

What is Abduction?

Abduction: Opposite of deduction

Deduction: Infers valid conclusion from premises

Abduction: Infers missing premise to explain a given
conclusion

Given known facts Γ and desired outcome φ, abductive
inference finds “simple” explanatory hypothesis ψ such that

Γ ∧ ψ |= φ and SAT(Γ ∧ ψ)

2 / 10

What is Abduction?

Abduction: Opposite of deduction

Deduction: Infers valid conclusion from premises

Abduction: Infers missing premise to explain a given
conclusion

Given known facts Γ and desired outcome φ, abductive
inference finds “simple” explanatory hypothesis ψ such that

Γ ∧ ψ |= φ and SAT(Γ ∧ ψ)

2 / 10

What is Abduction?

Abduction: Opposite of deduction

Deduction: Infers valid conclusion from premises

Abduction: Infers missing premise to explain a given
conclusion

Given known facts Γ and desired outcome φ, abductive
inference finds “simple” explanatory hypothesis ψ such that

Γ ∧ ψ |= φ and SAT(Γ ∧ ψ)

2 / 10

What is Abduction?

Abduction: Opposite of deduction

Deduction: Infers valid conclusion from premises

Abduction: Infers missing premise to explain a given
conclusion

Given known facts Γ and desired outcome φ, abductive
inference finds “simple” explanatory hypothesis ψ such that

Γ ∧ ψ |= φ and SAT(Γ ∧ ψ)

2 / 10

Simple Example

Facts: “If it rains, then it is wet and
cloudy”, “If it is wet, then it is slippery”:
R ⇒W ∧ C ∧W ⇒ S

Conclusion: “It is cloudy and slippery”,
i.e., C ∧ S

Abductive explanation: R, i.e.,“It is rainy”

3 / 10

Simple Example

Facts: “If it rains, then it is wet and
cloudy”, “If it is wet, then it is slippery”:
R ⇒W ∧ C ∧W ⇒ S

Conclusion: “It is cloudy and slippery”,
i.e., C ∧ S

Abductive explanation: R, i.e.,“It is rainy”

3 / 10

Simple Example

Facts: “If it rains, then it is wet and
cloudy”, “If it is wet, then it is slippery”:
R ⇒W ∧ C ∧W ⇒ S

Conclusion: “It is cloudy and slippery”,
i.e., C ∧ S

Abductive explanation: R, i.e.,“It is rainy”

3 / 10

Arithmetic Example

int x = 0;
int y = 0;

while(x < n)
{
 x = x+1;
 y = y+2;
}

assert(x + y >= 3*n);

Suppose we know x ≥ n

e.g., from loop termination condition

Desired conclusion x + y ≥ 3n

property we want to prove

Abductive explanation: y ≥ 2x

corresponds to missing loop invariant

4 / 10

Arithmetic Example

int x = 0;
int y = 0;

while(x < n)
{
 x = x+1;
 y = y+2;
}

assert(x + y >= 3*n);

Suppose we know x ≥ n

e.g., from loop termination condition

Desired conclusion x + y ≥ 3n

property we want to prove

Abductive explanation: y ≥ 2x

corresponds to missing loop invariant

4 / 10

Arithmetic Example

int x = 0;
int y = 0;

while(x < n)
{
 x = x+1;
 y = y+2;
}

assert(x + y >= 3*n);

Suppose we know x ≥ n

e.g., from loop termination condition

Desired conclusion x + y ≥ 3n

property we want to prove

Abductive explanation: y ≥ 2x

corresponds to missing loop invariant

4 / 10

Arithmetic Example

int x = 0;
int y = 0;

while(x < n)
{
 x = x+1;
 y = y+2;
}

assert(x + y >= 3*n);

Suppose we know x ≥ n

e.g., from loop termination condition

Desired conclusion x + y ≥ 3n

property we want to prove

Abductive explanation: y ≥ 2x

corresponds to missing loop invariant

4 / 10

Properties of Desired Solutions

In general, the abduction problem Γ∧? |= φ has infinitely
many solutions

Trivial solution: φ, but not useful because does not take into
account what we know

So, what kind of solutions do want to compute?

5 / 10

Properties of Desired Solutions

In general, the abduction problem Γ∧? |= φ has infinitely
many solutions

Trivial solution: φ, but not useful because does not take into
account what we know

So, what kind of solutions do want to compute?

5 / 10

Properties of Desired Solutions

In general, the abduction problem Γ∧? |= φ has infinitely
many solutions

Trivial solution: φ, but not useful because does not take into
account what we know

So, what kind of solutions do want to compute?

5 / 10

Which Abductive Explanations Are Good?

Guiding Principle:
Occam’s Razor

If there are multiple competing hypotheses, select the one
that makes fewest assumptions

Generality: If explanation A is logically weaker than
explanation B , always prefer A

Simplicity: Not clear-cut, but we use number of variables

This simplicity criterion makes sense in verification because we
want proof subgoals to be local and refer to few variables

6 / 10

Which Abductive Explanations Are Good?

Guiding Principle:
Occam’s Razor

If there are multiple competing hypotheses, select the one
that makes fewest assumptions

Generality: If explanation A is logically weaker than
explanation B , always prefer A

Simplicity: Not clear-cut, but we use number of variables

This simplicity criterion makes sense in verification because we
want proof subgoals to be local and refer to few variables

6 / 10

Which Abductive Explanations Are Good?

Guiding Principle:
Occam’s Razor

If there are multiple competing hypotheses, select the one
that makes fewest assumptions

Generality: If explanation A is logically weaker than
explanation B , always prefer A

Simplicity: Not clear-cut, but we use number of variables

This simplicity criterion makes sense in verification because we
want proof subgoals to be local and refer to few variables

6 / 10

Which Abductive Explanations Are Good?

