Minimum Satisfying Assignments for SMT

Işıl Dillig, Tom Dillig College of William & Mary

Ken McMillan A Microsoft Research St

Alex Aiken Stanford U.

Satisfiability Modulo Theories (SMT)

• Today, SMT solvers are underlying engine of most verification and program analysis tools

Satisfiability Modulo Theories (SMT)

 Today, SMT solvers are underlying engine of most verification and program analysis tools

Satisfiability Modulo Theories (SMT)

• Today, SMT solvers are underlying engine of most verification and program analysis tools

• An assignment σ for formula ϕ is a mapping from free variables of ϕ to values

 Satisfying assignments provided SMT solver are full assignments ⇒ assign every free variable to a value

- Satisfying assignments provided SMT solver are full assignments ⇒ assign every free variable to a value
- But sometimes we want partial satisfying assignments

- Satisfying assignments provided SMT solver are full assignments ⇒ assign every free variable to a value
- But sometimes we want partial satisfying assignments
- A partial satisfying assignment only assigns values to a subset of free variables, but is sufficient to make formula true

- Satisfying assignments provided SMT solver are full assignments ⇒ assign every free variable to a value
- But sometimes we want partial satisfying assignments
- A partial satisfying assignment only assigns values to a subset of free variables, but is sufficient to make formula true
- For formula $x < 0 \lor x + y \ge 0$, x = -1 is a partial satisfying assignment

Minimum Satisfying Assignments (MSA)

 Given cost function C from variables to costs, minimum sat assignment (MSA) is a partial sat assignment minimizing C

- Given cost function C from variables to costs, minimum sat assignment (MSA) is a partial sat assignment minimizing C
- Observe: Cost of assignment does not depend on values, but only to variables used in assignment!

- Given cost function C from variables to costs, minimum sat assignment (MSA) is a partial sat assignment minimizing C
- Observe: Cost of assignment does not depend on values, but only to variables used in assignment!
- Assignments x = 1 and x = 50 have same cost

- Given cost function C from variables to costs, minimum sat assignment (MSA) is a partial sat assignment minimizing C
- Observe: Cost of assignment does not depend on values, but only to variables used in assignment!
- Assignments x = 1 and x = 50 have same cost
- If variables have equal cost, an MSA is partial sat assignment with fewest variables

Example and Applications

• Consider cost function assigning every variable to 1 and Presburger arithmetic formula:

 $\phi: x + y + w > 0 \lor x + y + z + w < 5$

Example and Applications

• Consider cost function assigning every variable to 1 and Presburger arithmetic formula:

 $\phi: x + y + w > 0 \lor x + y + z + w < 5$

• A minimum sat assignment for ϕ is z = 0

Example and Applications

• Consider cost function assigning every variable to 1 and Presburger arithmetic formula:

 $\phi: x + y + w > 0 \lor x + y + z + w < 5$

• A minimum sat assignment for ϕ is z = 0

MSAs have many applications in verification:

- ✓ Finding small counterexamples in BMC
- ✓ Classifying and diagnosing error reports
- ✓ Abductive inference
- \checkmark Minimizing # of predicates in pred abstraction

In propositional logic, MSAs known as min-sized prime implicants

- In propositional logic, MSAs known as min-sized prime implicants
- Known algorithms for computing min prime implicants

- In propositional logic, MSAs known as min-sized prime implicants
- Known algorithms for computing min prime implicants
- No work on computing MSAs for richer theories

- In propositional logic, MSAs known as min-sized prime implicants
- Known algorithms for computing min prime implicants
- No work on computing MSAs for richer theories

• Our algorithm exploits duality between MSAs and maximum universal subsets (MUS)

- Our algorithm exploits duality between MSAs and maximum universal subsets (MUS)
- An MUS for ϕ is a set of variables X s.t.:

- Our algorithm exploits duality between MSAs and maximum universal subsets (MUS)
- An MUS for ϕ is a set of variables X s.t.:

• $\forall X.\phi$ is satisfiable

- Our algorithm exploits duality between MSAs and maximum universal subsets (MUS)
- An MUS for ϕ is a set of variables X s.t.:
 - **1** $\forall X.\phi$ is satisfiable
 - **2** X maximizes cost function C

