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Memory Safety Errors
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Preventing Memory Safety Errors

Many static techniques proposed to detect memory errors

+ Can guarantee absence of errors
- Can be hard to understand and fix detected errors
- Does not help programmer write safe-by-construction code

Dynamic approaches to memory safety

+ Widely used in managed languages
- But only transforms vulnerability into program crash
- Run-time overhead
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Key Idea: Use Program Synthesis

Key Idea: Program synthesis to guarantee memory safety

1 Programmer specifies which parts of the program should be
guarded

2 Our technique synthesizes correct and optimal guards that
guarantee memory safety

Optimal means as weak and as simple as possible

Example:
if(???) {R} else { /* handle error */}
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Solution Overview

prog.c

Constraint
generation

Constraint
solving

 

1 Constraint Generation:

Represent unknown guards using
placeholders

Perform dual forward and backward
analysis to generate constraint for each
unknown

2 Constraint Solving:

An extended abduction algorithm for
solving constraint system with multiple
unknowns

Guarantees Pareto-optimality
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Constraint Generation Overview

{
   ...
}

if(??)
{
   ...
}

At synthesis point, compute
postcondition φ of code above ??

Compute precondition ψ that ensures
memory safety of code guarded by ??

Condition to guarantee memory safery:

φ∧?? |= ψ
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Key Insight: Abduction

Solution: Abductive inference

Given facts F and desired outcome O , find
simple explanatory hypothesis E such that

F ∧ E |= O and SAT(F ∧ E )

F ≡ postcondition φ before ??

O ≡ memory safety precondition ψ

E ≡ Solution for ??
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Constraint Solving

..
.

Cannot directly use abduction because
constraints have multiple unknowns

New iterative, stratification-based
algorithm for solving constraint system

Uses abduction as a helper procedure

Resulting solution is Pareto-optimal

Cannot improve solution for one
unknown without making others worse
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Example

Code snippet from Unix
Coreutils with protected
memory access

Convention: For pointer p:

p+ represents distance to end
of memory block
p− represents distance from
beginning of memory block

int main(int argc, 
   char** argv)
{
  if(argc<=1) return -1;
  argv++; argc--;

  optind=0;
  while(...) { 
    optind++;
    if(*) {argv++;
           argc--;}
  }
  if(??) {
    argv[optind+1]=...;
  }
}  
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Example Cont.

First Step: Compute what is
known at ?? ⇒ postcondition φ

From language semantics:

argv+ = argc ∧ argv− = 0

From computing the
strongest postcondition:

argv+ = argc ∧
argv− ≥ 1 ∧ optind ≥ 0
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   char** argv)
{
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Example Cont.

Second Step: Compute what
needs to hold at ?? to ensure
memory safety
⇒ precondition ψ

Buffer access:

optind + 1 < argv+∧
optind + 1 ≥ −argv−
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Example Cont.

Solve abduction problem
φ ∧ ?? |= ψ where

φ :
argv+ = argc ∧

argv− ≥ 1 ∧ optind ≥ 0
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Experiments

Evaluated technique on the Unix
Coreutils and parts of OpenSSH

Removed conditionals used to
prevent memory safety errors

Used our new technique to
synthesize the missing guards
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Experiments Cont.
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Summary

New synthesis-based approach for writing memory safe
programs

Two key ingredients:

Constraint generation: Generates VCs with placeholders using
dual forward and backward reasoning

Constraint solving: New abduction-based algorithm for finding
optimal solutions for placeholders representing unknown guards

Experimental validation of our approach
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