Guiding Principle:
Occam’s Razor

If there are multiple competing hypotheses, select the one
that makes fewest assumptions

Generality: If explanation A is logically weaker than
explanation B , always prefer A

Simplicity: Not clear-cut, but we use number of variables

This simplicity criterion makes sense in verification because we
want proof subgoals to be local and refer to few variables

6 / 10

Which Abductive Explanations Are Good?

Guiding Principle:
Occam’s Razor

If there are multiple competing hypotheses, select the one
that makes fewest assumptions

Generality: If explanation A is logically weaker than
explanation B , always prefer A

Simplicity: Not clear-cut, but we use number of variables

This simplicity criterion makes sense in verification because we
want proof subgoals to be local and refer to few variables

6 / 10

EXPLAIN’s Abduction Algorithm

EXPLAIN computes a logically weakest solution with fewest
variables to abduction problems in Presburger arithmetic

Given premises I and desired conclusion φ:

1 Compute an MSA of I ⇒ φ
consistent with I

2 Quantify out all variables not
in the MSA

3 Remove subparts implied or
contradicted by premises

7 / 10

EXPLAIN’s Abduction Algorithm

EXPLAIN computes a logically weakest solution with fewest
variables to abduction problems in Presburger arithmetic

Given premises I and desired conclusion φ:

1 Compute an MSA of I ⇒ φ
consistent with I

2 Quantify out all variables not
in the MSA

3 Remove subparts implied or
contradicted by premises

7 / 10

EXPLAIN’s Abduction Algorithm

EXPLAIN computes a logically weakest solution with fewest
variables to abduction problems in Presburger arithmetic

Given premises I and desired conclusion φ:

1 Compute an MSA of I ⇒ φ
consistent with I

2 Quantify out all variables not
in the MSA

3 Remove subparts implied or
contradicted by premises

7 / 10

EXPLAIN’s Abduction Algorithm

EXPLAIN computes a logically weakest solution with fewest
variables to abduction problems in Presburger arithmetic

Given premises I and desired conclusion φ:

1 Compute an MSA of I ⇒ φ
consistent with I

2 Quantify out all variables not
in the MSA

3 Remove subparts implied or
contradicted by premises

7 / 10

EXPLAIN’s Abduction Algorithm

EXPLAIN computes a logically weakest solution with fewest
variables to abduction problems in Presburger arithmetic

Given premises I and desired conclusion φ:

1 Compute an MSA of I ⇒ φ
consistent with I

2 Quantify out all variables not
in the MSA

3 Remove subparts implied or
contradicted by premises

7 / 10

EXPLAIN’s Abduction Algorithm

EXPLAIN computes a logically weakest solution with fewest
variables to abduction problems in Presburger arithmetic

Given premises I and desired conclusion φ:

1 Compute an MSA of I ⇒ φ
consistent with I

2 Quantify out all variables not
in the MSA

3 Remove subparts implied or
contradicted by premises

7 / 10

Abduction in Program Analysis

Useful technique to add to our bag of tricks; lots of
applications!

interpolation

CEGAR
 Abstract interpretation

Abduction

Loop invariant generation

Synthesis of compositional program proofs

Inference of missing library specifications

Explaining static analysis warnings to
programmers

Modular analysis using separation logic

8 / 10

Abduction in Program Analysis

Useful technique to add to our bag of tricks; lots of
applications!

interpolation

CEGAR
 Abstract interpretation

Abduction
Loop invariant generation

Synthesis of compositional program proofs

Inference of missing library specifications

Explaining static analysis warnings to
programmers

Modular analysis using separation logic

8 / 10

Abduction in Program Analysis

Useful technique to add to our bag of tricks; lots of
applications!

interpolation

CEGAR
 Abstract interpretation

Abduction
Loop invariant generation

Synthesis of compositional program proofs

Inference of missing library specifications

Explaining static analysis warnings to
programmers

Modular analysis using separation logic

8 / 10

Abduction in Program Analysis

Useful technique to add to our bag of tricks; lots of
applications!

interpolation

CEGAR
 Abstract interpretation

Abduction
Loop invariant generation

Synthesis of compositional program proofs

Inference of missing library specifications

Explaining static analysis warnings to
programmers

Modular analysis using separation logic

8 / 10

Abduction in Program Analysis

Useful technique to add to our bag of tricks; lots of
applications!

interpolation

CEGAR
 Abstract interpretation

Abduction
Loop invariant generation

Synthesis of compositional program proofs

Inference of missing library specifications

Explaining static analysis warnings to
programmers

Modular analysis using separation logic

8 / 10

Abduction in Program Analysis

Useful technique to add to our bag of tricks; lots of
applications!

interpolation

CEGAR
 Abstract interpretation

Abduction
Loop invariant generation

Synthesis of compositional program proofs

Inference of missing library specifications

Explaining static analysis warnings to
programmers

Modular analysis using separation logic

8 / 10

EXPLAIN

EXPLAIN is implemented in Mistral SMT
solver and is available from:

http://www.cs.wm.edu/˜tdillig/mistral

The tool paper describes algorithm in
more detail and presents usage examples

Try it out!

9 / 10

EXPLAIN

EXPLAIN is implemented in Mistral SMT
solver and is available from:

http://www.cs.wm.edu/˜tdillig/mistral

The tool paper describes algorithm in
more detail and presents usage examples

Try it out!

9 / 10

EXPLAIN

EXPLAIN is implemented in Mistral SMT
solver and is available from:

http://www.cs.wm.edu/˜tdillig/mistral

The tool paper describes algorithm in
more detail and presents usage examples

Try it out!

9 / 10

 Questions?

