
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

xxx

UDF to SQL Translation through Compositional Lazy
Inductive Synthesis

GUOQIANG ZHANG, North Carolina State University, United States
YUANCHAO XU, North Carolina State University, United States
XIPENG SHEN, North Carolina State University, United States
IŞIL DILLIG, University of Texas at Austin, United States

Many data processing systems allow SQL queries that call user-defined functions (UDFs) written in conventional
programming languages. While such SQL extensions provide convenience and flexibility to users, queries
involving UDFs are not as efficient as their pure SQL counterparts that invoke SQL’s highly-optimized built-in
functions. Motivated by this problem, we propose a new technique for translating SQL queries with UDFs
to pure SQL expressions. Unlike prior work in this space (Ramachandra et al., 2017a), our method is not
based on syntactic rewrite rules and can handle a much more general class of UDFs. At a high-level, our
method is based on counterexample-guided inductive synthesis (CEGIS) but employs a novel compositional
strategy that decomposes the synthesis task into simpler sub-problems. However, because there is no universal
decomposition strategy that works for all UDFs, we propose a novel lazy inductive synthesis approach that
generates a sequence of decompositions that correspond to increasingly harder inductive synthesis problems.
Because most realistic UDF-to-SQL translation tasks are amenable to a fine-grained decomposition strategy,
our lazy inductive synthesis method scales significantly better than traditional CEGIS.

We have implemented our proposed technique in a tool called CLIS for optimizing Spark SQL programs
containing Scala UDFs. To evaluate CLIS, we manually study 100 randomly selected UDFs and find that 63
of them can be expressed in pure SQL. Our evaluation on these 63 UDFs shows that CLIS can automatically
synthesize equivalent SQL expressions in 92% of the cases and that it can solve 2.4× more benchmarks
compared to a baseline that does not use our compositional approach. We also show that CLIS yields an
average speed-up of 3.5× for individual UDFs and 1.3× to 3.1× in terms of end-to-end application performance.

CCS Concepts: • Software and its engineering→Automatic programming; • Information systems→
Query optimization.

Additional Key Words and Phrases: program synthesis, source-to-source compiler, query optimization

ACM Reference Format:
Guoqiang Zhang, Yuanchao Xu, Xipeng Shen, and Işıl Dillig. 2021. UDF to SQL Translation through Composi-
tional Lazy Inductive Synthesis. J. ACM xx, x, Article xxx (x 2021), 26 pages. https://doi.org/xx.xxxx/xxxx.xxxxx

1 INTRODUCTION
As the most popular language for querying relational data, SQL provides a convenient and efficient
mechanism for interacting with data stored in relational databases. Beyond providing the familiar
relational algebra operators, SQL also allows programmers to perform computations on data

Authors’ addresses: Guoqiang Zhang, North Carolina State University, Raleigh, United States, gzhang9@ncsu.edu; Yuanchao
Xu, North Carolina State University, Raleigh, United States, yxu47@ncsu.edu; Xipeng Shen, North Carolina State University,
Raleigh, United States, xshen5@ncsu.edu; Işıl Dillig, University of Texas at Austin, Austin, United States, isil@cs.utexas.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
0004-5411/2021/x-ARTxxx $15.00
https://doi.org/xx.xxxx/xxxx.xxxxx

J. ACM, Vol. xx, No. x, Article xxx. Publication date: x 2021.

https://doi.org/xx.xxxx/xxxx.xxxxx
https://doi.org/xx.xxxx/xxxx.xxxxx

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

xxx:2 Guoqiang Zhang, Yuanchao Xu, Xipeng Shen, and Işıl Dillig

through SQL’s highly optimized built-in functions as well as through user-defined functions (UDFs).
For example, Apache’s Spark SQL allows programmers to write UDFs in a variety of conventional
programming languages, such as Scala, Python, and Java. While such UDF-based extensions to SQL
provide more flexibility to programmers as opposed to only using SQL’s built-in functions, invoking
UDFs from SQL queries typically incurs substantial performance overhead for the following reasons:
• First, since the SQL optimizer does not know the semantics of UDFs, they largely appear as black
boxes to the query optimizer. As a result, the SQL compiler cannot perform any meaningful
optimizations when the query involves UDFs.
• Second, executing a query with UDFs often requires expensive cross-language type conversion.
• Finally, SQL’s built-in functions are highly-optimized, whereas user-defined functions tend to be
much less efficient compared to their built-in counterparts.
Motivated by this problem, prior work (Gupta et al., 2020, Ramachandra and Park, 2019, Ra-

machandra et al., 2017a) has proposed techniques for automatically translating UDFs to SQL
expressions. For example, Froid (Ramachandra et al., 2017a) and BlackMagic (Ramachandra and
Park, 2019) translate loop-free user-defined functions to relational algebra expressions, and Ag-
gify (Gupta et al., 2020) extends these techniques to deal with UDFs that contain so-called cursor
loops (i.e., loops over query results). However, because these techniques are based on syntactic
rewrite rules, their applicability is limited (e.g., loop-free, cursor loops); many practical user-defined
functions are beyond their scope.

In this paper, we propose an alternative andmore expressive approach based on inductive program
synthesis for converting queries with UDFs to semantically equivalent pure SQL expressions over
built-in functions. Unlike prior work in this space, our approach does not rely on rewrite rules over
specific language constructs and can therefore convert a broader class of UDFs to SQL expressions.
At its core, our approach is based on the standard counterexample-guided inductive synthesis (CEGIS)
paradigm (Alur et al., 2013) and tries to learn the target SQL expression by generalizing from
input-output examples provided by an equivalence checking engine as counterexamples. However,
because pure inductive synthesis suffers from scalability problems, our method addresses this
challenge by using a novel compositional approach.
At a high level, the main idea underlying our method is to break apart the given UDF into

independent pieces, synthesize small SQL expressions for each piece using standard CEGIS, and
then stitch these pieces together in a syntax-directed manner. In general, if we have a very fine-
grained decomposition, the resulting inductive synthesis problems are much easier, allowing the
technique to scale well to large UDFs. However, a key problem is that we do not know a priori
what the right decomposition strategy is for an arbitrary UDF. For instance, consider a piece of
code that is the sequential composition of three statements 𝑆1, 𝑆2, and 𝑆3. If each statement 𝑆𝑖 has
an equivalent SQL expression, we can then potentially decompose our original synthesis problem
into three independent, much simpler sub-problems, one for each 𝑆𝑖 . On the other hand, even
though the code 𝑆1; 𝑆2; 𝑆3 may have an equivalent SQL expression, each 𝑆𝑖 may not be individually
expressible in pure SQL (e.g. node 𝐷 of Figure 3b). Thus, it is unclear how to decompose a UDF to
simpler synthesis sub-problems without placing syntactic restrictions on the class of UDFs that the
method can handle.

