ar\tee

among
set leredSTOW

number 525 abledosely EWVIHFV?] Ioop

varad
Saf ty"wusyn heswzed presems m
1 weakes

SyntheS|SG‘Ven COdepapﬂ synthesize w

o s 0O s
pmtotypeC automatic approachL memorysatem
e (Ul programs

"] reeeEMOTY {1 b

0 fyestrata
pWDﬂSE‘W'Ca vt sFunhermE g
WiiGrequre

tool

ammer
que
ete

access:

Optimal Guard Synthesis
for Memory Safety

Tom Dillig, Isil Dillig
TEXAS

Swarat Chaudhuri

W

Memory Safety Errors

@ Memory safety errors cause
many program errors

v3.00

82

72072

Critical Error

The system has become
unstable. Please save your wok

and rebool he computer

—

2

16

Memory Safety Errors

@ Memory safety errors cause
many program errors

v3.00

82

72072
463423

@ In C and C+4+ perennial
source of security
vulnerabilities

Critical Error

The system has become
unstable. Please save your wok
and reboot the computer

0K \"‘

2/16

Memory Safety Errors

@ Memory safety errors cause
many program errors

v3.00

82

72072
463423

Critical Error

The system has become.
unstable. Piease save your work
and reboot the computer

0K \"‘

@ In C and C++ perennial
source of security
vulnerabilities

@ In Java, C# program
crashes due to exceptions

2/16

Preventing Memory Safety Errors

@ Many static techniques proposed to detect memory errors

3/16

Preventing Memory Safety Errors

@ Many static techniques proposed to detect memory errors

-+ Can guarantee absence of errors

3/16

Preventing Memory Safety Errors

@ Many static techniques proposed to detect memory errors

-+ Can guarantee absence of errors
- Can be hard to understand and fix detected errors

3/16

Preventing Memory Safety Errors

@ Many static techniques proposed to detect memory errors

-+ Can guarantee absence of errors
- Can be hard to understand and fix detected errors
- Does not help programmer write safe-by-construction code

3/16

Preventing Memory Safety Errors

@ Many static techniques proposed to detect memory errors

-+ Can guarantee absence of errors
- Can be hard to understand and fix detected errors
- Does not help programmer write safe-by-construction code

@ Dynamic approaches to memory safety

3/16

Preventing Memory Safety Errors

@ Many static techniques proposed to detect memory errors

-+ Can guarantee absence of errors
- Can be hard to understand and fix detected errors
- Does not help programmer write safe-by-construction code

@ Dynamic approaches to memory safety

+ Widely used in managed languages

3/16

Preventing Memory Safety Errors

@ Many static techniques proposed to detect memory errors

-+ Can guarantee absence of errors
- Can be hard to understand and fix detected errors
- Does not help programmer write safe-by-construction code

@ Dynamic approaches to memory safety

+ Widely used in managed languages
- But only transforms vulnerability into program crash

3/16

Preventing Memory Safety Errors

@ Many static techniques proposed to detect memory errors

-+ Can guarantee absence of errors
- Can be hard to understand and fix detected errors
- Does not help programmer write safe-by-construction code

@ Dynamic approaches to memory safety

+ Widely used in managed languages
- But only transforms vulnerability into program crash
- Run-time overhead

3/16

Key Idea: Use Program Synthesis

Key Idea: Program synthesis to guarantee memory safety

4/16

Key Idea: Use Program Synthesis

Key Idea: Program synthesis to guarantee memory safety

© Programmer specifies which parts of the program should be
guarded

Example:
if(???) {R} else { /* handle error */}

4/16

Key Idea: Use Program Synthesis

Key Idea: Program synthesis to guarantee memory safety

© Programmer specifies which parts of the program should be
guarded

@ Our technique synthesizes correct and optimal guards that
guarantee memory safety

e Optimal means as weak and as simple as possible

Example:
if(???) {R} else { /* handle error */}

4/16

Solution Overview
! @ Constraint Generation:

Constraint o

generation é
¥

Fi(x1;- - Xk—1) A Xk
=
F2(Xk+ly~--Xn)

ye

Constraint

solvi

— -

@ss
29
Y

X1=01 5 Xn = Pn

5/16

Solution Overview
! @ Constraint Generation:

e Represent unknown guards using

placeholders

Constraint o

generation é
¥

Fi(x1;- - Xk—1) A Xk
=
F2(Xk+ly~--Xn)

ye

Constraint

solvi

— -

@ss
29
Y

X1=01 5 Xn = Pn

5/16

Solution Overview

e Represent unknown guards using
placeholders

! @ Constraint Generation:

o

Constraint /
generation | > e Perform dual forward and backward
@ analysis to generate constraint for each

Fi(x1;- - Xk—1) A Xk unknown

=
Fa(Xk+1s- - Xn)

ye

Constraint

solvi

@:3
33
Y

X1=01 5 Xn = Pn

5/16

Solution Overview
! @ Constraint Generation:

e Represent unknown guards using

placeholders
o>

Constraint /
generation | ©> e Perform dual forward and backward
@ analysis to generate constraint for each
Fi(x1;- - Xk—1) A Xk unknown
=
Fabut1, - xn) @ Constraint Solving:

ye

Constraint

solvi

= a

@:3
33
Y

X1=01 5 Xn = Pn

5/16

Solution Overview

e Represent unknown guards using
placeholders

! @ Constraint Generation:

o

Constraint /
generation | ©> e Perform dual forward and backward
@ analysis to generate constraint for each
Fi(x1;- - Xk—1) A Xk unknown
=
Fabut1, - xn) @ Constraint Solving:

ye

e An extended abduction algorithm for
solving constraint system with multiple
unknowns

Constraint

solvi

@:3
33
Y

X1=01 5 Xn = Pn

5/16

Solution Overview

e Represent unknown guards using
placeholders

! @ Constraint Generation:

Constraint “@w/
generation | > e Perform dual forward and backward
@ analysis to generate constraint for each
Fi(x1;- - Xk—1) A Xk unknown
=
Fabut1, - xn) @ Constraint Solving:

7 @
38
Y

e An extended abduction algorithm for
solving constraint system with multiple

Constraint

solvi

@ unknowns
o Guarantees Pareto-optimality

5/16

Constraint Generation Overview

{ \‘ @ At synthesis point, compute
¢ postcondition ¢ of code above 77
3
if(??)
{

6/16

Constraint Generation Overview

A @ At synthesis point, compute
¢ . postcondition ¢ of code above 77

@ Compute precondition 1) that ensures
memory safety of code guarded by 77

6/16

Constraint Generation Overview

A @ At synthesis point, compute
¢ . postcondition ¢ of code above 77

@ Compute precondition 1) that ensures
memory safety of code guarded by 77

{ e Condition to guarantee memory safery:

4 OAT? = ¢

6/16

Key Insight: Abduction

Solution: Abductive inference

\
~
I\

(((

7/16

Key Insight: Abduction

Solution: Abductive inference

—

/ o Given facts F' and desired outcome O, find
\ simple explanatory hypothesis £ such that

~ 7~
— — F/\E‘ZO and SAT(F/\E)
\ /
"4
—
A 4

7/16

Key Insight: Abduction

Solution: Abductive inference

—

/ o Given facts F' and desired outcome O, find
\ simple explanatory hypothesis £ such that

~ /
_ - FAEE O and SAT(FAE)
\\ ¢ 3
e F = postcondition ¢ before 77
"4
—
A 4

7/16

Key Insight: Abduction

Solution: Abductive inference

—

/ o Given facts F' and desired outcome O, find
\ simple explanatory hypothesis £ such that

~ /
_ - FAEE O and SAT(FAE)
\\ ¢ 3
e F = postcondition ¢ before 77
"4
—
A 4

e O = memory safety precondition 1)

7/16

Key Insight: Abduction

Solution: Abductive inference

—

/ o Given facts F' and desired outcome O, find
\ simple explanatory hypothesis £ such that

~ /
_ - FAEE O and SAT(FAE)
\\ ¢ 3
e F = postcondition ¢ before 77
"4
—
A 4

e O = memory safety precondition 1)

e FE = Solution for ??

