
Minimum Satisfying Assignments for SMT

Işıl Dillig, Tom Dillig Ken McMillan Alex Aiken
College of William & Mary Microsoft Research Stanford U.

1 / 20

Satisfiability Modulo Theories (SMT)

Today, SMT solvers are underlying engine of most verification
and program analysis tools

An assignment σ for formula φ is a mapping from free
variables of φ to values

2 / 20

Satisfiability Modulo Theories (SMT)

Today, SMT solvers are underlying engine of most verification
and program analysis tools

 SMT
Solver

 SMT
Formula

 SAT

 UNSAT

An assignment σ for formula φ is a mapping from free
variables of φ to values

2 / 20

Satisfiability Modulo Theories (SMT)

Today, SMT solvers are underlying engine of most verification
and program analysis tools

 SMT
Solver

 SMT
Formula

 SAT

 UNSAT

 satisfying
assignment

x=1, y=0, z=-3, w=5

+

An assignment σ for formula φ is a mapping from free
variables of φ to values

2 / 20

Partial Satisfying Assignments

 SMT
Solver

 SMT
Formula

 SAT

 UNSAT

 satisfying
assignment

x=1, y=0, z=-3, w=5

+

Satisfying assignments provided SMT solver are full
assignments ⇒ assign every free variable to a value

But sometimes we want partial satisfying assignments

A partial satisfying assignment only assigns values to a subset
of free variables, but is sufficient to make formula true

For formula x < 0 ∨ x + y ≥ 0, x = −1 is a partial satisfying
assignment

3 / 20

Partial Satisfying Assignments

 SMT
Solver

 SMT
Formula

 SAT

 UNSAT

 satisfying
assignment

x=1, y=0, z=-3, w=5

+

Satisfying assignments provided SMT solver are full
assignments ⇒ assign every free variable to a value

But sometimes we want partial satisfying assignments

A partial satisfying assignment only assigns values to a subset
of free variables, but is sufficient to make formula true

For formula x < 0 ∨ x + y ≥ 0, x = −1 is a partial satisfying
assignment

3 / 20

Partial Satisfying Assignments

 SMT
Solver

 SMT
Formula

 SAT

 UNSAT

 satisfying
assignment

x=1, y=0, z=-3, w=5

+

Satisfying assignments provided SMT solver are full
assignments ⇒ assign every free variable to a value

But sometimes we want partial satisfying assignments

A partial satisfying assignment only assigns values to a subset
of free variables, but is sufficient to make formula true

For formula x < 0 ∨ x + y ≥ 0, x = −1 is a partial satisfying
assignment

3 / 20

Partial Satisfying Assignments

 SMT
Solver

 SMT
Formula

 SAT

 UNSAT

 satisfying
assignment

x=1, y=0, z=-3, w=5

+

Satisfying assignments provided SMT solver are full
assignments ⇒ assign every free variable to a value

But sometimes we want partial satisfying assignments

A partial satisfying assignment only assigns values to a subset
of free variables, but is sufficient to make formula true

For formula x < 0 ∨ x + y ≥ 0, x = −1 is a partial satisfying
assignment

3 / 20

Minimum Satisfying Assignments (MSA)

Special class of partial sat assignments: minimum sat assignments

Given cost function C from variables to costs,
minimum sat assignment (MSA) is a partial sat
assignment minimizing C

Observe: Cost of assignment does not depend on
values, but only to variables used in assignment!

Assignments x = 1 and x = 50 have same cost

If variables have equal cost, an MSA is partial
sat assignment with fewest variables

C(y) = 50

C(x) = 1

C(z) = 1

C(w) = 4

4 / 20

Minimum Satisfying Assignments (MSA)

Special class of partial sat assignments: minimum sat assignments

Given cost function C from variables to costs,
minimum sat assignment (MSA) is a partial sat
assignment minimizing C

Observe: Cost of assignment does not depend on
values, but only to variables used in assignment!

Assignments x = 1 and x = 50 have same cost

If variables have equal cost, an MSA is partial
sat assignment with fewest variables

C(y) = 50

C(x) = 1

C(z) = 1

C(w) = 4

4 / 20

Minimum Satisfying Assignments (MSA)

Special class of partial sat assignments: minimum sat assignments

Given cost function C from variables to costs,
minimum sat assignment (MSA) is a partial sat
assignment minimizing C

Observe: Cost of assignment does not depend on
values, but only to variables used in assignment!