Our method overcomes this challenge using a new paradigm that we dub lazy inductive synthesis
that is illustrated schematically in Figure 1. At a high level, the key idea is to construct a sequence
of (progressively coarser) decompositions of the original synthesis task based on the dataflow
graph (DFG) representation of the UDF and solve each sub-problem using CEGIS. For a given
decomposition, if every sub-problem can be solved using inductive synthesis, these solutions can be
composed together to obtain a solution for the original task. Furthermore, because our method starts

J. ACM, Vol. xx, No. x, Article xxx. Publication date: x 2021.

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

UDF to SQL Translation through Compositional Lazy Inductive Synthesis xxx:3

De-
compose

CEGIS Pure
SQL

Re-
compose

Construct
DFG

SubqueriesQuery
with
UDFs

Fig. 1. Schematic overview of our approach

with the most fine-grained decomposition, the initial inductive synthesis tasks are easy to solve (i.e.,
they need to consider a small search space). However, due to limitations of the available SQL APIs,
the inductive synthesizer may fail to find a solution for the sub-problems even though a solution
exists for the original problem. Our method deals with this challenge by gradually coarsening the
decomposition through merging of nodes in the data flow graph. We refer to this approach of
gradually constructing harder and harder synthesis problems as lazy inductive synthesis, and we
refer to our entire synthesis framework as compositional lazy inductive synthesizer (CLIS).
We evaluate CLIS in the context of UDF optimizations for Spark SQL programs. For a given

Spark SQL program containing Scala UDFs, CLIS produces an equivalent Spark SQL program with
some UDFs replaced with expressions composed of pure built-in SQL functions. Our evaluation
on 63 real-world benchmarks collected from public repositories shows that CLIS can successfully
synthesize equivalent SQL expressions for 92% of the cases, which is 2.8×more than prior solutions
can solve within a given time limit. Furthermore, the optimizations performed by CLIS result in
significant speedups in terms of run-time performance.
Overall, this work features two important novelties: (i) To the best of our knowledge, CLIS is

the first general solution for transforming a broad class of UDFs into SQL; and (ii) it is based on a
new synthesis paradigm that we call compositional lazy inductive synthesis. While UDF-to-SQL
translation provides a useful application of this paradigm, we believe that our proposed approach
may potentially be useful in other synthesis and code translation/optimization tasks as well.

In summary, this paper makes the following key contributions:
• We propose a new technique for translating SQL queries with UDFs to pure SQL expressions.
Compared to prior work, our method can handle a broader class of user-defined functions.
• We show how to achieve a good trade-off between expressiveness and scalability using a technique
that we dub lazy inductive synthesis. Our method uses a form of deductive reasoning to decompose
the problem, but it solves each sub-problem using counterexample-guided inductive synthesis.
• Weevaluate our implementation, CLIS, on real-world querieswritten in Spark SQL. Our evaluation
shows that CLIS is effective at translating UDFs to SQL expressions and that it significantly
improves query performance.
The rest of the paper is organized as follows: Section 2 gives a high-level overview of our method

by running through a motivating example, and Section 3 presents our formal problem definition.
Next, Section 4 introduces some background knowledge, and Section 5 presents our core synthesis
algorithm. The following three sections (Sec. 6-8) describe our implementation and evaluation and
discuss related work. Finally, we discuss limitations and conclude.

2 OVERVIEW
In this section, we give an overview of our method with the aid of the motivating example shown
in Figure 2 that implements a SQL query in the Spark framework. Here, the query involves a
user-defined function called makeTitle implemented in Scala. This function converts a string into

J. ACM, Vol. xx, No. x, Article xxx. Publication date: x 2021.

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

xxx:4 Guoqiang Zhang, Yuanchao Xu, Xipeng Shen, and Işıl Dillig

def makeTitle(s:String, trim:Boolean) = {
 val s1 = if(trim) s.trim() else s
 val s2 = s1.toLowerCase()
 var init = true
 val ans = s2.map(c => {
 val t = if (init) c.toUpper else c
 init = c == ‘ ‘
 t })
 ans }

spark.udf.register(“makeTitle”, makeTitle)
spark.sql(“select makeTitle(col1, col2) from tbl”)

Fig. 2. A Spark query containing a UDF

def makeTitle(s: String, t: Boolean)= {
 val s1 = if (t) s.trim() else s
 val s2 = s1.toLowerCase()
 var init = true
 val ans = s2.map(c => {
 val t = if (init) c.toUpper else c
 init = c == ' '
 t })
 ans }

spark.udf.register("makeTitle", makeTitle))
spark.sql("select makeTitle(col1, col2) from tbl")

if(t, ts, s) as s1B'

s

s

arg1

ts

ts=s.trim() t

arg2

s1

s1=if (t) ts else s

s2

line 3

ans

lines 4-8

return

s

s

arg1

ts

trim(s) as ts t

arg2

s1

ans

initcap(s1) as ans

return

lower(s1)

Decompose UDF

initcap(if(@arg2, trim(@arg1), @arg1))

1
2
3
4
5
6
7
8
9
10
11
12

spark.sql("select
 initcap(if(col2, trim(col1), col1)
) from tbl")

Synthesize

Compose

Integrate

(a) Source program

(b) UDF DFG. Each node corresponds to a
fragment of the source UDF, and an edge from
node X to node Y labeled with v indicates that Y
accesses a variable v computed by X.

(c) SQL DFG. Nodes {A', B', C'} are synthesized from
nodes {A, B, C} in the UDF DFG. There is no SQL
expression equivalent to node D. However, by merging
nodes C and D into node E, our approach finds E'.

(d) Equivalent SQL expression for UDF

(e) Optimized program

A

B

C

D
E

A'

E'

C'

Fig. 3. Illustration of our approach on running example

a “title” format, in which the initial letter of each word is in upper case. The second argument of the
function indicates if the input string needs to be trimmed. While this UDF is implemented correctly,
the same functionality can actually be implemented using the following pure SQL expression:

def makeTitle(s:String, trim:Boolean){
 val s1 = if(trim) s.trim() else s
 val s2 = s1.toLowerCase()
 var init = true
 val ans = s2.map(c => {
 val t = if (init) c.toUpper else c
 init = c == ‘ ‘
 t })
 return ans }

spark.udf.register(“makeTitle”, makeTitle)
spark.sql(“select makeTitle(col1, col2) from tbl”)

spark.sql(“select initcap(if(col2, trim(col1), col1)) from tbl”)

J. ACM, Vol. xx, No. x, Article xxx. Publication date: x 2021.

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

UDF to SQL Translation through Compositional Lazy Inductive Synthesis xxx:5

which is 1.98 times faster compared to the original query containing the UDF.1 We now explain
how our technique automatically synthesizes the SQL query shown above given the original Spark
program.
Our method starts by constructing the UDF’s dataflow graph (DFG) (see Figure 3b). Here, each

node corresponds to a fragment of the source UDF, and an edge from node𝑋 to node 𝑌 labeled with
𝑣 indicates that 𝑌 accesses a variable 𝑣 computed by 𝑋 . Initially, our algorithm tries to synthesize a
separate SQL statement for each DFG node by invoking a CEGIS-based synthesizer. In this case, it
can find equivalent SQL expressions for nodes (A), (B), and (C); the result is shown in Figure 3c as
nodes (A’), (B’), and (C’). However, synthesis fails for node (D) as there is no built-in SQL function
that captures the computation performed in lines 4-8.

