonly used form of dynamic analysis. In con-
trast, a static analysis discovers properties that hold for all
possible inputs; a sound static analysis concludes a program
is error-free only if the program indeed has no errors.

Unlike dynamic analyses, sound static analyses have the
advantage of never missing any potential errors, but, unfor-
tunately, there is no free lunch: Soundness usually comes at
the cost of reporting false positives (i.e., spurious warnings
about error-free code) because static analyses must approx-
imate some aspects of program behavior. This approxima-
tion is inevitable as analyzing even very simple properties of
programs’ behavior is undecidable. Hence, a key challenge
for static analysis techniques is achieving a satisfactory com-
bination of precision, soundness, and scalability by reporting
as few false positives as possible while still being sound and
scaling to real systems.

The original version of this paper is entitled “Sound, Com-
plete, and Scalable Path-Sensitive Analysis” and was pub-
lished in the Proceedings of Programming Language Design
and Implementation (PLDI) 2008, ACM.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

This goal of obtaining satisfactory precision is further
complicated by the fact that certain values are simply un-
known statically: For example, if a program queries the user
for an input, this input appears as a non-deterministic en-
vironment choice to the static analysis. Similarly, the result
of receiving arbitrary data from the network or the result of
reading operating system state are all unknowns that need
to be treated as non-deterministic environment choices by
the analysis.

Even in the special case where all program inputs are
known, static analyses still need to deal with unknowns that
arise from approximating program behavior. A static analy-
sis cannot simply carry out an exact program simulation; if
nothing else, we usually want to guarantee the analysis ter-
minates even if the program does not. Thus, static analysis
always has some imprecision built in. For example, since
lists, sets, and trees may have an unbounded number of
elements, many static techniques do not precisely model
the data structure’s contents. Reading an element from
a data structure is modeled as a non-deterministic choice
that returns any element of the data structure. Similarly,
if the chosen program abstraction cannot express non-linear
arithmetic, the value of a “complicated” expression, such as
coef*a*b+size, may also need to treated as an unknown by
the static analysis.

The question of what, if any, useful information can be
garnered from such unknown values is not much discussed
in the literature. It is our impression that if the question
is considered at all, it is left as an engineering detail in the
implementation; at least, this is the approach we have taken
ourselves in the past. But two observations have changed our
minds: First, unknown values are astonishingly pervasive
when statically analyzing programs; there are always calls
to external functions not modeled by the analysis as well as
approximations that lose information. Second, in our expe-
rience, analyses that do a poor job handling unknown values
either end up being unscalable or too imprecise. For these
reasons, we now believe a systematic approach for dealing
with unknown values is a problem of the first order in the
design of an expressive static analysis.

We begin by informally sketching a very simple, but im-
precise, approach to dealing with unknown values in static
analysis. Consider the following code snippet:

1: char input = get_user_input();
2: if(input == ’y’) f = fopen(FILE_NAME);
3: process_file_internal(f);
4: if(input == ’y’) fclose(f);

Suppose we want to prove that for every call to fopen, there
is exactly one matching call to fclose. For the matching
property to be violated, it must be the case that the value
of input is ’y’ on line 2, but the value of input is not ’y’

on line 4. Since the value of the input is unknown, one
simple approach is to represent the unknown value using a
special abstract constant ?. Now, programs may have mul-
tiple sources of unknown values, all of which are represented
by ?. Thus, ? is not a particular unknown but the set of
all unknowns in the program. Hence, the predicates ? = ′y′

(which should be read as: ′y′ is equal to some element of
values represented by ?) and ? 6=′ y′ (which should be read
as: ′y′ is not equal to some element of values represented
by ?) are simultaneously satisfiable. As a result, program
paths where input is equal to ′y′ at line (2), but not equal
to ′y′ at line (4) (or vice versa) cannot be ruled out, and the
analysis would erroneously report an error.

A more precise alternative for reasoning about unknown
values is to name them using variables (called choice vari-
ables) that stand for a single, but unknown, value. Ob-
serve that this strategy of introducing choice variables is a
refinement over the previous approach because two distinct
environment choices are modeled by two distinct choice vari-
ables, β and β′. Thus, while a choice variable β may rep-
resent any value, it cannot represent two distinct values at
the same time. For instance, if we introduce the choice vari-
able β for the unknown value of the result of the call to
get_user_input on line 1, the constraint characterizing the
failure condition is β = y ∧ β 6= y, which is unsatisfiable,
establishing that the call to fopen is matched by a call to
fclose. The insight is that the use of choice variables al-
lows the analysis to identify when two values arise from the
same environment choice without imposing any restrictions
on their values.

While this latter strategy allows for more precise rea-
soning, it leads to two difficulties –one theoretical and one
practical– that the simpler, but less precise, strategy does
not suffer from. Consider the following function:

bool query_user(bool feature_enabled) {
A: if(!feature_enabled) return false;
B: char input = get_user_input();
C: if(input == ’y’) return true;
D: if(input == ’n’) return false;
E: printf("Input must be y or n!
F: Please try again.\n");
G: return query_user(true);
}

Suppose we want to know when query_user returns true.
The return value of get_user_input is statically unknown;
hence it is identified by a choice variable β. The vari-
able feature_enabled, however, is definitely not a non-
deterministic choice, as its value is determined by the func-
tion’s caller. We represent feature_enabled by an observ-
able variable, α, provided by callers of this function. The
condition, Π, under which query_user returns true (abbre-
viated T) in any calling context, is then given by the con-
straint:

Π.β = (α = T) ∧ (β = ′y′ ∨ (¬(β = ′n′) ∧Π[T/α] = T)) (∗)

While this function would typically be written using a loop,
the same problem arises both for loops and recursive func-
tions, and we use a recursive function because it is easier to
explain.