- Our algorithm exploits duality between MSAs and maximum universal subsets (MUS)
- An MUS for ϕ is a set of variables X s.t.:
 - $\forall X.\phi$ is satisfiable
 - **2** X maximizes cost function C

X is an MUS of $\phi \iff$ MSA is a sat assignment of $\forall X.\phi$

- Our algorithm exploits duality between MSAs and maximum universal subsets (MUS)
- An MUS for ϕ is a set of variables X s.t.:
 - **1** $\forall X.\phi$ is satisfiable
 - **2** X maximizes cost function C

X is an MUS of $\phi \Leftrightarrow$ MSA is a sat assignment of $\forall X.\phi$

Our approach first computes an MUS X and extracts an MSA from a sat assignment of $\forall X.\phi$

• Recursive branch-and-bound style algorithm with input:

find_mus($\phi,\,C,\,V,\,L)$ {

- Recursive branch-and-bound style algorithm with input:
 - $\bullet~{\rm Current}$ formula ϕ

find_mus(ϕ , C, V, L) {

- Recursive branch-and-bound style algorithm with input:
 - $\bullet~{\rm Current}$ formula ϕ
 - Cost function C

find_mus(ϕ , C, V, L) {

- Recursive branch-and-bound style algorithm with input:
 - $\bullet~{\rm Current}$ formula ϕ
 - Cost function C
 - Remaining variables ${\it V}$

find_mus(ϕ , C, V, L) {

- Recursive branch-and-bound style algorithm with input:
 - $\bullet~{\rm Current}$ formula ϕ
 - Cost function C
 - Remaining variables ${\it V}$
 - Lower bound L

find_mus(ϕ , C, V, L) {

- Recursive branch-and-bound style algorithm with input:
 - $\bullet~{\rm Current}$ formula ϕ
 - Cost function C
 - Remaining variables ${\it V}$
 - Lower bound L
- L is used to prune the search

find_mus(ϕ , C, V, L) { If $V = \emptyset$ or $C(V) \leq L$ return \emptyset

- Recursive branch-and-bound style algorithm with input:
 - Current formula ϕ
 - Cost function C
 - Remaining variables ${\it V}$
 - Lower bound L
- L is used to prune the search
- At each recursive call, considers new variable x and decides if x is in or out of MUS

 $\begin{array}{l} \operatorname{find_mus}(\phi,\,C,\,V,\,L) \ \{ \\ & \operatorname{If}\,V = \emptyset \text{ or } C(V) \leq L \ \, \operatorname{return}\, \emptyset \\ & \operatorname{Set \ best} = \emptyset \\ & \operatorname{choose}\, x \in V \\ & V' = V \backslash \{x\} \end{array}$

- Recursive branch-and-bound style algorithm with input:
 - Current formula ϕ
 - Cost function C
 - Remaining variables ${\it V}$
 - $\bullet~$ Lower bound L
- L is used to prune the search
- At each recursive call, considers new variable x and decides if x is in or out of MUS
- We do this by comparing cost of universal subsets with and without x

$$\begin{split} & \text{find_mus}(\phi,\,C,\,V,\,L) \ \{ & \text{If } V = \emptyset \text{ or } C(V) \leq L \ \text{ return } \emptyset \\ & \text{Set best} = \emptyset \\ & \text{choose } x \in V \\ & V' = V \backslash \{x\} \end{split}$$

Algorithm to Compute MUS, cont.

• First, check if possible to include x is in universal subset

find_mus(ϕ , C, V, L) { If $V = \emptyset$ or $C(V) \le L$ return \emptyset Set best = \emptyset choose $x \in V$ $V' = V \setminus \{x\}$ if(SAT($\forall x.\phi$)) {

}

Algorithm to Compute MUS, cont.

- First, check if possible to include x is in universal subset
- If so, recursively compute cost of universal subset containing *x*

$$\begin{split} & \text{find_mus}(\phi, \, C, \, V, \, L) \ \{ & \text{If } V = \emptyset \text{ or } C(V) \leq L \ \text{ return } \emptyset \\ & \text{Set best} = \emptyset \\ & \text{choose } x \in V \\ & V' = V \backslash \{x\} \\ & \text{if}(\text{SAT}(\forall x.\phi)) \ \{ \\ & \text{Set } Y = \text{find_mus}(\forall x.\phi, \, C, \, V' \, L - C(x)); \end{split}$$

}
Algorithm to Compute MUS, cont.