In the next iteration, our technique tries a less aggressive decomposition by merging nodes (C)
and (D) in the original data-flow graph into a single node (E) (see Figure 3b). Note that the new
DFG corresponds to a less fine-grained decomposition in that node (E) represents a bigger code
fragment, so the CEGIS-based synthesizer needs to consider a larger search space. However, despite
this larger search space, the target SQL expression is quite small, and the synthesizer returns the
SQL expression initcap(s1) as ans as a solution to this sub-problem.
At this point, the algorithm has found a decomposition where each component is individually

synthesizable. As a last step, we compose together each of the synthesis sub-results into the SQL
expression of Figure 3d with the help of the DFG from Figure 3c. After eliminating intermediate
variables and integrating this expression into the original query, we finally obtain the desired result.

Based on this example, we highlight the following salient features of our approach:
• Even though the final SQL query is quite large, the result of each synthesis sub-problem is small.
Thus, decomposition allows our technique to scale to search spaces that cannot be traditionally
handled by inductive synthesizers.
• Both the initial decomposition and its subsequent coarsening are guided by the dataflow graph,
and the DFG representation is crucial for composing together the results of each subproblem.
• In contrast to prior work (Ramachandra et al., 2017a), our method can utilize built-in SQL
functions such as trim and initCap, and it can also handle higher-order combinators like map.

3 PROBLEM DEFINITION
In this section, we formally define the synthesis problem addressed in the remainder of the paper.
At a high level, our goal is to convert a SQL program containing user-defined functions (UDFs) to
one without any UDFs.

As shown in Figure 4, our source language consists of a set of UDF definitions written in Scala,
followed by a SQL query. 2 A UDF can contain arbitrary Scala expressions, including but not
limited to loops and conditional statements. A query𝑄 is a standard SQL query which may refer to
temporary tables (views) defined using the with syntax in the grammar. Both projection operations
Π and expressions 𝐸 can involve built-in SQL functions/operators 𝑓 as well as user-defined functions.
In the grammar, we use the notation UDFs to represent a UDF with a scalar return value and UDFm
to denote a UDF that returns multiple values (i.e., tuple).

Definition 1. (UDF elimination problem.) Given a program 𝑃 conforming to the grammar
from Figure 4, our problem is to find a SQL query 𝑄 without any user-defined functions such that 𝑃 is
equivalent to 𝑄 (denoted 𝑃 ≃ 𝑄) — i.e., given any input data, 𝑃 and 𝑄 produce the same output.

1Tested on randomly generated 10 million rows on a Linux machine with an Intel Core i5-4570 CPU (four 3.2GHz cores).
2Because our implementation targets the Apache Spark framework, we consider UDFs written in Scala; however, our
technique can, in principle, be applied to UDFs written in other programming languages as well.

J. ACM, Vol. xx, No. x, Article xxx. Publication date: x 2021.

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

xxx:6 Guoqiang Zhang, Yuanchao Xu, Xipeng Shen, and Işıl Dillig

Program 𝑃 → 𝐷1; ...𝐷𝑛 ;𝑄
UDF Defn. 𝐷 → def f (𝑎1, ..., 𝑎𝑛) = ⟨ScalaExpr⟩
SQLQuery 𝑄 → 𝜎 | with 𝑉1; . . . ;𝑉𝑛 𝜎

View 𝑉 → TblName as (𝜎)
Select 𝜎 → select Π from T1, ..., Tn [where 𝐸]

[group by Π] [order by Π]
Projection Π → UDFm (𝐶1, ...,𝐶𝑛) | 𝐶1, ...,𝐶𝑛

Column 𝐶 → 𝐸 | 𝐸 as ColName
Expression 𝐸 → Const | T.ColName | 𝐹 (𝐸1, ..., 𝐸𝑛)
Function 𝐹 → UDFs | 𝑓 ∈ BuiltInFuncs

Fig. 4. The grammar of our source language.

In this paper, we solve this problem by translating each UDF definition 𝐷 to an equivalent
projection Π without UDFs and then inlining the call to this UDF by its equivalent projection. Thus,
we can alternatively state our synthesis problem as the following UDF-to-SQL translation task:

Definition 2. (UDF-to-SQL translation) Given a Scala function definition 𝐷 with arguments 𝑎,
the UDF-to-SQL translation problem is to find a SQL projection expression Π without UDFs such that
𝐷 ≃ 𝜆𝑎. Π.

4 PRELIMINARIES
In this section, we provide some background information on dataflow graphs and counterexample-
guided inductive synthesis.

4.1 Background on Dataflow Graphs
In the rest of the paper, we represent UDFs as dataflow graphs defined as follows:

Definition 3. (Dataflow graph (DFG)) A dataflow graph for a function 𝑓 is a directed acyclic
graph 𝐺 = (𝑁𝐴, 𝑁𝑆 , 𝑁𝑅, 𝐸, 𝐿) where:
• 𝑁𝐴 is a list of nodes representing 𝑓 ’s arguments in order.
• 𝑁𝑆 is a set of nodes representing statements (i.e., code snippets) in 𝑓 ’s body.
• 𝑁𝑅 is a list of return nodes representing 𝑓 ’s return values in order.
• 𝐸 ⊆ {(𝑛, 𝑛′, 𝑣) | 𝑛 ∈ 𝑁𝐴 ∪ 𝑁𝑆 , 𝑛

′ ∈ 𝑁𝑆 ∪ 𝑁𝑅, 𝑣 ∈ Vars(𝑓)} is a set of directed edges (arcs).
• 𝐿 is a mapping from nodes to labels. In particular, we have:
– For 𝑛 ∈ 𝑁𝐴, we have 𝐿(𝑛) ∈ {arg𝑘 | 1 ≤ 𝑘 ≤ Size(𝑁𝐴)}
– For 𝑛 ∈ 𝑁𝑅 , we have 𝐿(𝑛) ∈ {ret𝑘 | 1 ≤ 𝑘 ≤ Size(𝑁𝑅)}
– For 𝑛 ∈ 𝑁𝑆 , we have 𝐿(𝑛) ⊆ Stmts(𝑓)

Semantically, an edge (𝑛, 𝑛′, 𝑣) indicates that the computation performed in node 𝑛′ depends on
the computation from node 𝑛 through variable 𝑣 (i.e., 𝑛′ reads from variable 𝑣 that is modified in 𝑛).
As expected, argument nodes 𝑛 ∈ 𝑁𝐴 do not have incoming edges, and return nodes 𝑛 ∈ 𝑁𝑅 do not
have outgoing edges. The labeling function 𝐿 assigns each argument (resp. return) node 𝑛 ∈ 𝑁𝐴

(resp. 𝑁𝑅) to its sequential number in the list. Finally, for statement nodes 𝑛 ∈ 𝑁𝑠 , the label of 𝑛
corresponds to some code fragment in 𝑓 .