This formula is read as follows. The term α = T captures
that the function returns true only if feature_enabled is
true (line A). Furthermore, the user input must either be
′y′ (term β = ′y′ and line C) or it must not be ′n′ (term
¬(β = ′n′) and line D) and the recursive call on line G must
return true (term Π[T/α]). Observe that because the func-
tion is recursive, so is the formula. In the term Π[T/α], the
substitution [T/α] models that on the recursive call, the for-
mal parameter α is replaced by actual parameter true. Fi-
nally, the binding Π.β reminds us that β is a choice variable.
When the equation is unfolded to perform the substitution
[T/α] we must also make the environment choice for β. The
most general choice we can make is to replace β with a fresh
variable β′, indicating that we do not know what choice is
made, but it is potentially different from any other choice
on subsequent recursive calls. Thus, Π[T/α] unfolds to:

(T = T) ∧ (β′ = ′y′ ∨ (¬(β′ = ′n′) ∧Π[T/α]

While the equation (*) expresses the condition under which
query_user returns true, the recursive definition means it is
not immediately useful. Furthermore, it is easy to see that
there is no finite non-recursive formula that is a solution
of the recursive equation (*) because repeated unfolding of
Π[T/α] introduces an infinite sequence of fresh choice vari-
ables β′, β′′, β′′′, Hence, it is not always possible to give
a finite closed-form formula describing the exact condition
under which a program property holds.

On the practical side, real programs have many sources of
unknowns; for example, assuming we do not reason about
the internal state of the memory management system, every
call to malloc in a C program appears as a non-deterministic
choice returning either NULL or newly allocated memory. In
practice, the number of choice variables grows rapidly with
the size of the program, overwhelming the constraint solver
and resulting in poor analysis scalability. Therefore, it is
important to avoid tracking choice variables whenever they
are unnecessary for proving a property.

Our solution to both the theoretical and the practical
problems can be understood only in the larger context of
why we want to perform static analysis in the first place.
Choice variables allow us to create precise models of how
programs interact with their environment, which is good
because we never know a priori which parts of the program
are important to analyze precisely and so introducing un-
necessary imprecision anywhere in the model is potentially
disastrous. But the model has more information than needed
to answer most individual questions we care about; in fact,
we are usually interested in only two kinds of 1-bit deci-
sion problems, may and must queries. If one is interested
in proving that a program does not do something “bad” (so-
called safety properties), then the analysis needs to ask may
questions, such as “May this program dereference NULL?”
or “May this program raise an exception?”. On the other
hand, if one is interested in proving that a program even-
tually does something good (so called liveness properties),
then the analysis needs to ask must questions, such as“Must
this memory be eventually freed?”.

May questions can be formulated as satisfiability queries;
if a formula representing the condition under which the bad
event happens is satisfiable, then the program is not guaran-
teed to be error-free. Conversely, must questions are natu-
rally formulated as validity queries: If a formula representing
the condition under which something good happens is not

valid, then the program may violate the desired property.
Hence, to answer may and must questions about programs
precisely, we do not necessarily need to solve the exact for-
mula characterizing a property, but only formulas that pre-
serve satisfiability (for may queries) or validity (for must
queries).

The key idea underlying our technique is that while choice
variables add useful precision within the function invocation
in which they arise, the aggregate behavior of the function
can be precisely summarized in terms of only observable
variables for answering may and must queries. Given a finite
abstraction of the program, our technique first generates a
recursive system of equations, which is precise with respect
to the initial abstraction but contains choice variables. We
then eliminate choice variables from this recursive system
to obtain a pair of equisatisfiable and equivalid systems over
only observable variables. After ensuring that satisfiabil-
ity and validity are preserved under syntactic substitution,
we then solve the two recursive systems via standard fixed-
point computation. The final result is a bracketing constraint
〈φNC, φSC〉 for each initial equation, corresponding to closed-
form strongest necessary and weakest sufficient conditions.

We demonstrate experimentally that the resulting brack-
eting constraints are small in practice and, most surprisingly,
do not grow in the size of the program, allowing our tech-
nique to scale to analyzing programs as large as the entire
Linux kernel. We also apply this technique for finding null
dereference errors in large open source C applications and
show that this technique is useful for reducing the number
of false positives by an order of magnitude.