Assignments x = 1 and x = 50 have same cost

If variables have equal cost, an MSA is partial
sat assignment with fewest variables

C(y) = 50

C(x) = 1

C(z) = 1

C(w) = 4

4 / 20

Minimum Satisfying Assignments (MSA)

Special class of partial sat assignments: minimum sat assignments

Given cost function C from variables to costs,
minimum sat assignment (MSA) is a partial sat
assignment minimizing C

Observe: Cost of assignment does not depend on
values, but only to variables used in assignment!

Assignments x = 1 and x = 50 have same cost

If variables have equal cost, an MSA is partial
sat assignment with fewest variables

C(y) = 50

C(x) = 1

C(z) = 1

C(w) = 4

4 / 20

Minimum Satisfying Assignments (MSA)

Special class of partial sat assignments: minimum sat assignments

Given cost function C from variables to costs,
minimum sat assignment (MSA) is a partial sat
assignment minimizing C

Observe: Cost of assignment does not depend on
values, but only to variables used in assignment!

Assignments x = 1 and x = 50 have same cost

If variables have equal cost, an MSA is partial
sat assignment with fewest variables

C(y) = 50

C(x) = 1

C(z) = 1

C(w) = 4

4 / 20

Example and Applications

Consider cost function assigning every variable to 1 and
Presburger arithmetic formula:

φ : x + y + w > 0 ∨ x + y + z + w < 5

A minimum sat assignment for φ is z = 0

MSAs have many applications in verification:

X Finding small counterexamples in BMC

X Classifying and diagnosing error reports

X Abductive inference

X Minimizing # of predicates in pred abstraction

5 / 20

Example and Applications

Consider cost function assigning every variable to 1 and
Presburger arithmetic formula:

φ : x + y + w > 0 ∨ x + y + z + w < 5

A minimum sat assignment for φ is z = 0

MSAs have many applications in verification:

X Finding small counterexamples in BMC

X Classifying and diagnosing error reports

X Abductive inference

X Minimizing # of predicates in pred abstraction

5 / 20

Example and Applications

Consider cost function assigning every variable to 1 and
Presburger arithmetic formula:

φ : x + y + w > 0 ∨ x + y + z + w < 5

A minimum sat assignment for φ is z = 0

MSAs have many applications in verification:

X Finding small counterexamples in BMC

X Classifying and diagnosing error reports

X Abductive inference

X Minimizing # of predicates in pred abstraction

5 / 20

Contributions

In propositional logic, MSAs known as min-sized prime
implicants

Known algorithms for computing min prime implicants

No work on computing MSAs for richer theories

First algorithm for computing min
sat assignments for SMT formulas

Our algorithm applicable to any
theory for which full first-order logic
including quantifiers is decidable

6 / 20

Contributions

In propositional logic, MSAs known as min-sized prime
implicants

Known algorithms for computing min prime implicants

No work on computing MSAs for richer theories

First algorithm for computing min
sat assignments for SMT formulas

Our algorithm applicable to any
theory for which full first-order logic
including quantifiers is decidable

6 / 20

Contributions

In propositional logic, MSAs known as min-sized prime
implicants

Known algorithms for computing min prime implicants

No work on computing MSAs for richer theories

First algorithm for computing min
sat assignments for SMT formulas

Our algorithm applicable to any
theory for which full first-order logic
including quantifiers is decidable

6 / 20

Contributions

In propositional logic, MSAs known as min-sized prime
implicants

Known algorithms for computing min prime implicants

No work on computing MSAs for richer theories

First algorithm for computing min
sat assignments for SMT formulas

Our algorithm applicable to any
theory for which full first-order logic
including quantifiers is decidable

6 / 20

Maximum Universal Subset

Our algorithm exploits duality between MSAs
and maximum universal subsets (MUS)

An MUS for φ is a set of variables X s.t.:

1 ∀X .φ is satisfiable

2 X maximizes cost function C

MSA
MUS

X is an MUS of φ ⇔ MSA is a sat assignment of ∀X .φ

Our approach first computes an MUS X and extracts an
MSA from a sat assignment of ∀X .φ

7 / 20

Maximum Universal Subset

Our algorithm exploits duality between MSAs
and maximum universal subsets (MUS)

An MUS for φ is a set of variables X s.t.:

1 ∀X .φ is satisfiable

2 X maximizes cost function C

MSA
MUS

X is an MUS of φ ⇔ MSA is a sat assignment of ∀X .φ

Our approach first computes an MUS X and extracts an
MSA from a sat assignment of ∀X .φ

7 / 20

Maximum Universal Subset

Our algorithm exploits duality between MSAs
and maximum universal subsets (MUS)

An MUS for φ is a set of variables X s.t.:

1 ∀X .φ is satisfiable

2 X maximizes cost function C

MSA
MUS

X is an MUS of φ ⇔ MSA is a sat assignment of ∀X .φ

Our approach first computes an MUS X and extracts an
MSA from a sat assignment of ∀X .φ

7 / 20

Maximum Universal Subset

Our algorithm exploits duality between MSAs
and maximum universal subsets (MUS)

An MUS for φ is a set of variables X s.t.:

1 ∀X .φ is satisfiable

2 X maximizes cost function C

MSA
MUS

X is an MUS of φ ⇔ MSA is a sat assignment of ∀X .φ

Our approach first computes an MUS X and extracts an
MSA from a sat assignment of ∀X .φ

7 / 20

Maximum Universal Subset

Our algorithm exploits duality between MSAs
and maximum universal subsets (MUS)

An MUS for φ is a set of variables X s.t.:

1 ∀X .φ is satisfiable

2 X maximizes cost function C

MSA
MUS

X is an MUS of φ ⇔ MSA is a sat assignment of ∀X .φ

Our approach first computes an MUS X and extracts an
MSA from a sat assignment of ∀X .φ

7 / 20

Maximum Universal Subset

Our algorithm exploits duality between MSAs
and maximum universal subsets (MUS)

An MUS for φ is a set of variables X s.t.:

1 ∀X .φ is satisfiable

2 X maximizes cost function C

MSA
MUS

X is an MUS of φ ⇔ MSA is a sat assignment of ∀X .φ

Our approach first computes an MUS X and extracts an
MSA from a sat assignment of ∀X .φ

7 / 20

Algorithm to Compute MUS

Recursive branch-and-bound
style algorithm with input:

Current formula φ

Cost function C

Remaining variables V

Lower bound L

L is used to prune the search

At each recursive call,
considers new variable x and
decides if x is in or out of MUS

We do this by comparing cost
of universal subsets with and
without x

8 / 20

Algorithm to Compute MUS

Recursive branch-and-bound
style algorithm with input:

Current formula φ

Cost function C

Remaining variables V

Lower bound L

L is used to prune the search

At each recursive call,
considers new variable x and
decides if x is in or out of MUS

We do this by comparing cost
of universal subsets with and
without x

8 / 20

Algorithm to Compute MUS

Recursive branch-and-bound
style algorithm with input:

Current formula φ

Cost function C

Remaining variables V

Lower bound L

L is used to prune the search

At each recursive call,
considers new variable x and
decides if x is in or out of MUS

We do this by comparing cost
of universal subsets with and
without x

8 / 20

Algorithm to Compute MUS

Recursive branch-and-bound
style algorithm with input:

Current formula φ

Cost function C

Remaining variables V

Lower bound L

L is used to prune the search

At each recursive call,
considers new variable x and
decides if x is in or out of MUS

We do this by comparing cost
of universal subsets with and
without x

8 / 20

Algorithm to Compute MUS

Recursive branch-and-bound
style algorithm with input:

Current formula φ

Cost function C

Remaining variables V

Lower bound L

L is used to prune the search

At each recursive call,
considers new variable x and
decides if x is in or out of MUS

We do this by comparing cost
of universal subsets with and
without x

8 / 20

Algorithm to Compute MUS

Recursive branch-and-bound
style algorithm with input:

Current formula φ

Cost function C

Remaining variables V

Lower bound L

L is used to prune the search

At each recursive call,
considers new variable x and
decides if x is in or out of MUS

We do this by comparing cost
of universal subsets with and
without x

8 / 20

Algorithm to Compute MUS

Recursive branch-and-bound
style algorithm with input:

Current formula φ

Cost function C

Remaining variables V

Lower bound L

L is used to prune the search

At each recursive call,
considers new variable x and
decides if x is in or out of MUS

We do this by comparing cost
of universal subsets with and
without x

8 / 20

Algorithm to Compute MUS

Recursive branch-and-bound
style algorithm with input:

Current formula φ

Cost function C

Remaining variables V

Lower bound L

L is used to prune the search

At each recursive call,
considers new variable x and
decides if x is in or out of MUS

We do this by comparing cost
of universal subsets with and
without x

8 / 20

Algorithm to Compute MUS, cont.