Example 4.1. Figure 5a shows a function called addPower, and Figure 5b shows a dataflow graph
for this function. Since the UDF takes two arguments, the DFG has two argument nodes labeled

J. ACM, Vol. xx, No. x, Article xxx. Publication date: x 2021.

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

UDF to SQL Translation through Compositional Lazy Inductive Synthesis xxx:7

1 function addPower(a, b) {

2 c = a + b;

3 n = b < 0;

4 if(n) b1 = -b;

5 b2 = n ? b1 : b;

6 for (p=1,i=0;i<b2;i++)

7 p *= a;

8 if(n) p1 = 1/p;

9 p2 = n ? p1 : p;

10 return c, p2;

11 }

(a) An example UDF

a

a

arg1

b

b

b

b

arg2

c

c=a+b

ret1

p2

ret2

p

p

for(p=1,i=0;i<b2;i++)
 p*=a

n

n

n=b<0

b1

b1=-b

b2

b2 = n ? b1 : b

p1
p1=1/p

p2 = n ? p1 : p

A
B C

D

E

G

F

(b) Dataflow graph 𝐺

a

a

arg1

b

b

b

arg2

c

c=a+b

ret1

p2

ret2

p

for(p=1,i=0;i<b2;i++)
 p*=a

n

n

n=b<0

b2

b1 = -b;
b2 = n ? b1 : b

p1 = 1/p;
p2 = n ? p1 : p

A'
B'

C'

D'

E'

(c) Dataflow graph 𝐺 ′

Fig. 5. An example UDF and its two possible DFGs

𝑎𝑟𝑔1 and 𝑎𝑟𝑔2. It also has two return nodes labeled 𝑟𝑒𝑡1 and 𝑟𝑒𝑡2 because the UDF returns a pair.
The statement node 𝐸 represents the loop and has two outgoing edges (labeled with 𝑝) to nodes 𝐹
and 𝐺 : this indicates a data dependence through variable 𝑝 between 𝐸 and 𝐹 as well as 𝐸 and 𝐺 .
Observe that a given code fragment does not have a unique DFG representation. Figure 5c shows
another valid DFG representation of the same addPower function.

Because a program has many possible DFG representations, we define a refinement relation
between two DFGs as follows:

Definition 4. (DFG refinement) Let 𝐺 = (𝑁𝐴, 𝑁𝑆 , 𝑁𝑅, 𝐸, 𝐿) and 𝐺 ′ = (𝑁𝐴, 𝑁
′
𝑆
, 𝑁𝑅, 𝐸

′, 𝐿′) be
two valid DFGs for the same function. We say that 𝐺 ′ is a refinement of 𝐺 , written 𝐺 ′ ⪯ 𝐺 , iff:

∀𝑛 ∈ 𝑁𝑆 .
(
∃𝑛1 ∈ 𝑁 ′𝑆 ., . . . , ∃𝑛𝑘 ∈ 𝑁 ′𝑆 . 𝐿(𝑛) ≡ 𝐿(𝑛1); . . . ;𝐿(𝑛𝑘)

)
where 𝐿(𝑛1); . . . ;𝐿(𝑛𝑘) indicates the sequential composition of the statements labeling nodes𝑛1, . . . , 𝑛𝑘 .

In other words, dataflow graph𝐺 ′ is a refinement of𝐺 if it “splits" one or more of the nodes in𝐺
into multiple nodes.

Example 4.2. For the two DFGs in Figure 5, we have𝐺 ⪯ 𝐺 ′ because 𝐿(𝐴′) = 𝐿(𝐴), 𝐿(𝐵′) = 𝐿(𝐵),
𝐿(𝐷 ′) = 𝐿(𝐸), and

𝐿(𝐶 ′) = 𝐿(𝐶);𝐿(𝐷) 𝐿(𝐸 ′) = 𝐿(𝐹);𝐿(𝐺)

As we will see in Section 5.1, if 𝐺 ⪯ 𝐺 ′, our approach prefers 𝐺 over 𝐺 ′.

4.2 Background on CEGIS

Since our synthesis technique is powered by counterexample-guided inductive synthesis (CEGIS) (Alur
et al., 2013), we provide a brief overview of this paradigm. Given a specification 𝜙 , the goal of
CEGIS is to generate a program that satisfies 𝜙 through a sequence of interactions between an
inductive synthesizer and a verifier (see Figure 6). At any point in time, the inductive synthesizer
has access to a set 𝐸 of input-output examples (i.e., test cases), and it searches for a program that
“passes” 𝐸. Once it finds such a program 𝑃 , the verifier is used to check whether 𝑃 actually satisfies

J. ACM, Vol. xx, No. x, Article xxx. Publication date: x 2021.

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

xxx:8 Guoqiang Zhang, Yuanchao Xu, Xipeng Shen, and Işıl Dillig

Fig. 6. Illustration of the CEGIS paradigm

𝜙 . If so, 𝑃 is returned as the solution; otherwise, the verifier provides feedback in the form of a new
input-output example that 𝑃 does not satisfy but that any valid solution should satisfy. This process
continues until a valid solution is found. Note that, since the verification problem is, in general,
undecidable, almost all instantiations of the CEGIS paradigm use a bounded verifier (Biere et al.,
2003) instead of a full verifier.

In the context of our problem, the specification to the CEGIS problem is a reference implementa-
tion in the form of a Scala UDF, and the verifier checks equivalence between the Scala UDF and the
proposed SQL query. If the verifier disproves equivalence, it also provides an input 𝐼 on which the
reference implementation (i.e., Scala UDF) and the proposed SQL query differ. In the next iteration,
the inductive synthesizer needs to produce a SQL query that is consistent with (𝐼 , 𝑓 (𝐼)) where 𝑓 (𝐼)
is the output of the reference implementation on input 𝐼 . Thus, the search problem solved by the
inductive synthesizer becomes harder and harder over time as the verifier provides more and more
counterexamples.