2. FROM PROGRAMS TO CONSTRAINTS
As mentioned in Section 1, static analyses operate on a

model or abstraction of the program rather than the pro-
gram itself. In this paper, we consider a family of finite
abstractions where each variable has one of abstract val-
ues C1, . . . , Ck. These abstract values can be any fixed set
of predicates, typestates, dataflow values, or any chosen fi-
nite domain. We consider a language with abstract values
C1, . . . , Ck; while simple, this language is sufficiently expres-
sive to illustrate the main ideas of our techniques:

Program P ::= F+

Function F ::= define f(x) = E
Expression E ::= true | false | Ci | x | f(E)

| if E1 then E2 else E3

| let x = E1 in E2

| E1 = E2 |E1 ∧ E2 |E1 ∨ E2 | ¬E

Expressions are true, false, abstract values Ci, variables
x, function calls, conditional expressions, let bindings and
comparisons between two expressions. Boolean-valued ex-
pressions can be composed using the standard boolean con-
nectives, ∧, ∨, and ¬. In this language, we model unknown
values by references to unbound variables, which are by con-
vention taken to have a non-deterministic value chosen on
function invocation. Thus, any free variables occurring in a
function body are choice variables. Observe that this lan-
guage has an expressive set of predicates used in condition-
als, so the condition under which some program property
holds may be non-trivial.

To be specific, in the remainder of this paper, we consider
the program properties “May a given function return con-
stant (i.e., abstract value) Ci?” and “Must a given function

return constant Ci?”. Hence, our goal is to compute the
constraint under which each function returns constant Ci.
These constraints are of the following form:

Definition 1 (Constraints).

Equation E ::= [~Πi].~β = [~Fi]
Constraint F ::= (s1 = s2) | Π[Ci/α]

| F1 ∧ F2 | F1 ∨ F2 | ¬F
Symbol s ::= α | β | Ci

Symbols s in the constraint language are abstract val-
ues Ci, choice variables β whose corresponding abstract val-
ues are unknown, and observable variables α representing
function inputs provided by callers. Because the values of
inputs to each function f are represented by variables α,
the constraints generated by the analysis are polymorphic,
i.e., can be used in any calling context of f . Constraints F
are equalities between symbols (s1 = s2), constraint vari-
ables with a substitution Π[Ci/α], or boolean combinations
of constraints. The substitutions [Ci/α] on constraint vari-
ables are used for the substitution of formals by actuals, and

recall that the vector of choice variables ~β named with the Π

variable is replaced by a vector of fresh choice variables ~β′ in

each unfolding of the equation. More formally, if Π.~β = F ,
then:

Π[Ci/α] = F [Ci/α][~β′/~β] (~β′ fresh)

This renaming is necessary both to avoid naming collisions
and to model that a different environment choice may be
made on different recursive invocations. Constraints express
the condition under which a function f with input α returns
a particular abstract value Ci; we usually index the corre-
sponding constraint variable Πf,α,C for clarity. So, for ex-
ample, if there are only two abstract values C1 and C2, the
equation

[Πf,α,C1 , Πf,α,C2] = [true, false]

describes the function f that always returns C1, and

[Πf,α,C1 , Πf,α,C2] = [α = C2, α = C1]

describes the function f that returns C1 if its input has
abstract value C2 and vice versa. As a final example, the
function

define f(x) = if (y = C2) then C1 else C2

where the unbound variable y models a non-deterministic
choice is described by the equation:

[Πf,α,C1 , Πf,α,C2].β = [β = C2, β = C1]

Note that β is shared by the two constraints; in particular,
in any solution β must be either C1 or C2, capturing that a
function call returns only one value.

Our goal is to generate constraints characterizing the con-
dition under which a given function returns an abstract value
Ci. Figure 1 presents most of the constraint inference rules
for the language given above; the remaining rules are omit-
ted for lack of space but are all straightforward analogs of
the rules shown. In these inference rules, an environment A
maps program variables to variables α, β in the constraint
language. Rules 1-5 prove judgments A `b e : F where
b ∈ {true, false}, describing the constraints F under which
an expression e evaluates to true or false in environment A.
Rules 6-11 prove judgments A `Ci e : F that give the con-
straint under which expression e evaluates to Ci. Finally,

(1)
A `true true : true

(2)
A `true false : false

(3)

A `Ci e1 : F1,i

A `Ci e2 : F2,i

A `true (e1 = e2) :
∨
i(F1,i ∧ F2,i)

(4)
A `true e : F
A `false e : ¬F

(5)

A `true e1 : F1

A `true e2 : F2

⊗ ∈ {∧,∨}
A `true e1 ⊗ e2 : F1 ⊗F2

(6)
A `Ci Ci : true

(7)
i 6= j

A `Ci Cj : false

(8)
A(v) = ϕ (ϕ ∈ {α, β})
A `Ci v : (ϕ = Ci)

(9)

A `true e1 : F1

A `Ci e2 : F2

A `Ci e3 : F3

A `Ci if e1 then e2 else e3 : (F1 ∧ F2) ∨ (¬F1 ∧ F3)

(10)

A `Cj e1 : F1j

A, x : α `Ci e2 : F2i (α fresh)

A `Ci let x = e1 in e2 :
∨
j(F1j ∧ F2i ∧ (α = Cj))

(11)
A `Ck e : Fk

A `Ci f(e) :
∨
k(Fk ∧Πf,α,Ci [Ck/α])

(12)

α 6∈ {β1, . . . , βm}
x : α, y1 : β1, . . . , yn : βm `Ci e : Fi 1 ≤ i ≤ n

` define f(x) = e : [~Πf,α,Ci].
~β = [~Fi]

Figure 1: Inference Rules

rule 12 constructs systems of equations, giving the (possi-
bly) mutually recursive conditions under which a function
returns each abstract value.