First, check if possible to
include x is in universal subset

If so, recursively compute cost
of universal subset containing x

If cost of current universal
subset is better than previous
best cost, update lower bound

Next, compute cost of universal
subset not containing x

Compare the two costs and
return whichever is best

9 / 20

Algorithm to Compute MUS, cont.

First, check if possible to
include x is in universal subset

If so, recursively compute cost
of universal subset containing x

If cost of current universal
subset is better than previous
best cost, update lower bound

Next, compute cost of universal
subset not containing x

Compare the two costs and
return whichever is best

9 / 20

Algorithm to Compute MUS, cont.

First, check if possible to
include x is in universal subset

If so, recursively compute cost
of universal subset containing x

If cost of current universal
subset is better than previous
best cost, update lower bound

Next, compute cost of universal
subset not containing x

Compare the two costs and
return whichever is best

9 / 20

Algorithm to Compute MUS, cont.

First, check if possible to
include x is in universal subset

If so, recursively compute cost
of universal subset containing x

If cost of current universal
subset is better than previous
best cost, update lower bound

Next, compute cost of universal
subset not containing x

Compare the two costs and
return whichever is best

9 / 20

Algorithm to Compute MUS, cont.

First, check if possible to
include x is in universal subset

If so, recursively compute cost
of universal subset containing x

If cost of current universal
subset is better than previous
best cost, update lower bound

Next, compute cost of universal
subset not containing x

Compare the two costs and
return whichever is best

9 / 20

Discussion of Algorithm

This algorithm is branch-and-bound style

Branches on whether a given variable is in
or out of MUS

Bounds search by checking if current max
possible cost cannot improve previous
estimate

Also bounds search by checking when
∀X .φ becomes unsat

These two pruning strategies eliminate
many search paths, but still exponential

To make algorithm practical, must
consider more optimizations

10 / 20

Discussion of Algorithm

This algorithm is branch-and-bound style

Branches on whether a given variable is in
or out of MUS

Bounds search by checking if current max
possible cost cannot improve previous
estimate

Also bounds search by checking when
∀X .φ becomes unsat

These two pruning strategies eliminate
many search paths, but still exponential

To make algorithm practical, must
consider more optimizations

10 / 20

Discussion of Algorithm

This algorithm is branch-and-bound style

Branches on whether a given variable is in
or out of MUS

Bounds search by checking if current max
possible cost cannot improve previous
estimate

Also bounds search by checking when
∀X .φ becomes unsat

These two pruning strategies eliminate
many search paths, but still exponential

To make algorithm practical, must
consider more optimizations

Cost(V) < L

10 / 20

Discussion of Algorithm

This algorithm is branch-and-bound style

Branches on whether a given variable is in
or out of MUS

Bounds search by checking if current max
possible cost cannot improve previous
estimate

Also bounds search by checking when
∀X .φ becomes unsat

These two pruning strategies eliminate
many search paths, but still exponential

To make algorithm practical, must
consider more optimizations

Cost(V) < L

10 / 20

Discussion of Algorithm

This algorithm is branch-and-bound style

Branches on whether a given variable is in
or out of MUS

Bounds search by checking if current max
possible cost cannot improve previous
estimate

Also bounds search by checking when
∀X .φ becomes unsat

These two pruning strategies eliminate
many search paths, but still exponential

To make algorithm practical, must
consider more optimizations

Cost(V) < L

10 / 20

Discussion of Algorithm

This algorithm is branch-and-bound style

Branches on whether a given variable is in
or out of MUS

Bounds search by checking if current max
possible cost cannot improve previous
estimate

Also bounds search by checking when
∀X .φ becomes unsat

These two pruning strategies eliminate
many search paths, but still exponential

To make algorithm practical, must
consider more optimizations

Cost(V) < L

10 / 20

Improvements over Basic Algorithm

Two important ways to improve over basic algorithm:

1 Initial cost estimate

Basic algorithm initially sets lower bound on MUS cost to 0

Improves as algorithm progresses, but initially ineffective

If we can “quickly” compute a better initial lower bound
estimate, pruning can be much more effective

2 Variable order

Basic algorithm chooses variables randomly

But some variable orders much better than others

Turns out better to consider variables likely to be in MSA first

11 / 20

Improvements over Basic Algorithm

Two important ways to improve over basic algorithm:

1 Initial cost estimate

Basic algorithm initially sets lower bound on MUS cost to 0

Improves as algorithm progresses, but initially ineffective

If we can “quickly” compute a better initial lower bound
estimate, pruning can be much more effective

2 Variable order

Basic algorithm chooses variables randomly

But some variable orders much better than others

Turns out better to consider variables likely to be in MSA first

11 / 20

Improvements over Basic Algorithm

Two important ways to improve over basic algorithm:

1 Initial cost estimate

Basic algorithm initially sets lower bound on MUS cost to 0

Improves as algorithm progresses, but initially ineffective

If we can “quickly” compute a better initial lower bound
estimate, pruning can be much more effective

2 Variable order

Basic algorithm chooses variables randomly

But some variable orders much better than others

Turns out better to consider variables likely to be in MSA first

11 / 20

Improvements over Basic Algorithm

Two important ways to improve over basic algorithm:

1 Initial cost estimate

Basic algorithm initially sets lower bound on MUS cost to 0

Improves as algorithm progresses, but initially ineffective

If we can “quickly” compute a better initial lower bound
estimate, pruning can be much more effective

2 Variable order

Basic algorithm chooses variables randomly

But some variable orders much better than others

Turns out better to consider variables likely to be in MSA first

11 / 20

Improvements over Basic Algorithm

Two important ways to improve over basic algorithm:

1 Initial cost estimate

Basic algorithm initially sets lower bound on MUS cost to 0

Improves as algorithm progresses, but initially ineffective

If we can “quickly” compute a better initial lower bound
estimate, pruning can be much more effective

2 Variable order

Basic algorithm chooses variables randomly

But some variable orders much better than others

Turns out better to consider variables likely to be in MSA first

11 / 20

Improvements over Basic Algorithm

Two important ways to improve over basic algorithm:

1 Initial cost estimate

Basic algorithm initially sets lower bound on MUS cost to 0

Improves as algorithm progresses, but initially ineffective

If we can “quickly” compute a better initial lower bound
estimate, pruning can be much more effective

2 Variable order

Basic algorithm chooses variables randomly

But some variable orders much better than others

Turns out better to consider variables likely to be in MSA first

11 / 20

Improvements over Basic Algorithm

Two important ways to improve over basic algorithm:

1 Initial cost estimate

Basic algorithm initially sets lower bound on MUS cost to 0

Improves as algorithm progresses, but initially ineffective

If we can “quickly” compute a better initial lower bound
estimate, pruning can be much more effective

2 Variable order

Basic algorithm chooses variables randomly

But some variable orders much better than others

Turns out better to consider variables likely to be in MSA first

11 / 20

Improvements over Basic Algorithm

Two important ways to improve over basic algorithm:

1 Initial cost estimate

Basic algorithm initially sets lower bound on MUS cost to 0

Improves as algorithm progresses, but initially ineffective

If we can “quickly” compute a better initial lower bound
estimate, pruning can be much more effective

2 Variable order

Basic algorithm chooses variables randomly

But some variable orders much better than others

Turns out better to consider variables likely to be in MSA first

11 / 20

Finding Initial Cost and Variable Order

If we can find good approximation for MSA, can
obtain good initial cost and variable order for MUS

MUS Cost = Cost of free vars - MSA cost

Thus, good estimate on MSA cost gives good
estimate on MUS cost

Good approximate MSA gives good variable order
b/c if x is in MSA, ∀x .φ more likely unsat

MSA
MUS

How can we "quickly" find good
enough approximate MSA?

12 / 20

Finding Initial Cost and Variable Order

If we can find good approximation for MSA, can
obtain good initial cost and variable order for MUS

MUS Cost = Cost of free vars - MSA cost

Thus, good estimate on MSA cost gives good
estimate on MUS cost

Good approximate MSA gives good variable order
b/c if x is in MSA, ∀x .φ more likely unsat

MSA
MUS

How can we "quickly" find good
enough approximate MSA?

12 / 20

Finding Initial Cost and Variable Order

If we can find good approximation for MSA, can
obtain good initial cost and variable order for MUS

MUS Cost = Cost of free vars - MSA cost

Thus, good estimate on MSA cost gives good
estimate on MUS cost

Good approximate MSA gives good variable order
b/c if x is in MSA, ∀x .φ more likely unsat

MSA
MUS

How can we "quickly" find good
enough approximate MSA?