Since inductive synthesis is ultimately a search problem, almost all instantiations of the CEGIS
paradigm impose an upper bound on the size of the search space considered by the inductive
synthesizer. As standard, we assume that size of the synthesized program is proportional to the size
of the reference implementation (Schkufza et al., 2013, Van Geffen et al., 2020, Wang et al., 2019).
That is, in our context, the larger the input UDF, the larger the search space that the inductive
synthesizer needs to consider.

5 SYNTHESIS ALGORITHM
In this section, we describe our lazy inductive synthesis algorithm for translating user-defined
functions to SQL expressions. We first give a high-level overview of the algorithm and then describe
the details of the core procedures.

5.1 Top-level algorithm
Algorithm 1 shows the outer loop of our synthesis algorithm called UDF2SQL. This procedure takes
as input a user-defined function 𝐹 and returns a SQL expression 𝐸 that is semantically equivalent to
𝐹 (or null if no equivalent expression is found). To simplify presentation and avoid naming collisions,
we assume that the UDF has been converted to static single assignment (SSA) form (Cytron et al.,
1991). At a high level, the UDF2SQL procedure maintains two data structures:
• A worklist𝑊 contains a set of decompositions of the UDF, where each decomposition is repre-
sented by a dataflow graph.
• A map Ω of partial results, mapping each code snippet 𝑆 in function 𝐹 to its corresponding SQL
expression 𝐸. In other words, Ω is used to memoize partial synthesis results.
In the beginning of the algorithm (line 3), the worklist contains the initial DFG of the input

function — i.e., output of ConstructDFG. While the details of the ConstructDFG procedure are not
important for the synthesis algorithm, it is worth noting that our implementation constructs this
DFG in a way that minimizes the size of the code snippets labeling each node. In other words, the
initial DFG corresponds to the most aggressive decomposition of the UDF.

J. ACM, Vol. xx, No. x, Article xxx. Publication date: x 2021.

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

UDF to SQL Translation through Compositional Lazy Inductive Synthesis xxx:9

Algorithm 1 Top-level synthesis algorithm
1: function UDF2SQL(𝐹)
2: Input: A user-defined function 𝐹

3: 𝑊 ← {ConstructDFG(𝐹)}
4: Ω ← ∅
5: while𝑊 ≠ ∅ do
6: 𝐺 ← PickMostPromising(𝑊, ⪯)
7: (𝐸, 𝑛) ← SynthFromDecomp(𝐺,Ω)
8: if 𝐸 ≠ null then return 𝐸

9: 𝑊 ←𝑊∪ CoarsenDecomp(𝐺,𝑛)
10: return null

Algorithm 2 Compositional synthesis from DFG
1: function SynthFromDecomp(𝐺,Ω)
2: Input: DFG 𝐺 = (𝑁𝐴, 𝑁𝑆 , 𝑁𝑅, 𝐸, 𝐿)
3: Input: Mapping Ω containing partial synthesis results
4: for each 𝑛 ∈ 𝑁𝑆 do
5: 𝑆 ← 𝐿(𝑛)
6: if 𝑆 ∉ Domain(Ω) then
7: Ω[𝑆] ← Cegis(𝑆, InLabels(𝑛),OutLabels(𝑛))
8: if Ω[𝑆] = null then return (null, 𝑛)
9: 𝐸 ← CodeGen(𝐺,Ω)
10: return (𝐸, null)

After initialization, the algorithm enters a loop that terminates either when it finds an equivalent
SQL expression or exhausts all possible decompositions of the initial DFG. Specifically, it dequeues
the most promising decomposition from the worklist using the PickMostPromising function, which
returns the most fine-grained decomposition in𝑊 . Since the search space of the inductive syn-
thesizer is proportional to the size of the input program (recall Section 4.2), picking the most
fine-grained decomposition translates into solving simpler inductive synthesis problems first. More
formally, PickMostPromising returns a dataflow graph 𝐺 ∈𝑊 with the following property:

∀𝐺 ′ ∈𝑊 . 𝐺 ≠ 𝐺 ′⇒ 𝐺 ′ ⪯̸ 𝐺

Next, given a decomposition strategy represented by 𝐺 , UDF2SQL invokes the SynthFromDe-
comp procedure to synthesize an equivalent SQL expression using the chosen decomposition. If
synthesis succeeds (e.g., returned expression 𝐸 is not null), the algorithm terminates and returns 𝐸
as a solution. Otherwise, SynthFromDecomp populates the map Ω with its partial synthesis results
and produces a node 𝑛 ∈ 𝐺 for which synthesis failed. Finally, the CoarsenDecomp procedure
coarsens the current decomposition𝐺 by merging the failed node 𝑛 with one of its neighboring
nodes and produces a set of new decompositions that are added to the worklist at line 9. In the
remainder of this section, we explain the SynthFromDecomp and CoarsenDecomp procedures in
more detail.

J. ACM, Vol. xx, No. x, Article xxx. Publication date: x 2021.

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

xxx:10 Guoqiang Zhang, Yuanchao Xu, Xipeng Shen, and Işıl Dillig

Source
Program Examples

CandidateTarget
Program

PBE
Synthesizer

Example
Generator

Verifier

Add counterexample
when fail

Output
when

succeed

Fig. 7. Our instantiation of the CEGIS paradigm

5.2 Synthesis from Dataflow Graph
Our algorithm for synthesizing SQL code for a given decomposition (i.e., dataflow graph) is presented
in Algorithm 2. The procedure SynthFromDecomp takes two inputs:
• A dataflow graph 𝐺 = (𝑁𝐴, 𝑁𝑆 , 𝑁𝑅, 𝐸, 𝐿) representing the current decomposition,
• Partial synthesis results Ω.

The idea behind SynthFromDecomp is as follows: For each statement node 𝑛 ∈ 𝑁𝑆 of the current
decomposition, it uses counterexample-guided inductive synthesis (line 7) to find an equivalent
SQL expression for 𝐿(𝑛). If CEGIS is successful for every node 𝑛 ∈ 𝑁𝑆 , it then stitches together
the resulting SQL expressions by calling CodeGen at line 9. However, if synthesis is unsuccessful
for any DFG node 𝑛, the algorithm returns 𝑛 as a “problem” node (line 8). It is worth noting that
SynthFromDecomp uses partial results Ω to avoid re-synthesizing statements that have already
been synthesized previously: In particular, if 𝑆 is already in the domain of Ω (line 6), our algorithm
does not invoke CEGIS and simply reuses the previous synthesis result.

Next, we explain how to instantiate the CEGIS paradigm in our setting as well as how to generate
a full SQL query from individual synthesis results.