}

- First, check if possible to include x is in universal subset
- If so, recursively compute cost of universal subset containing *x*
- If cost of current universal subset is better than previous best cost, update lower bound

```
 \begin{split} & \text{find\_mus}(\phi, C, V, L) \ \{ & \text{If } V = \emptyset \text{ or } C(V) \leq L \ \text{ return } \emptyset \\ & \text{Set best} = \emptyset \\ & \text{choose } x \in V \\ & V' = V \setminus \{x\} \\ & \text{if}(\text{SAT}(\forall x.\phi)) \ \{ & \text{Set } Y = \text{find\_mus}(\forall x.\phi, C, V' \ L - C(x)); \\ & \text{Int } \cot x = C(Y) + C(x) \\ & \text{If } (\cot x > L) \ \{ \text{ best} = Y \cup \{x\}; \ L = \cot \ \} \\ \\ & \} \end{split}
```

Algorithm to Compute MUS, cont.

- First, check if possible to include x is in universal subset
- If so, recursively compute cost of universal subset containing *x*
- If cost of current universal subset is better than previous best cost, update lower bound
- Next, compute cost of universal subset not containing *x*

}

 $\begin{aligned} & \text{find_mus}(\phi, C, V, L) \ \{ \\ & \text{If } V = \emptyset \text{ or } C(V) \leq L \ \text{ return } \emptyset \\ & \text{Set best} = \emptyset \\ & \text{choose } x \in V \\ & V' = V \setminus \{x\} \\ & \text{if}(\text{SAT}(\forall x.\phi)) \ \{ \\ & \text{Set } Y = \text{find_mus}(\forall x.\phi, C, V' \ L - C(x)); \\ & \text{Int } \text{cost} = C(Y) + C(x) \\ & \text{If } (\text{cost} > L) \ \{ \text{ best} = Y \cup \{x\}; L = \text{cost } \} \\ & \text{} \\ \\ & \text{Set } Y = \text{find_mus}(\phi, C, V', L); \end{aligned}$

Algorithm to Compute MUS, cont.

- First, check if possible to include x is in universal subset
- If so, recursively compute cost of universal subset containing *x*
- If cost of current universal subset is better than previous best cost, update lower bound
- Next, compute cost of universal subset not containing *x*
- Compare the two costs and return whichever is best

find_mus(ϕ , C, V, L) { If $V = \emptyset$ or $C(V) \le L$ return \emptyset Set best $= \emptyset$ choose $x \in V$ $V' = V \setminus \{x\}$ if $(SAT(\forall x.\phi))$ { Set $Y = \text{find}_{\text{mus}}(\forall x.\phi, C, V' L - C(x));$ Int cost = C(Y) + C(x)If $(\cos t > L)$ { best = $Y \cup \{x\}$; $L = \cos t$ } Set $Y = \operatorname{find_mus}(\phi, C, V', L);$ If (C(Y) > L) { best = Y } return best:

• This algorithm is branch-and-bound style

- This algorithm is branch-and-bound style
- Branches on whether a given variable is in or out of MUS

- This algorithm is branch-and-bound style
- Branches on whether a given variable is in or out of MUS
- Bounds search by checking if current max possible cost cannot improve previous estimate

- This algorithm is branch-and-bound style
- Branches on whether a given variable is in or out of MUS
- Bounds search by checking if current max possible cost cannot improve previous estimate
- Also bounds search by checking when $\forall X.\phi$ becomes unsat

- This algorithm is branch-and-bound style
- Branches on whether a given variable is in or out of MUS
- Bounds search by checking if current max possible cost cannot improve previous estimate
- Also bounds search by checking when $\forall X.\phi$ becomes unsat
- These two pruning strategies eliminate many search paths, but still exponential

- This algorithm is branch-and-bound style
- Branches on whether a given variable is in or out of MUS
- Bounds search by checking if current max possible cost cannot improve previous estimate
- Also bounds search by checking when $\forall X.\phi$ becomes unsat
- These two pruning strategies eliminate many search paths, but still exponential
- To make algorithm practical, must consider more optimizations

Improvements over Basic Algorithm

Two important ways to improve over basic algorithm:

Initial cost estimate

- Initial cost estimate
 - $\bullet\,$ Basic algorithm initially sets lower bound on MUS cost to 0

- Initial cost estimate
 - $\bullet\,$ Basic algorithm initially sets lower bound on MUS cost to 0
 - Improves as algorithm progresses, but initially ineffective

- Initial cost estimate
 - $\bullet\,$ Basic algorithm initially sets lower bound on MUS cost to 0
 - Improves as algorithm progresses, but initially ineffective
 - If we can "quickly" compute a better initial lower bound estimate, pruning can be much more effective

- Initial cost estimate
 - $\bullet\,$ Basic algorithm initially sets lower bound on MUS cost to 0
 - Improves as algorithm progresses, but initially ineffective
 - If we can "quickly" compute a better initial lower bound estimate, pruning can be much more effective

Variable order

Initial cost estimate

- $\bullet\,$ Basic algorithm initially sets lower bound on MUS cost to 0
- Improves as algorithm progresses, but initially ineffective
- If we can "quickly" compute a better initial lower bound estimate, pruning can be much more effective

② Variable order

• Basic algorithm chooses variables randomly

Initial cost estimate

- $\bullet\,$ Basic algorithm initially sets lower bound on MUS cost to 0
- Improves as algorithm progresses, but initially ineffective
- If we can "quickly" compute a better initial lower bound estimate, pruning can be much more effective

Variable order

- Basic algorithm chooses variables randomly
- But some variable orders much better than others

Initial cost estimate

- $\bullet\,$ Basic algorithm initially sets lower bound on MUS cost to 0
- Improves as algorithm progresses, but initially ineffective
- If we can "quickly" compute a better initial lower bound estimate, pruning can be much more effective

Variable order

- Basic algorithm chooses variables randomly
- But some variable orders much better than others
- Turns out better to consider variables likely to be in MSA first

• If we can find good approximation for MSA, can obtain good initial cost and variable order for MUS

- If we can find good approximation for MSA, can obtain good initial cost and variable order for MUS
- MUS Cost = Cost of free vars MSA cost

- If we can find good approximation for MSA, can obtain good initial cost and variable order for MUS
- MUS Cost = Cost of free vars MSA cost
- Thus, good estimate on MSA cost gives good estimate on MUS cost

- If we can find good approximation for MSA, can obtain good initial cost and variable order for MUS
- MUS Cost = Cost of free vars MSA cost
- Thus, good estimate on MSA cost gives good estimate on MUS cost
- Good approximate MSA gives good variable order b/c if x is in MSA, ∀x.φ more likely unsat

- If we can find good approximation for MSA, can obtain good initial cost and variable order for MUS
- MUS Cost = Cost of free vars MSA cost
- Thus, good estimate on MSA cost gives good estimate on MUS cost

 Good approximate MSA gives good variable order b/c if x is in MSA, ∀x.φ more likely unsat

• Use min prime implicant to boolean structure of formula to approximate MSA

- Use min prime implicant to boolean structure of formula to approximate MSA
- Prime implicant of boolean formula is conjunction of literals that implies it

- Use min prime implicant to boolean structure of formula to approximate MSA
- Prime implicant of boolean formula is conjunction of literals that implies it
- First, compute ϕ^+ by replacing every literal in ϕ by boolean variable

- Use min prime implicant to boolean structure of formula to approximate MSA
- Prime implicant of boolean formula is conjunction of literals that implies it
- First, compute ϕ^+ by replacing every literal in ϕ by boolean variable
- Extend techniques for computing MinPl to find a theory-satisfiable MinPl

- Use min prime implicant to boolean structure of formula to approximate MSA
- Prime implicant of boolean formula is conjunction of literals that implies it
- First, compute ϕ^+ by replacing every literal in ϕ by boolean variable
- Extend techniques for computing MinPl to find a theory-satisfiable MinPl
- Theory-sat PI implies boolean structure of formula and is satisfiable modulo theory

- Use min prime implicant to boolean structure of formula to approximate MSA
- Prime implicant of boolean formula is conjunction of literals that implies it
- First, compute ϕ^+ by replacing every literal in ϕ by boolean variable
- Extend techniques for computing MinPl to find a theory-satisfiable MinPl
- Theory-sat PI implies boolean structure of formula and is satisfiable modulo theory
- Approximate MSA as variables in MinPI