12 / 20

Finding Initial Cost and Variable Order

If we can find good approximation for MSA, can
obtain good initial cost and variable order for MUS

MUS Cost = Cost of free vars - MSA cost

Thus, good estimate on MSA cost gives good
estimate on MUS cost

Good approximate MSA gives good variable order
b/c if x is in MSA, ∀x .φ more likely unsat

MSA
MUS

How can we "quickly" find good
enough approximate MSA?

12 / 20

Finding Initial Cost and Variable Order

If we can find good approximation for MSA, can
obtain good initial cost and variable order for MUS

MUS Cost = Cost of free vars - MSA cost

Thus, good estimate on MSA cost gives good
estimate on MUS cost

Good approximate MSA gives good variable order
b/c if x is in MSA, ∀x .φ more likely unsat

MSA
MUS

How can we "quickly" find good
enough approximate MSA?

12 / 20

Approximate MSA from Prime Implicants

Use min prime implicant to boolean
structure of formula to approximate MSA

Prime implicant of boolean formula is
conjunction of literals that implies it

First, compute φ+ by replacing every
literal in φ by boolean variable

Extend techniques for computing MinPI
to find a theory-satisfiable MinPI

Theory-sat PI implies boolean structure of
formula and is satisfiable modulo theory

Approximate MSA as variables in MinPI

SMT

MSA

SAT

MinPI

13 / 20

Approximate MSA from Prime Implicants

Use min prime implicant to boolean
structure of formula to approximate MSA

Prime implicant of boolean formula is
conjunction of literals that implies it

First, compute φ+ by replacing every
literal in φ by boolean variable

Extend techniques for computing MinPI
to find a theory-satisfiable MinPI

Theory-sat PI implies boolean structure of
formula and is satisfiable modulo theory

Approximate MSA as variables in MinPI

SMT

MSA

SAT

MinPI

13 / 20

Approximate MSA from Prime Implicants

Use min prime implicant to boolean
structure of formula to approximate MSA

Prime implicant of boolean formula is
conjunction of literals that implies it

First, compute φ+ by replacing every
literal in φ by boolean variable

Extend techniques for computing MinPI
to find a theory-satisfiable MinPI

Theory-sat PI implies boolean structure of
formula and is satisfiable modulo theory

Approximate MSA as variables in MinPI

SMT

MSA

SAT

MinPI

13 / 20

Approximate MSA from Prime Implicants

Use min prime implicant to boolean
structure of formula to approximate MSA

Prime implicant of boolean formula is
conjunction of literals that implies it

First, compute φ+ by replacing every
literal in φ by boolean variable

Extend techniques for computing MinPI
to find a theory-satisfiable MinPI

Theory-sat PI implies boolean structure of
formula and is satisfiable modulo theory

Approximate MSA as variables in MinPI

SMT

MSA

SAT

MinPI

13 / 20

Approximate MSA from Prime Implicants

Use min prime implicant to boolean
structure of formula to approximate MSA

Prime implicant of boolean formula is
conjunction of literals that implies it

First, compute φ+ by replacing every
literal in φ by boolean variable

Extend techniques for computing MinPI
to find a theory-satisfiable MinPI

Theory-sat PI implies boolean structure of
formula and is satisfiable modulo theory

Approximate MSA as variables in MinPI

SMT

MSA

SAT

MinPI

13 / 20

Approximate MSA from Prime Implicants

Use min prime implicant to boolean
structure of formula to approximate MSA

Prime implicant of boolean formula is
conjunction of literals that implies it

First, compute φ+ by replacing every
literal in φ by boolean variable

Extend techniques for computing MinPI
to find a theory-satisfiable MinPI

Theory-sat PI implies boolean structure of
formula and is satisfiable modulo theory

Approximate MSA as variables in MinPI

SMT

MSA

SAT

MinPI

13 / 20

Summary of First Optimization

Optimize basic B&B algorithm by
finding good lower bound estimate
on MUS and variable order

To find good estimate and variable
order, compute approximate MSA

Approximate MSA is obtained from
theory-satisfiable min PI of boolean
structure

SAT

MinPI

Approximate
 MSA

 Cost
estimate

Variable
 order

x5

x1

x2

 Better
pruning

14 / 20

Summary of First Optimization

Optimize basic B&B algorithm by
finding good lower bound estimate
on MUS and variable order