We briefly explain a subset of the rules in more detail. In
Rule 3, two expressions e1 and e2 are equal whenever both
have the same abstract value. Rule 8 says that if under en-
vironment A, the abstract value of variable x is represented
by constraint variable α, then x has abstract value Ci only
if α = Ci. Rule 11 presents the rule for function calls: If
the input to function f has the abstract value Ck under
constraint Fk, and the constraint under which f returns Ci
is Πf,α,Ci , then f(e) evaluates to Ci under the constraint
Fk ∧Πf,α,Ci [Ck/α].

Example 1. Suppose we analyze the following function:

define f(x) = if ((x = C1) ∨ (y = C2)) then C1 else f(C1)

Note that rules 3, 10, 11, and 12 implicitly quantify over
multiple hypotheses; we have omitted explicit quantifiers to
avoid cluttering the rules.

where y models an environment choice and the only abstract
values are C1 and C2. Then[

Πf,α,C1

. . .

]
.β =

[
(α = C1 ∨ β = C2)∨
¬(α = C1 ∨ β = C2) ∧Πf,α,C1

[C1/α]
. . .

]
is the equation computed by the inference rules. Note that
the substitution [C1/α] in the formula expresses that the ar-
gument of the recursive call to f is C1.

We briefly sketch the semantics of constraints. Constraints
are interpreted over the standard four-point lattice with ⊥≤
true, false,> and ⊥, true, false ≤ >, where ∧ is meet, ∨ is
join, and ¬⊥=⊥, ¬> = >, ¬true = false, and ¬false = true.
Given an assignment θ for the choice variables β, the mean-
ing of a system of equations E is a standard limit of a
series of approximations θ(E0), θ(E1), . . . generated by re-
peatedly unfolding E. We are interested in both the least
fixed point (where the first approximation of all Π variables
is ⊥) and greatest fixed point (where the first approxima-
tion is >) semantics. The value ⊥ in the least fixed point
semantics (resp. > in the greatest fixed point) represents
non-termination of the analyzed program.

2.1 Reduction to Boolean Constraints
Our main technical result is a sound and complete method

for answering satisfiability (may) and validity (must) queries
for the constraints of Definition 1. As outlined in Section 1,
the algorithm has four major steps:

• eliminate choice variables by extracting strongest nec-
essary and weakest sufficient conditions;

• rewrite the equations to preserve satisfiability/validity
under substitution;

• eliminate recursion by a fixed point computation;

• finally, apply a decision procedure to the closed-form
equations.

Because our abstraction is finite, constraints from Defi-
nition 1 can be encoded using boolean logic, and thus our
target decision procedure for the last step is boolean SAT.
We must at some point translate the constraints from Fig-
ure 1 into equivalent boolean constraints; we perform this
translation first, before performing any of the steps above.

For every variable ϕ (ϕ ∈ {α, β}) in the constraint lan-
guage, we introduce boolean variables ϕi1, ..., ϕin such that
ϕij is true if and only if ϕi = Cj . We map the equation
variables Πf,α,Ci to boolean variables of the same name. A
variable Πf,α,Ci represents the condition under which f re-
turns Ci, hence we refer to Πf,α,Ci ’s as return variables. We
also translate each s1 = s2 occurring in the constraints as:

Ci = Ci ⇔ true
Ci = Cj ⇔ false i 6= j
ϕi = Cj ⇔ ϕij

Note that subexpressions of the form ϕi = ϕj never appear
in the constraints generated by the system of Figure 1. We
replace every substitution [Cj/αi] by the boolean substitu-
tion [true/αij] and [false/αik] for j 6= k.

Example 2. The first row of Example 1 results in the
following boolean constraints (here boolean variable α1 rep-
resents the equation α = C1 and β2 represents β = C2):

Πf,α,C1 .β2 = (α1 ∨ β2) ∨ (¬(α1 ∨ β2) ∧Πf,α,C1 [true/α1])

In the general case, the constraints from Figure 1 result in
a recursive system of boolean constraints of the following
form:

System of Equations 1.
[~Πf1,α,Ci].

~β1 = [~φ1i(~α1, ~β1, ~Π[~b1/~α])]
...

...

[~Πfk,α,Ci].
~βk = [~φki(~αk, ~βk, ~Π[~bk/~α])]

where ~Π = 〈Πf1,α,C1 , ...,Πfk,α,Cn〉 and bi ∈ {true, false} and

the φ’s are quantifier-free formulas over ~β, ~α, and ~Π.
Observe that any solution to the constraints generated

according to the rules from Figure 1 must assign exactly
one abstract value to each variable. More specifically, in
the original semantics, ϕ = Ci ∧ ϕ = Cj is unsatisfiable
for any i, j such that i 6= j, and

∨
i ϕ = Ci is valid; how-

ever, in the boolean encoding ϕi ∧ ϕj and ¬
∨
i ϕi are both

still satisfiable. Hence, to encode these implicit uniqueness
and existence axioms of the original constraints, we define
satisfiability and validity in the following modified way:

SAT∗(φ) ≡ SAT(φ ∧ ψexist ∧ ψunique)
VALID∗(φ) ≡ ({ψexist} ∪ {ψunique} |= φ)

where φexist and φunique are defined as:

1. Uniqueness: ψunique = (
∧
j 6=k ¬(vij ∧ vik))

2. Existence: ψexist = (
∨
j vij)

3. STRONGEST NECESSARY AND
WEAKEST SUFFICIENT CONDITIONS

As discussed in previous sections, a key step in our al-
gorithm is extracting necessary/sufficient conditions from a
system of constraints E. The necessary (resp. sufficient)
conditions should be satisfiable (resp. valid) if and only
if E is satisfiable (resp. valid). This section makes pre-
cise exactly what necessary/sufficient conditions we need; in
particular, there are two technical requirements:

• The necessary (resp. sufficient) conditions should be
as strong (resp. weak) as possible.