5.2.1 CEGIS Instantiation. Figure 7 illustrates how we instantiate the CEGIS paradigm in our
context. Specifically, our CEGIS instantiation takes the following inputs:
• A code snippet 𝑆 for which we want to synthesize an equivalent SQL expression
• The set of input variables 𝑥 — these correspond to the label of incoming edges of the corresponding
DFG node
• The set of output variables 𝑦 (i.e., edge labels for outgoing edges of the DFG node)

Given these inputs, our CEGIS instantiation works as follows. First, we generate an initial set of
inputs by choosing random values of 𝑥 and executing 𝑆 on these inputs to get corresponding values
for outputs 𝑦. We then use an off-the-shelf programming-by-example (PBE) engine (Martins et al.,
2019) to find a SQL expression 𝑆 ′ that satisfies these input-output examples. Next, we translate both
the synthesized SQL expression 𝑆 ′ and the original code snippet 𝑆 to C code in a syntax-directed
way and invoke an off-the-shelf model checker (Clarke et al., 2004) to test equivalence between 𝑆

and 𝑆 ′. If they are not equivalent, we obtain an arbitrary counterexample from the model checker
and invoke the PBE engine with this additional example.

Example 5.1. Consider the following code snippet in a DFG node:
var isPalindrome = true
for (i <- 0 until s.size)

if (s(i) != s(s.size-i-1)) {
isPalindrome = false
break

J. ACM, Vol. xx, No. x, Article xxx. Publication date: x 2021.

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

UDF to SQL Translation through Compositional Lazy Inductive Synthesis xxx:11

Algorithm 3 Code Generation for Each DFG Node
1: function CodeGen(𝑛,Ω)
2: Input: A DFG node 𝑛
3: Input: Synthesis results Ω
4: 𝐸 ← Ω(𝑛)
5: for each 𝑒 ∈ InEdges(𝑛) do
6: (𝑛′, 𝑣) ← (Source(𝑒), Label(𝑒))
7: if IsArg(𝑛′) then
8: subExps[𝑣] ← 𝐿(𝑛′)
9: else
10: parentRes← CodeGen(𝑛′,Ω)
11: subExps[𝑣] ← parentRes[𝑣]
12: return map(𝐸, 𝜆𝑡 .(Var(𝑡), replace(Def (𝑡), subExps)))

}

This piece of code tests if a string is a palindrome. The input variable is s and the output variable is
isPalindrome. We start by choosing a few random inputs, say “a” and “xy”, and then execute the
code on these inputs to get the following examples 𝐸:

𝐸 = {“𝑎” ↦→ true, “𝑥𝑦” ↦→ false}
Given these examples, the PBE engine returns the candidate expression 𝜆𝑥 .𝑥 == “𝑎”. This is
clearly wrong, and the verifier returns a counterexample, say “𝑏”. We then execute the reference
implementation on this input and obtain the following examples:

𝐸 ′ = {“𝑎” ↦→ true, “𝑥𝑦” ↦→ false, “𝑏” ↦→ true}
Next, the PBE engine returns another incorrect expression 𝜆𝑥 . 𝑙𝑒𝑛𝑔𝑡ℎ(𝑥) == 1, so the verifier finds
a new counter-example “aba". Our new examples now become:

𝐸 ′′ = {“𝑎” ↦→ true, “𝑎𝑏” ↦→ false, “𝑏” ↦→ true, “𝑎𝑏𝑎” ↦→ true}
Finally, in the third iteration, the PBE engine returns the expression 𝜆𝑥 . 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 (𝑥) == 𝑥 which
can be proven equivalent to the reference implementation, so the CEGIS loop terminates.

5.2.2 Code generation. Once we obtain the synthesis results for each node 𝑛 in the dataflow
graph, we generate the final SQL expression by traversing the DFG and substituting synthesis results
for intermediate variables. In particular, Algorithm 3 describes our code generation procedure
for each node in the DFG. The idea behind CodeGen is as follows: For a given node 𝑛, we first
recursively generate code for all of its parents, which corresponds to obtaining SQL expressions for
intermediate variables used in Ω(𝑛) (lines 5–11). We then substitute these intermediate variables
used in Ω(𝑛) with their corresponding SQL expressions obtained through the recursive call (line
12). In more detail, consider a synthesis result such as (𝑒1 as 𝑡1, . . . , 𝑒𝑛 as 𝑡𝑛), where each 𝑒𝑖 refers
to intermediate columns defined in its parent block 3. Line 12 of Algorithm 3 returns the mapping
[𝑡1 ↦→ 𝑒 ′1, . . . , 𝑡𝑛 ↦→ 𝑒 ′𝑛] where each 𝑒 ′𝑖 is obtained by substituting intermediate variables in 𝑒𝑖 with a
SQL expression over the arguments. The following example illustrates this code generation process.

Example 5.2. Consider the DFG and synthesis results shown in Figure 3(c). The CodeGen
procedure generates SQL expressions for each node in the DFG as follows.
3For a SQL expression 𝑒′ ≡ 𝑒 as 𝑡 , we use the notation Var(𝑒′) to refer to 𝑡 and Def (𝑒′) to refer to 𝑒 .

J. ACM, Vol. xx, No. x, Article xxx. Publication date: x 2021.

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

xxx:12 Guoqiang Zhang, Yuanchao Xu, Xipeng Shen, and Işıl Dillig

Algorithm 4 Coarsen decomposition
1: function CoarsenDecomp(𝐺,𝑛)
2: Input: DFG 𝐺 = (𝑁𝐴, 𝑁𝑆 , 𝑁𝑅, 𝐸, 𝐿)
3: Input: 𝑛 ∈ 𝑁𝑆 , the node for which synthesis failed
4: Output: A new set of dataflow graphs
5: 𝑆 ← ∅
6: for each 𝑛′ ∈ 𝑁𝑆 do
7: if isNeighbor(𝑛, 𝑛′) then
8: 𝐺 ′← MergeNodes(𝐺,𝑛, 𝑛′)
9: if isAcyclic(𝐺 ′) then
10: 𝑆 ← 𝑆 ∪𝐺 ′
11: return 𝑆

• For node 𝐴′, we generate the SQL expression trim(arg1).
• For node 𝐵′, we generate the expression if (arg2, trim(arg1), arg1)) where the second argument
is obtained through a recursive call.
• For node 𝐸 ′, we generate the expression:

initcap(if (arg2, trim(arg1), arg1))
This is also the return value of CodeGen for the whole DFG.