7/16

Constraint Solving

/ "\ @ Cannot directly use abduction because
{*~_ constraints have multiple unknowns

FAGa) Axi = F(x)
B(3) Axz = F3(d)

Fu(Xn) A xXn = FL(XL)

N /

8/16

Constraint Solving

/ "\ @ Cannot directly use abduction because
{*~_ constraints have multiple unknowns

@ New iterative, stratification-based
Fi(x) Axi = FI() algorithm for solving constraint system
Fy(xX2) A x2 = F3(x3)

Fu(Xn) A xXn = FL(XL)

N /

8/16

Constraint Solving

/ "\ @ Cannot directly use abduction because
{‘«_ constraints have multiple unknowns

@ New iterative, stratification-based
Fi(x) Axi = FI() algorithm for solving constraint system

Fy (%) A xz = F3(xh) .
@ Uses abduction as a helper procedure

Fu(Xn) A xXn = FL(XL)

N /

8/16

Constraint Solving

/ "\ @ Cannot directly use abduction because
{‘«_ constraints have multiple unknowns

New iterative, stratification-based
Fi(x) Axi = FI() algorithm for solving constraint system
Fy(xX2) A x2 = F3(x3)

@ Uses abduction as a helper procedure

Fa(3) A X = FL () Resulting solution is Pareto-optimal

N /

8/16

Constraint Solving

/ "\ @ Cannot directly use abduction because
{‘«_ constraints have multiple unknowns

New iterative, stratification-based
Fi(x) Axi = FI() algorithm for solving constraint system
Fy(xX2) A x2 = F3(x3)

Fu(Xn) A xXn = FL(XL)

\ J e Cannot improve solution for one
unknown without making others worse

@ Uses abduction as a helper procedure

Resulting solution is Pareto-optimal

8/16

int main(int argc,

@ Code snippet from Unix char** argv)
Coreutils with protected {
memory access if(argc<=1) return -1;

argv++; argc--;

optind=0;

while(...) {
optind++;
if(*) {argv++;

argc--;}

}

ifl(2?2) {
argvloptind+1l]=...;

}

}

9/16

int main(int argc,

@ Code snippet from Unix char** argv)
Coreutils with protected {
memory access if(argc<=1) return -1;

argv++; argc--;
o Convention: For pointer p:

optind=0;

while(...) {
optind++;
if(*) {argv++;

argc--;}

}

ifl(?2?2) {
argvloptind+1l]=...;

}

}

9/16

int main(int argc,

@ Code snippet from Unix char** argv)
Coreutils with protected {
memory access if(argc<=1) return -1;

argv++; argc--;
o Convention: For pointer p:

o pT represents distance to end optind=0;
of memory block while(...) {
optind++;
if(*) {argv++;
argc--;}
P pt }
— ifl(?2?2) {
argv[optind+l]=...;
p }

}

9/16

int main(int argc,

@ Code snippet from Unix char** argv)
Coreutils with protected {
memory access if(argc<=1) return -1;

argv++; argc--;
o Convention: For pointer p:

o pT represents distance to end optind=0;
of memory block while(...) {
e p~ represents distance from optind++;
beginning of memory block if(*) {argv++;
argc--;}
P pt }
— ifl(?2?2) {
argvloptind+1l]=...;
o] }

}

9/16

Example Cont.

int main(int argc,

o First Step: Compute what is
known at 7?7 = postcondition ¢

{

}

char** argv)

if(argc<=1) return -1;
argv++; argc--;

optind=0;

while(...) {
optind++;
if(*) {argv++;

argc--;}

}

if(??) {
argv[optind+1l]=...;

}

10/16

Example Cont.

int main(int argc,

o First Step: Compute what is
known at 7?7 = postcondition ¢

o From language semantics:

argt = arge A argv™ =0

{

}

char** argv)

if(argc<=1) return -1;
argv++; argc--;

optind=0;

while(...) {
optind++;
if(*) {argv++;

argc--;}

}

if(??) {
argv[optind+1l]=...;

}

Example Cont.

int main(int argc,

o First Step: Compute what is
known at 7?7 = postcondition ¢

e From language semantics:
argt = — =0
qu = argc \ argu. =

e From computing the
strongest postcondition:

argv™ = argc A
argv= >1 A optind > 0

{

}

char** argv)

if(argc<=1) return -1;
argv++; argc--;

optind=0;

while(...) {
optind++;
if(*) {argv++;

argc--;}

}

if(??) {
argv[optind+1l]=...;