• The necessary/sufficient conditions should be only over
observable variables.

In the following, we use V+(φ) to denote the set of observ-
able variables in φ, and V−(φ) to denote the set of choice
variables in φ.

Definition 2. Let φ be a quantifier-free formula. We say
dφe is the strongest observable necessary condition for φ if:

(1) φ⇒ dφe (V−(dφe) = ∅)
(2) ∀φ′.((φ⇒ φ′)⇒ (dφe ⇒ φ′))

where V−(φ′) = ∅ ∧ V+(φ′) ⊆ V+(φ)

The first condition says dφe is necessary for φ, and the sec-
ond condition ensures dφe is stronger than any other nec-
essary condition with respect to φ’s observable variables
V+(φ). The additional restriction V−(dφe) = ∅ enforces
that the strongest necessary condition for a formula φ has
no choice variables.

1. void f(int* p, int flag) {
2. if(!p || !flag) return;
3. char* buf = malloc(sizeof(char));
4. if(!buf) return;
5. *buf = getUserInput();
6. if(*buf==’i’)
7. *p = 1;
8. }

Figure 2: Example code.

Definition 3. Let φ be a quantifier-free formula. We say
bφc is the weakest observable sufficient condition for φ if:

(1) bφc ⇒ φ (V−(bφc) = ∅)
(2) ∀φ′.((φ′ ⇒ φ)⇒ (φ′ ⇒ bφc))

where V−(φ′) = ∅ ∧ V+(φ′) ⊆ V+(φ)

Let φ be the condition under which some program prop-
erty P holds. Then, by virtue of dφe being a strongest neces-
sary condition, querying the satisfiability of dφe is equivalent
to querying the satisfiability of the original constraint φ for
deciding if property P may hold. Since dφe is a necessary
condition for φ, the satisfiability of φ implies the satisfiabil-
ity of dφe. More interestingly, because dφe is the strongest
such necessary condition, the satisfiability of dφe also im-
plies the satisfiability of φ; otherwise, a stronger necessary
condition would be false. Analogously, querying the validity
of bφc is equivalent to querying the validity of the original
constraint φ for deciding if property P must hold.

One can think of strongest necessary and weakest suffi-
cient conditions of φ as defining a tight observable bound on
φ. If φ has only observable variables, then the strongest nec-
essary and weakest sufficient conditions of φ are equivalent
to φ. If φ has only choice variables and φ is not equiv-
alent to true or false, then the best possible bounds are
dφe = true and bφc = false. Intuitively, the “difference” be-
tween strongest necessary and weakest sufficient conditions
defines the amount of unknown information present in the
original formula.

We now continue with an informal example illustrating
the usefulness of strongest observable necessary and weakest
sufficient conditions for statically analyzing programs.

Example 3. Consider the implementation of f given in
Figure 2, and suppose we want to determine the condition
under which pointer p is dereferenced in f. It is easy to see
that the exact condition for p’s dereference is given by the
constraint:

p!=NULL ∧ flag!=0 ∧ buf!=NULL ∧ ∗buf ==′ i′

Since the return value of malloc (i.e., buf) and the user
input (i.e., ∗buf) are statically unknown, the strongest ob-
servable necessary condition for f to dereference p is given
by the simpler condition:

p!=NULL ∧ flag!=0

On the other hand, the weakest observable sufficient con-
dition for the dereference is false, which makes sense be-
cause no restriction on the arguments to f can guarantee
that p is dereferenced. Observe that these strongest neces-
sary and weakest sufficient conditions are as precise as the
original formula for deciding whether p is dereferenced by f

at any call site of f, and furthermore, these formulas are
much more concise than the original formula.

4. SOLVING THE CONSTRAINTS
In this section, we now return to the problem of com-

puting strongest necessary and weakest sufficient conditions
containing only observable variables for each Πα,fi,Cj from
System of Equations 1. Our algorithm first eliminates the
choice variables from every formula. We then manipulate
the system to preserve strongest necessary (weakest suffi-
cient) conditions under substitution (Section 4.2). Finally,
we solve the equations to eliminate recursive constraints
(Section 4.3), yielding a system of (non-recursive) formulas
over observable variables. Each step preserves the satisfia-
bility/validity of the original equations, and thus the original
may/must query can be decided using a standard SAT solver
on the final formulas.