5.3 Coarsening the Decomposition
Recall that our main synthesis procedure (Algorithm 1) performs lazy inductive synthesis by
gradually coarsening the initial decomposition. In this section, we explain the CoarsenDecomp
procedure, shown in Algorithm 4, for generating new decompositions when inductive synthesis
fails. This procedure takes two inputs:
• A failing decomposition represented by dataflow graph 𝐺
• A DFG node 𝑛 for which inductive synthesis fails

The idea behind CoarsenDecomp is quite simple: For each neighbor 𝑛′ of 𝑛, we generate a new
dataflow graph that is the same as𝐺 except that nodes 𝑛 and 𝑛′ have been merged. To merge nodes
𝑛 and 𝑛′, we follow the following steps:
• Generate a new node𝑚 with label 𝐿(𝑛);𝐿(𝑛′)
• The incoming (resp. outgoing) edges of𝑚 become the incoming (resp. outgoing) edges of both 𝑛
and 𝑛′ (except for those edges between 𝑛, 𝑛′)
• 𝐺 ′ includes𝑚 and all nodes of 𝐺 except 𝑛, 𝑛′
• 𝐺 ′ includes all edges of 𝐺 except those involving 𝑛 or 𝑛′ as well as all new edges involving𝑚
Note that line 9 of Algorithm 4 checks whether the resulting graph 𝐺 ′ is acyclic before adding

𝐺 ′ to the worklist because a valid dataflow graph is required to be acylic.

Example 5.3. Figure 8a shows a new DFG obtained by merging nodes 𝐴 and 𝐵 in the left DFG.
Figure 8b shows the graph obtained by merging nodes 𝐴 and 𝐶 . However, this graph is rejected
since it is cyclic and therefore an invalid DFG.

As mentioned earlier, coarsening the decomposition is useful after an unsuccessful synthesis
attempt because the previous decomposition strategy may have been too aggressive. That is, while
a statement 𝑆 may not have an equivalent SQL expression, it is possible that a larger code fragment
𝑆 ′; 𝑆 does have an SQL equivalent, as illustrated in Section 2. Of course, the bigger the code fragment,

J. ACM, Vol. xx, No. x, Article xxx. Publication date: x 2021.

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

UDF to SQL Translation through Compositional Lazy Inductive Synthesis xxx:13

c=a+b
e=c*d

d a

e c

b

f=e-c

f

C

A'

c

d
c=a+b

a

e=c*d

c

e

b

f=e-c

f

A

B

C

(a) A valid merge

cc=a+b
f=e-c e e=c*d

d
a b

f

A''
B

c

d
c=a+b

a

e=c*d

c

e

b

f=e-c

f

A

B

C

(b) An invalid merge due to cyclic edges

Fig. 8. Merging two nodes

the larger the search space that needs to be considered by the CEGIS engine. Thus, coarsening the
decomposition in a demand-driven way allows the overall synthesis algorithm to be more scalable
in practice, as we discuss next.

5.4 Complexity Analysis
We first analyze the time complexity of the Cegis procedure in Algorithm 2. Let 𝑁 be the number
of statements in a DFG node, so the size of the target program is bounded by 𝛼𝑁 for some constant
𝛼 . In the worst case, CEGIS explores the entire search space, so its worst-case time complexity is
𝑂 (𝐹𝛼𝑁), where 𝐹 is the number of built-in SQL functions that the synthesizer supports.

Next, we analyze the time complexity of lazy inductive synthesis. In the best case, no coarsening
is required, so each statement in the UDF is mapped to a DFG node. In this case, the time complexity
of our technique is 𝑂 (𝑆𝐹𝛼). Since 𝐹 and 𝛼 are constants, this is 𝑂 (𝑆), in which 𝑆 is the number of
statements in the UDF. Hence, the complexity of our technique can be exponentially better than
standard CEGIS. In general, if there are 𝐶 coarsening passes, and the largest coarsened node has
𝑁𝐶 statements, then the time complexity is 𝑂 (𝐶𝐹𝛼𝑁𝐶) . In practice, we observe that the number of
coarsening steps is small (approximately 2 on average in our evaluation); thus, our proposed lazy
inductive synthesis technique works significantly better than standard CEGIS in practice.

6 IMPLEMENTATION AND OPTIMIZATIONS
We have implemented our proposed method in a tool called CLIS targeting the Spark framework (Za-
haria et al., 2010). We choose Spark as the test-bed due to its popularity and extensive use of UDFs.
CLIS aims to accelerate Spark programs by replacing user-defined functions written in Scala
with built-in SQL expressions whenever possible. Thus, CLIS can be viewed as a super-optimizer
targeting Spark SQL programs.

In the rest of this section, we discuss some optimizations over the basic synthesis algorithm from
Section 5.

6.1 Parallelization
The compositional synthesis technique of Algorithm 2 is embarrassingly parallel in that each DFG
node can be translated independently. Thus, CLIS creates a new thread to run the CEGIS synthesizer
for each DFG node. If there is no idle CPU, CLIS waits until one thread is finished before creating a

J. ACM, Vol. xx, No. x, Article xxx. Publication date: x 2021.

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686

xxx:14 Guoqiang Zhang, Yuanchao Xu, Xipeng Shen, and Işıl Dillig

new thread. If any thread exits with synthesis failure, then CLIS abandons the current DFG and
coarsens its decomposition.

6.2 Type-based Pruning
Our implementation performs one important optimization over the algorithm from Section 5. In our
description of the UDF2SQL algorithm, the inductive synthesizer does not consider the input-output
types of the code fragment to be synthesized. However, in practice, UDFs often involve intermediate
types that are not supported by SQL. For instance, consider the following UDF:

def regexMatch(str: String, pattern: String): Boolean = {
val regex: Regex = pattern.r
return regex.matches(str)

}

Here, each of the two lines can be represented using separate nodes in the DFG. However, the
data dependence between these nodes is through a variable of type Regex, which is not supported
by SQL. Since it is impossible to find a SQL expression that returns a value of type Regex, we
are guaranteed that the inductive synthesizer will fail on these DFG nodes. Our method uses this
observation to rule out failing decompositions by eagerly merging DFG nodes that “return" a value
whose type is not supported by SQL.

6.3 UDF-level Transformations
CLIS performs a few transformations on the input UDF in order to make subsequent analysis easier.

Handling global variables. While UDFs can access global variables, SQL expressions cannot.
But, in practice, many UDFs only access global variables without modifying them; so it is, in fact,
possible to translate them into an equivalent SQL expression with some additional book-keeping.
To enable the conversion of such UDFs to SQL expressions, we first append each global variable
accessed by the UDF to its argument list. Then, if synthesis is successful, executing the synthesized
SQL expression requires the table to contain a column whose value is equal to the value of the
global variable. To facilitate this, we explicitly add such columns for global variables. For instance,
consider the Spark program:

spark.udf.register("addx", (c:Int)=>c+x)) // x is global
spark.sql("select addx(c) from t")

Here, we first rewrite the original UDF into:

(c:Int,x:Int) => c+x

for which CLIS is able to find the equivalent SQL expression @arg1 + @arg2. To integrate the
synthesized SQL expression into the query, we generate the following code:

spark.table("t").withColumn("x",lit(x)).registerTempTable("t1")
spark.sql("select c+x from t1")

The code snippet above first creates a temporary table t1 that contains an additional column x that
contains the value of global variable x. Then, the SQL query on the second line uses this temporary
table t1 instead of the original table t.