To find good estimate and variable
order, compute approximate MSA

Approximate MSA is obtained from
theory-satisfiable min PI of boolean
structure

SAT

MinPI

Approximate
 MSA

 Cost
estimate

Variable
 order

x5

x1

x2

 Better
pruning

14 / 20

Summary of First Optimization

Optimize basic B&B algorithm by
finding good lower bound estimate
on MUS and variable order

To find good estimate and variable
order, compute approximate MSA

Approximate MSA is obtained from
theory-satisfiable min PI of boolean
structure

SAT

MinPI

Approximate
 MSA

 Cost
estimate

Variable
 order

x5

x1

x2

 Better
pruning

14 / 20

Another Improvement: Non-Universal Subsets

Suppose we knew a set of variables V is a non-universal set
(i.e., ∀V .φ is UNSAT)

Can use non-universal subsets to improve algorithm because
can avoid branching without SAT(∀X .φ) check

Furthermore, if V is a non-universal subset of implicate of φ,
it is also non-universal subset of of φ.

How can we "quickly" find implicates
with small non-universal subsets?

15 / 20

Another Improvement: Non-Universal Subsets

Suppose we knew a set of variables V is a non-universal set
(i.e., ∀V .φ is UNSAT)

Can use non-universal subsets to improve algorithm because
can avoid branching without SAT(∀X .φ) check

Furthermore, if V is a non-universal subset of implicate of φ,
it is also non-universal subset of of φ.

How can we "quickly" find implicates
with small non-universal subsets?

15 / 20

Another Improvement: Non-Universal Subsets

Suppose we knew a set of variables V is a non-universal set
(i.e., ∀V .φ is UNSAT)

Can use non-universal subsets to improve algorithm because
can avoid branching without SAT(∀X .φ) check

Furthermore, if V is a non-universal subset of implicate of φ,
it is also non-universal subset of of φ.

How can we "quickly" find implicates
with small non-universal subsets?

15 / 20

Another Improvement: Non-Universal Subsets

Suppose we knew a set of variables V is a non-universal set
(i.e., ∀V .φ is UNSAT)

Can use non-universal subsets to improve algorithm because
can avoid branching without SAT(∀X .φ) check

Furthermore, if V is a non-universal subset of implicate of φ,
it is also non-universal subset of of φ.

How can we "quickly" find implicates
with small non-universal subsets?

15 / 20

Finding Non-Universal Subsets

For complete theories, such as Presburger
arithmetic, if ¬ψ sat, then ∀free(ψ).ψ unsat

Thus, if ψ is an implicate of φ whose
negation is sat, free(ψ) is a non-universal set

Can quickly find implicates with this property
from boolean structure of simplified form

When all variables in ψ are ∀-quantified,
backtrack without checking satisfiability

UNSAT!

x1 x7

x4x10

16 / 20

Finding Non-Universal Subsets

For complete theories, such as Presburger
arithmetic, if ¬ψ sat, then ∀free(ψ).ψ unsat

Thus, if ψ is an implicate of φ whose
negation is sat, free(ψ) is a non-universal set

Can quickly find implicates with this property
from boolean structure of simplified form

When all variables in ψ are ∀-quantified,
backtrack without checking satisfiability

UNSAT!

x1 x7

x4x10

16 / 20

Finding Non-Universal Subsets

For complete theories, such as Presburger
arithmetic, if ¬ψ sat, then ∀free(ψ).ψ unsat

Thus, if ψ is an implicate of φ whose
negation is sat, free(ψ) is a non-universal set

Can quickly find implicates with this property
from boolean structure of simplified form

When all variables in ψ are ∀-quantified,
backtrack without checking satisfiability

UNSAT!

x1 x7

x4x10

16 / 20

Finding Non-Universal Subsets

For complete theories, such as Presburger
arithmetic, if ¬ψ sat, then ∀free(ψ).ψ unsat

Thus, if ψ is an implicate of φ whose
negation is sat, free(ψ) is a non-universal set

Can quickly find implicates with this property
from boolean structure of simplified form

When all variables in ψ are ∀-quantified,
backtrack without checking satisfiability

UNSAT!

x1 x7

x4x10

16 / 20

Experimental Evaluation

Implemented algorithm in Mistral SMT solver

Evaluated algorithm on 400 Presburger arithmetic formulas

Formulas taken from static analysis tool that uses MSAs for
performing abduction, in turn used for diagnosing error reports