4.1 Eliminating Choice Variables
To eliminate the choice variables from the formulas in

Figure 1, we use the following well-known result for com-
puting strongest necessary and weakest sufficient conditions
for boolean formulas [4]:

Lemma 1. The strongest necessary and weakest suffi-
cient conditions of boolean formula φ not containing variable
β are given by:

SNC(φ, β) ≡ φ[true/β] ∨ φ[false/β]
WSC(φ, β) ≡ φ[true/β] ∧ φ[false/β]

Since our definition of satisfiability and validity must also
take into account the implicit existence and uniqueness con-
ditions, this standard way of computing strongest necessary
and weakest sufficient conditions of boolean formulas must
be slightly modified. In particular, let β be a choice vari-
able to be eliminated, and let ψexist and ψunique represent
the existence and uniqueness conditions involving β. Then,
we compute strongest necessary and weakest sufficient con-
ditions as follows:

SNC∗(φ, β) ≡ (φ ∧ ψexist ∧ ψunique)[true/β]∨
(φ ∧ ψexist ∧ ψunique)[false/β]

WSC∗(φ, β) ≡ (φ ∨ ¬ψexist ∨ ¬ψunique)[true/β]∧
(φ ∨ ¬ψexist ∨ ¬ψunique)[false/β]

After applying these elimination procedures to the con-
straint system from Figure 1, we obtain two distinct sets of
equations of the form:

System of Equations 2.

ENC =

dΠf1,α,C1e = φ′11(~α1, ~dΠe[~b1/~α])

...

dΠfk,α,Cne = φ′kn(~αk, ~dΠe[~bk/~α])

ESC is analogous to ENC.

Example 4. Consider the function given in Example 1,
for which boolean constraints are given in Example 2. We
compute the weakest sufficient condition for Πf,α,C1 :

bΠf,α,C1c = (α1 ∨ true) ∨
(¬(α1 ∨ true) ∧ bΠf,α,C1c[true/α1])

∧ (α1 ∨ false) ∨
(¬(α1 ∨ false) ∧ bΠf,α,C1c[true/α1])

= α1 ∨ (¬α1 ∧ bΠf,α,C1c[true/α1])

The reader can verify that the strongest necessary condi-
tion for Πf,α,C1 is true. The existence and uniqueness con-
straints are omitted since they are redundant.

4.2 Preservation Under Substitution
Our goal is to solve the recursive system given in System of

Equations 2 by an iterative, fixed point computation. How-
ever, there is a problem: as it stands, System of Equations 2
may not preserve strongest necessary and weakest sufficient
conditions under substitution for two reasons:

• Strongest necessary and weakest sufficient conditions
are not preserved under negation (i.e., ¬dφe 6⇔ d¬φe
and ¬bφc 6⇔ b¬φc), and the formulas from System
of Equations 2 contain negated return (Π) variables.
Therefore, substituting ¬Π by ¬dΠe and ¬bΠc would
yield incorrect necessary and sufficient conditions, re-
spectively.

• The formulas from System of Equations 2 may contain
contradictions and tautologies involving return vari-
ables, causing the formula to be weakened (for neces-
sary conditions) and strengthened (for sufficient con-
ditions) as a result of substituting the return variables
with their respective necessary and sufficient condi-
tions. As a result, the obtained necessary (resp. suffi-
cient) conditions may not be as strong (resp. as weak)
as possible.

Fortunately, both of these problems can be remedied. For
the first problem, observe that while ¬dφe 6⇔ d¬φe and
¬bφc 6⇔ b¬φc, the following equivalences do hold:

d¬φe ⇔ ¬bφc b¬φc ⇔ ¬dφe

In other words, the strongest necessary condition of ¬φ is
the negation of the weakest sufficient condition of φ, and
similarly, the weakest sufficient condition of ¬φ is the nega-
tion of the strongest necessary condition of φ. Hence, by
simultaneously computing strongest necessary and weakest
sufficient conditions, one can solve the first problem using
the above equivalences.

To overcome the second problem, an obvious solution is
to convert the formula to disjunctive normal form and drop
contradictions before applying a substitution in the case of
strongest necessary conditions. Similarly, for weakest suf-
ficient conditions, the formula may be converted to con-
junctive normal form and tautologies can be removed. This
rewrite explicitly enforces any contradictions and tautologies
present in the original formula such that substituting the Π
variables with their necessary (resp. sufficient) conditions
cannot weaken (resp. strengthen) the solution.

4.3 Eliminating Recursion
Since we now have a way of preserving strongest neces-

sary and weakest sufficient conditions under substitution, it
is possible to obtain a closed form solution containing only
observable variables to System of Equations 2 using a stan-
dard fixed point computation technique. To compute a least
fixed point, we use the following lattice:

⊥NC =
−−→
falsen·m ⊥SC =

−−→
truen·m

>NC =
−−→
truen·m >SC =

−−→
falsen·m

~γ1 tNC ~γ2 = 〈..., γ1i ∨ γ2i, ...〉 ~γ1 tSC ~γ2 = 〈..., γ1i ∧ γ2i, ...〉

The lattice L is finite (up to logical equivalence) since there
are only a finite number of variables αij and hence only a
finite number of logically distinct formulas. This results in
a system of bracketing constraints of the form:

System of Equations 3.

〈ENC, ESC〉 =

〈dΠf1,α,C1

e, bΠf1,α,C1
c〉 = 〈φ′

11(~α1), φ′′
11(~α1)〉

.

.

.
〈dΠfk,α,Cne, bΠfk,α,Cnc〉 = 〈φ′

kn(~αk), φ′′
kn(~αk)〉

Recall from Section 2 that the original constraints have

four possible meanings, namely ⊥, true, false, and >, while
the resulting closed-form strong necessary and weakest suffi-
cient conditions evaluate to either true or false. This means
that in some cases involving non-terminating program paths,
the original system of equations may have meaning⊥ in least
fixed-point semantics (or > in greatest fixed-point seman-
tics), but the algorithm presented in this paper may return
either true or false, depending on whether a greatest or least
fixed point is computed. Hence, our results are qualified by
the assumption that the program terminates.