}

Example Cont.

int main(int argc,

@ Second Step: Compute what
needs to hold at 7?7 to ensure
memory safety
= precondition)

{

}

char** argv)

if(argc<=1) return -1;
argv++; argc--;

optind=0;

while(...) {
optind++;
if(*) {argv++;

argc--;}

}

if(??) {
argv[optind+1l]=...;

}

11/16

Example Cont.

int main(int argc,

@ Second Step: Compute what
needs to hold at 7?7 to ensure
memory safety
= precondition)

o Buffer access:

optind + 1 < argv™A
optind +1 > —argv™

{

}

char** argv)

if(argc<=1) return -1;
argv++; argc--;

optind=0;

while(...) {
optind++;
if(*) {argv++;

argc--;}

}

if(??) {
argv[optind+1l]=...;

}

11/16

Example Cont.

int main(int argc,

@ Solve abduction problem
¢ N 17 =1 where

argvt = arge A

argv= > 1 N optind > 0

optind + 1 < argvt A
optind +1 > —argv™

{

}

char** argv)

if(argc<=1) return -1;
argv++; argc--;

optind=0;

while(...) {
optind++;
if(*) {argv++;

argc--;}

}

if(??) {
argv[optind+1l]=...;

}

12 /16

Example Cont.

int main(int argc,

@ Solve abduction problem
¢ N7 =1 where

argvt = arge A
argv= > 1 N optind > 0

optind + 1 < argv™ A
optind +1 > —argv™

@ Solution: argc — optind > 1

{

}

char** argv)

if(argc<=1) return -1;
argv++; argc--;

optind=0;

while(...) {
optind++;
if(*) {argv++;

argc--;}

}

if(??) {
argv[optind+1l]=...;

}

12 /16

o Evaluated technique on the Unix

rm In
Coreutils and parts of OpenSSH kdlr dd
truncate d" 1 Shmod

Cpl Slnstall

13 /16

@ Evaluated technique on the Unix rm In
Coreutils and parts of OpenSSH kdlr dd
@ Removed conditionals used to truncate dII' h()c 210

prevent memory safety errors CpISInSta"

13 /16

o Evaluated technique on the Unix

rm In
Coreutils and parts of OpenSSH kdlr dd
@ Removed conditionals used to truncate dII' h()c 210

prevent memory safety errors Cpl install
@ Used our new technique to S

synthesize the missing guards

13 /16

Experiments Cont.

[Program [Lines[# holes|Time (s)[Memory|Synthesis successful?/Bug?]
Coreutils hostname 160 1 0.15 10 MB Yes No
Coreutils tee 223 1 0.84 10 MB Yes Yes
Coreutils runcon 265 2 0.81 12 MB Yes No
Coreutils chroot 279 2 0.53 | 23 MB Yes No
Coreutils remove 710 2 1.38 66MB Yes No
Coreutils nl 758 3 2.07 | 80 MB Yes No
SSH - sshconnect 810 3 1.43 |81 MB Yes No
Coreutils mv 929 4 2.03 | 42 MB Yes No
SSH - do_authentication|1,904 4 3.92 | 8 MB Yes Yes
SSH - ssh_session 2,260 5 4.35 | 81 MB Yes No

14 /16

@ New synthesis-based approach for writing memory safe
programs

15/16

@ New synthesis-based approach for writing memory safe
programs

@ Two key ingredients:

15/16

@ New synthesis-based approach for writing memory safe
programs

@ Two key ingredients:

o Constraint generation: Generates VCs with placeholders using
dual forward and backward reasoning

15/16

@ New synthesis-based approach for writing memory safe
programs

@ Two key ingredients:

o Constraint generation: Generates VCs with placeholders using
dual forward and backward reasoning

o Constraint solving: New abduction-based algorithm for finding
optimal solutions for placeholders representing unknown guards

15/16

@ New synthesis-based approach for writing memory safe
programs

@ Two key ingredients:

o Constraint generation: Generates VCs with placeholders using
dual forward and backward reasoning

o Constraint solving: New abduction-based algorithm for finding
optimal solutions for placeholders representing unknown guards

@ Experimental validation of our approach

15/16

¢

Any Questions?

Questions? 0\;
o

-