Summary of First Optimization

• Optimize basic B&B algorithm by finding good lower bound estimate on MUS and variable order

Summary of First Optimization

- Optimize basic B&B algorithm by finding good lower bound estimate on MUS and variable order
- To find good estimate and variable order, compute approximate MSA

Summary of First Optimization

- Optimize basic B&B algorithm by finding good lower bound estimate on MUS and variable order
- To find good estimate and variable order, compute approximate MSA
- Approximate MSA is obtained from theory-satisfiable min PI of boolean structure

 Suppose we knew a set of variables V is a non-universal set (i.e., ∀V.φ is UNSAT)

- Suppose we knew a set of variables V is a non-universal set (i.e., ∀V.φ is UNSAT)
- Can use non-universal subsets to improve algorithm because can avoid branching without SAT(∀X.φ) check

- Suppose we knew a set of variables V is a non-universal set (i.e., ∀V.φ is UNSAT)
- Can use non-universal subsets to improve algorithm because can avoid branching without SAT(∀X.φ) check
- Furthermore, if V is a non-universal subset of implicate of ϕ , it is also non-universal subset of of ϕ .

- Suppose we knew a set of variables V is a non-universal set (i.e., ∀V.φ is UNSAT)
- Can use non-universal subsets to improve algorithm because can avoid branching without SAT(∀X.φ) check
- Furthermore, if V is a non-universal subset of implicate of ϕ , it is also non-universal subset of of ϕ .

How can we "quickly" find implicates with small non-universal subsets?

• For complete theories, such as Presburger arithmetic, if $\neg \psi$ sat, then $\forall \text{free}(\psi).\psi$ unsat

Finding Non-Universal Subsets

- For complete theories, such as Presburger arithmetic, if ¬ψ sat, then ∀free(ψ).ψ unsat
- Thus, if ψ is an implicate of φ whose negation is sat, free(ψ) is a non-universal set

Finding Non-Universal Subsets

- For complete theories, such as Presburger arithmetic, if ¬ψ sat, then ∀free(ψ).ψ unsat
- Thus, if ψ is an implicate of φ whose negation is sat, free(ψ) is a non-universal set
- Can quickly find implicates with this property from boolean structure of simplified form

Finding Non-Universal Subsets

- For complete theories, such as Presburger arithmetic, if ¬ψ sat, then ∀free(ψ).ψ unsat
- Thus, if ψ is an implicate of φ whose negation is sat, free(ψ) is a non-universal set
- Can quickly find implicates with this property from boolean structure of simplified form
- When all variables in ψ are ∀-quantified, backtrack without checking satisfiability

• Implemented algorithm in Mistral SMT solver

- Implemented algorithm in Mistral SMT solver
- $\bullet\,$ Evaluated algorithm on 400 Presburger arithmetic formulas

- Implemented algorithm in Mistral SMT solver
- Evaluated algorithm on $400\ {\rm Presburger}$ arithmetic formulas
- Formulas taken from static analysis tool that uses MSAs for performing abduction, in turn used for diagnosing error reports

- Implemented algorithm in Mistral SMT solver
- Evaluated algorithm on $400\ {\rm Presburger}$ arithmetic formulas
- Formulas taken from static analysis tool that uses MSAs for performing abduction, in turn used for diagnosing error reports
- Formulas contain up to 40 variables and several hundred boolean connectives

• Basic algorithm very sensitive to # vars

- Basic algorithm very sensitive to # vars
- Optimizations have dramatic impact on performance

- Basic algorithm very sensitive to # vars
- Optimizations have dramatic impact on performance
- Optimized version grows slowly in # of variables

Even with both optimizations, computing MSAs 25 times more expensive than checking satisfiability

Experimental Results, cont.

Experimental Results, cont.

 Problem easier if # vars in MSA very small or very large

Experimental Results, cont.

- Problem easier if # vars in MSA very small or very large
- Problem hardest for formulas when ratio of vars in MSA to free vars is ≈ 0.6

Summary

- First algorithm for finding MSAs of SMT formulas
- Recursive branch-and-bound style algorithm with two crucial optimizations
- MSAs can be computed in reasonable time for a set of benchmakrs obtained from static analysis
- But finding MSAs much more expensive than finding full sat assignment
- We believe significant improvements are still possible