Example 5. Recall that in Example 4 we computed bΠf,α,C1c
for the function f defined in Example 1 as:

bΠf,α,C1c = α1 ∨ (¬α1 ∧ bΠf,α,C1c[true/α1])

To find the weakest sufficient condition for Πf,α,C1 , we first
substitute true for bΠf,α,C1c. This yields the formula α1 ∨
¬α1, a tautology. As a result, our algorithm finds the fixed
point solution true for the weakest sufficient condition of
Πf,α,C1 . Since f is always guaranteed to return C1, the
weakest sufficient condition computed using our algorithm
is the most precise solution possible.

5. LIMITATIONS
While the technique proposed in this paper yields the

strongest necessary and weakest sufficient conditions for a
property P with respect to a finite abstraction, it is not pre-
cise for separately tracking the conditions for two distinct
properties P1 and P2 and then combining the individual re-
sults. In particular, if φ1 and φ2 are the strongest necessary
conditions for P1 and P2 respectively, then φ1 ∧ φ2 does not
yield the strongest necessary condition for P1 and P2 to hold
together because strongest necessary conditions do not dis-
tribute over conjunctions, and weakest sufficient conditions
do not distribute over disjunctions. Hence, if one is inter-
ested in combining reasoning about two distinct properties,
it is necessary to compute strongest necessary and weakest
sufficient conditions for the combined property.

While it is important in our technique that the set of pos-
sible values can be exhaustively enumerated (to guarantee
the convergence of the fixed point computation and to be
able to convert the constraints to boolean logic), it is not
necessary that the set be finite, but only finitary, that is,
finite for a given program. Furthermore, while it is clear
that the technique can be applied to finite-state properties
or enumerated types, it can also be extended to any property
where a finite number of equivalence classes can be derived
to describe the possible outcomes. However, the proposed
technique is not complete for arbitrary non-finite domains.

6. EXPERIMENTAL RESULTS
We have implemented our method in Saturn, a static anal-

ysis framework designed for checking properties of C pro-
grams [1]. As mentioned in Section 1, sources of imprecision
in the analysis appear as non-deterministic choices; in Sat-
urn, sources of imprecision include, but are not limited to,

 1

 10

 100

 1000

 10000

 100000

0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44

F
re

qu
en

cy
 (

in
 lo

g
sc

al
e)

Size of necessary and sufficient conditions

Necessary and Sufficient Condition Size Frequency

Necessary Condition
Sufficient Condition

Figure 3: Frequency of necessary and sufficient condi-

tion sizes (in terms of the number of boolean connec-

tives) at sinks for Linux

Linux Samba OpenSSH
2.6.17.1 3.0.23b 4.3p2

Average NC size (sink) 0.75 1.02 0.75

Average SC size (sink) 0.48 0.67 0.50

Average NC size (source) 2.39 2.82 1.39

Average SC size (source) 0.45 0.49 0.67

Average call chain depth 5.98 4.67 2.03

Lines of code 6,275,017 515,689 155,660

Figure 4: Necessary and sufficient condition sizes (in

terms of number of boolean connectives in the formula)

for pointer dereferences.

reads from unbounded data structures, arithmetic, impre-
cise function pointer targets, imprecise loop invariants, and
in-line assembly; all of these sources of imprecision in the
analysis are treated as choice variables.

We conducted two sets of experiments to evaluate our
technique on OpenSSH, Samba, and the Linux kernel. In
the first set of experiments we compute necessary and suf-
ficient conditions for pointer dereferences. Pointer deref-
erences are ubiquitous in C programs and computing the
necessary and sufficient conditions for each and every syn-
tactic pointer dereference to execute is a good stress test for
our approach. As a second experiment, we incorporate our
technique into a null dereference analysis and demonstrate
that our technique reduces the number of false positives by
close to an order of magnitude without resorting to ad-hoc
heuristics or compromising soundness.

In our first set of experiments, we measure the size of nec-
essary and sufficient conditions for pointer dereferences both
at sinks, where pointers are dereferenced, and at sources,
where pointers are first allocated or read from the heap. In
Figure 2, consider the pointer dereference (sink) at line 7.
For the sink experiments, we would, for example, compute
the necessary and sufficient conditions for p’s dereference as
p! = NULL ∧ flag! = 0 and false respectively. To illus-
trate the source experiment, consider the following call site
of function f from Figure 2:

void foo() {
int* p = malloc(sizeof(int)); /*source*/
...
bar(p, flag, x);

}
void bar(int* p, int flag, int x) {
if(x > MAX) *p = -1; else f(p, flag); }

The line marked /*source*/ is the source of pointer p; the
necessary condition at p’s source for p to be ultimately deref-
erenced is x > MAX∨ (x <= MAX∧p! = NULL∧flag! = 0) and
the sufficient condition is x > MAX.