Formulas contain up to 40 variables and several hundred
boolean connectives

17 / 20

Experimental Evaluation

Implemented algorithm in Mistral SMT solver

Evaluated algorithm on 400 Presburger arithmetic formulas

Formulas taken from static analysis tool that uses MSAs for
performing abduction, in turn used for diagnosing error reports

Formulas contain up to 40 variables and several hundred
boolean connectives

17 / 20

Experimental Evaluation

Implemented algorithm in Mistral SMT solver

Evaluated algorithm on 400 Presburger arithmetic formulas

Formulas taken from static analysis tool that uses MSAs for
performing abduction, in turn used for diagnosing error reports

Formulas contain up to 40 variables and several hundred
boolean connectives

17 / 20

Experimental Evaluation

Implemented algorithm in Mistral SMT solver

Evaluated algorithm on 400 Presburger arithmetic formulas

Formulas taken from static analysis tool that uses MSAs for
performing abduction, in turn used for diagnosing error reports

Formulas contain up to 40 variables and several hundred
boolean connectives

17 / 20

Experimental Results

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40

T
im

e
 (

s)

Number of variables

Basic (no opt)
Basic + min. implicants

Basic + non-univ-subsets
Both optimizations

Basic algorithm very
sensitive to # vars

Optimizations have
dramatic impact on
performance

Optimized version
grows slowly in # of
variables

Even with both optimizations, computing MSAs 25 times more
expensive than checking satisfiability

18 / 20

Experimental Results

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40

T
im

e
 (

s)

Number of variables

Basic (no opt)
Basic + min. implicants

Basic + non-univ-subsets
Both optimizations

Basic algorithm very
sensitive to # vars

Optimizations have
dramatic impact on
performance

Optimized version
grows slowly in # of
variables

Even with both optimizations, computing MSAs 25 times more
expensive than checking satisfiability

18 / 20

Experimental Results

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40

T
im

e
 (

s)

Number of variables

Basic (no opt)
Basic + min. implicants

Basic + non-univ-subsets
Both optimizations

Basic algorithm very
sensitive to # vars

Optimizations have
dramatic impact on
performance

Optimized version
grows slowly in # of
variables

Even with both optimizations, computing MSAs 25 times more
expensive than checking satisfiability

18 / 20

Experimental Results

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40

T
im

e
 (

s)

Number of variables

Basic (no opt)
Basic + min. implicants

Basic + non-univ-subsets
Both optimizations

Basic algorithm very
sensitive to # vars

Optimizations have
dramatic impact on
performance

Optimized version
grows slowly in # of
variables

Even with both optimizations, computing MSAs 25 times more
expensive than checking satisfiability

18 / 20

Experimental Results

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40

T
im

e
 (

s)

Number of variables

Basic (no opt)
Basic + min. implicants

Basic + non-univ-subsets
Both optimizations

Basic algorithm very
sensitive to # vars

Optimizations have
dramatic impact on
performance

Optimized version
grows slowly in # of
variables

Even with both optimizations, computing MSAs 25 times more
expensive than checking satisfiability

18 / 20

Experimental Results, cont.

0

5

10

15

20

25

30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
 (

s)

MSA size / # vars

Basic (no opt)
Basic + min. implicants

Basic + non-univ-subsets
Both optimizations

Problem easier if #
vars in MSA very
small or very large

Problem hardest for
formulas when ratio
of vars in MSA to
free vars is ≈ 0.6

19 / 20

Experimental Results, cont.

0

5

10

15

20

25

30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
 (

s)

MSA size / # vars

Basic (no opt)
Basic + min. implicants

Basic + non-univ-subsets
Both optimizations

Problem easier if #
vars in MSA very
small or very large

Problem hardest for
formulas when ratio
of vars in MSA to
free vars is ≈ 0.6

19 / 20

Experimental Results, cont.

0

5

10

15

20

25

30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
 (

s)

MSA size / # vars

Basic (no opt)
Basic + min. implicants

Basic + non-univ-subsets
Both optimizations

Problem easier if #
vars in MSA very
small or very large

Problem hardest for
formulas when ratio
of vars in MSA to
free vars is ≈ 0.6

19 / 20

Summary

First algorithm for finding MSAs of
SMT formulas

Recursive branch-and-bound style
algorithm with two crucial optimizations

MSAs can be computed in reasonable
time for a set of benchmakrs obtained
from static analysis

But finding MSAs much more expensive
than finding full sat assignment

We believe significant improvements are
still possible

20 / 20