The results of the sink experiments for Linux are pre-
sented in Figure 3. The table in Figure 4 presents a sum-

Interprocedurally Path-sensitive Intraprocedurally Path-sensitive
OpenSSH Samba Linux OpenSSH Samba Linux

4.3p2 3.0.23b 2.6.17.1 4.3p2 3.0.23b 2.6.17.1
Total Reports 3 48 171 21 379 1495
Bugs 1 17 134 1 17 134
False Positives 2 25 37 20 356 1344
Undecided 0 6 17 0 6 17
Report to Bug Ratio 3 2.8 1.3 21 22.3 11.2

Figure 5: Results of null dereference experiments

mary of the results of both the source and sink experiments
for OpenSSH, Samba, and Linux. The histogram in Fig-
ure 3 plots the size of necessary (resp. sufficient) condi-
tions against the number of constraints that have a necessary
(resp. sufficient) condition of the given size. In this figure,
red bars indicate necessary conditions, green bars indicate
sufficient conditions, and note that the y-axis is drawn on a
log-scale. Observe that 95% of all necessary and sufficient
conditions have fewer than five subclauses, and 99% have
fewer than ten subclauses, showing that necessary and suffi-
cient conditions are small in practice. Figure 4 presents av-
erage necessary and sufficient condition sizes at sinks (rows
2 and 3) for all three applications we analyzed, confirming
that average necessary and sufficient condition sizes are con-
sistently small across all of our benchmarks.

Our second experiment applies these techniques to find-
ing null dereference errors. We chose null dereferences as
an application because checking for null dereference errors
with sufficient precision often requires tracking complex path
conditions. In the results presented in Figure 5, we compare
two different set-ups: In the interprocedurally path-sensitive
analysis, we use the technique described in the paper, com-
puting strongest necessary conditions for a null pointer to
be dereferenced. In the second setup (i.e., the intraproce-
durally path-sensitive case), for each function, we only com-
pute which pointers may be dereferenced in that function,
but we do not track the condition under which pointers are
dereferenced across functions. We believe this comparison is
useful in quantifying the benefit of the technique proposed
in the paper because, without the elimination of choice vari-
ables, (i) the interprocedurally path-sensitive analysis may
not even terminate, and (ii) the number of choice variables
grows linearly in the size of the program, overwhelming the
constraint solver. In fact, for this reason, all previous anal-
yses written in Saturn were either interprocedurally path-
insensitive or adopted incomplete heuristics to decide which
conditions to track across function boundaries [1].

The first three columns of Figure 5 give the results of the
experiments for the first set-up, and the last three columns of
the same figure present the results of the second set-up. One
important caveat is that the numbers reported here exclude
error reports arising from array elements and recursive fields
of data structures. Saturn does not have a sophisticated
shape analysis; hence, the overwhelming majority (> 95%)
of errors reported for elements of unbounded data structures
are false positives. However, shape analysis is an orthogonal
problem which we neither address nor evaluate in this work.

A comparison of the results of the intraprocedurally and
interprocedurally path-sensitive analyses shows that our tech-
nique reduces the number of false positives by close to an
order of magnitude without resorting to heuristics or com-
promising soundness in order to eliminate errors arising from
interprocedural dependencies. Note that the existence of
false positives does not contradict our previous claim that

our technique is complete. First, even for finite domains,
our technique can provide only relative completeness; false
positives can still arise from orthogonal sources of impreci-
sion in the analysis. Second, while our results are complete
for finite domains, we cannot guarantee completeness for
arbitrary domains.

7. CONCLUSION
We have presented a method for systematically reasoning

about unknown values in static analysis systems. We argued
that, while representing unknown values by choice variables
adds useful precision by correlating multiple uses of the same
unknown value, eliminating these choice variables at func-
tion boundaries is necessary to avoid both scalability as well
as termination problems. We have presented a technique
to eliminate these choice variables with no loss of informa-
tion for answering may and must queries about program
properties. We have also experimentally demonstrated that
analyzing unknown values in this way leads to much better
precision and better scalability.

8. REFERENCES
[1] A. Aiken, S. Bugrara, I. Dillig, T. Dillig, B. Hackett,

and P. Hawkins. An overview of the SATURN project.
In PASTE, pages 43–48, 2007.

[2] T. Ball and S. Rajamani. Bebop: A symbolic model
checker for boolean programs. In SPIN, 113–130, 2000.

[3] T. Ball and S. Rajamani. Automatically validating
temporal safety properties of interfaces. LNCS,
2057:103–122, 2001.

[4] G. Boole. An Investigation of the Laws of Thought.
Dover Publications, Incorporated, 1858.

[5] B. Cook, A. Gotsman, A. Podelski, A. Rybalchenko,
and M. Vardi. Proving that programs eventually do
something good. In POPL, pages 265–276, 2007.

[6] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive
program verification in polynomial time. In PLDI,
pages 57–68, 2002.

[7] F. Henglein. Type inference and semi-unification. In
Conference on LISP and Functional Programming,
pages 184–197, 1988.

[8] T. Henzinger, R. Jhala, R. Majumdar, and
K. McMillan. Abstractions from proofs. In POPL,
pages 232–244, 2004.

[9] A. Mycroft. Polymorphic type schemes and recursive
definitions. In International Symposium on
Programming, pages 217–228, 1984.

[10] T. Reps, S. Horwitz, and M. Sagiv. Precise
interprocedural dataflow analysis via graph
reachability. In POPL, pages 49–61, 1995.

[11] D. Schmidt. A calculus of logical relations for over-
and underapproximating static analyses. Science of
Computer Programming, 64(1):29–53, 2007.