J. ACM, Vol. xx, No. x, Article xxx. Publication date: x 2021.

687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735

UDF to SQL Translation through Compositional Lazy Inductive Synthesis xxx:15

Flattening structs. While Spark allows columns of type struct, our synthesis engine does not
support field accesses. To convert UDFs with field accesses to equivalent SQL expressions, we first
flatten structs into multiple arguments. For instance, consider the following simple UDF:

(x:(Int,Int)) => x._1+x._2

In a pre-processing step, this UDF is rewritten to (x1:Int,x2:Int) => x1+x2. Then, once CLIS
finds an equivalent SQL expression, we perform a post-processing step to map the flattened columns
to the original fields.

6.4 PBE Back-end
Our implementation leverages the Trinity programming-by-example framework (Martins et al.,
2019) for finding an expression that is consistent with a given set of input-output examples. To
specialize Trinity for a given domain, one needs to specify (1) syntax of the DSL in which programs
are to be synthesized, and (2) an optional abstract semantics of this DSL (which is used for pruning
the search space). In our case, the DSL syntax corresponds to SQL projection expressions as defined
in Figure 4, and we include a total of 73 built-in SQL functions. To help the programming-by-
example engine, we also provide coarse-grained abstract semantics (i.e., logical specifications) for
33 of the 73 commonly used built-in functions. For instance, for the string concatenation function,
our specification states that the length of the output is the sum of the lengths of the input strings.
For constants, we restrict the search space of the synthesizer to a fixed set of commonly occurring
values, such as 1, 0, and −1 for integers.

In addition, we employ an optimization called incremental grammar generation introduced in
Casper (Ahmad and Cheung, 2018). Specifically, CLIS accelerates synthesis using two different
grammars: The first (complete) grammar contains all 73 built-in SQL functions, but the second
grammar contains only the 15 most-commonly used ones. For each DFG node, the synthesizer first
tries to find an equivalent SQL expression using the partial grammar; and, if none is found, it runs
the PBE engine using the complete grammar.

6.5 Checking Equivalence
We leverage the CBMC (Clarke et al., 2004) bounded model checker for checking equivalence
between a Scala UDF and a SQL expression. However, since CBMC only works for programs
written in C, we first convert both the source UDF and target SQL expression to C code. This is
achieved by modeling Scala and SQL types and functions in C. For instance, a Scala String is
modeled in C using a struct with two fields, namely size and buffer. Similarly, the ‘+’ operation
on two Scala Strings is modeled by a C function String_concat(). Our implementation of the
Scala-to-C (resp. SQL-to-C translator) is a prototype and does not yet handle all Scala (resp. SQL)
features.

7 EVALUATION
In this section, we describe the results of our evaluation that is designed to answer the following
research questions:
RQ1. How often do programmers write user-defined functions for computations that can be

expressed using SQL expressions with existing built-in functions?
RQ2. How effective is CLIS at synthesizing SQL expressions for those UDFs that have a SQL

equivalent?
RQ3. How much does decomposition help with synthesis? (i.e., how effective is the idea of lazy

inductive synthesis?)

J. ACM, Vol. xx, No. x, Article xxx. Publication date: x 2021.

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

xxx:16 Guoqiang Zhang, Yuanchao Xu, Xipeng Shen, and Işıl Dillig

Table 1. Statistics about the benchmark set

Total # of UDFs 100
LOC per UDF 3 - 35, avg 5
AST size per UDF 9 - 235, avg 38
UDFs with loops 78
UDFs that have SQL equivalent 63

Dynamic features 16

User-defined types

10

Side effects5

No built-in SQL operator

6

Fig. 9. Types of UDFs that do not have SQL equivalent

RQ4. How much of a performance improvement do we obtain by translating UDFs to equivalent
SQL expressions?

RQ5. How much more expressive is CLIS compared to prior work in this space?

7.1 Benchmarks
To answer the research questions listed above, we collected a benchmark set consisting of 100
Spark UDFs using the following methodology. First, we downloaded all Github repositories that
are (a) written in Scala, (b) use the Spark framework, and (c) contain at least one star. Next, we
implemented a tool to extract from these projects all UDFs that conform to CLIS’s requirements
(e.g., no unmodeled Scala features like exceptions). Then we filtered out trivial UDFs that contain
at most one operator. Finally, among the remaining UDFs, we randomly sampled 100 to use for our
evaluation. Table 1 gives statistics about these UDFs in terms of their AST size, number of lines of
Scala code, and whether they contain loops.

7.2 Manual Study
In order to answer RQ1, we manually inspected all 100 UDFs in our benchmark set and determined
that 63 of them have an equivalent SQL expression. For the remaining 37 benchmarks, Figure 9
summarizes why these UDFs cannot be converted to an equivalent SQL expression. We identified
four different reasons that prevent these UDFs from being expressible in SQL:
• Dynamic features: Some of these UDFs use dynamic Scala features such as reflection or virtual
dispatch that cannot be expressed in SQL. These account for 43% of all UDFs that cannot be
converted to SQL.
• User-defined types: 10 of the 37 UDFs use a custom Scala class defined by the user.
• Side effects: 5 of the 37 UDFs modify global variables.
• No built-in SQL operator: 6 of the 27 UDFs use Scala functions (e.g., matrix multiplication,
AES encryption) for which there are no built-in SQL operators.

J. ACM, Vol. xx, No. x, Article xxx. Publication date: x 2021.

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

UDF to SQL Translation through Compositional Lazy Inductive Synthesis xxx:17

Table 2. Main synthesis results

Total convertible UDFs 63
Median synthesis time 9 seconds
Synthesized in 1 minutes 46 (73%)
Synthesized in 5 minutes 54 (86%)
Synthesized in one hour 58 (92%)
Decomposition coarsened 22 (35%)
Max top-level iterations 12
Avg top-level iterations 1.97

Result #1: 63% of the UDFs in our benchmark set have equivalent SQL expressions. The
remaining ones cannot be expressed in SQL due to side effects, dynamic language features,
custom types, and use of operators that do not have a built-in SQL equivalent.

7.3 Effectiveness of CLIS
In this section, we present the results of running CLIS on the 63 UDFs that have SQL equivalents.
The experiments described here are performed on a Linux machine with an Intel Core i5-4570 CPU
(four 3.2GHz cores) with a time limit set to one hour.

As summarized in Table 2, CLIS can successfully synthesize equivalent SQL expressions for 92%
of these benchmarks (58 out of 63) within the given time limit of one hour. Furthermore, the median
synthesis time across all benchmarks 9 seconds; about three quarters of benchmarks (73%) can be
synthesized within one minute, and 86% of the benchmarks can be synthesized within 5 minutes.
Also, as reported in Table 2, the initial decomposition is unsuccessful for 35% of the benchmarks,
meaning that the decomposition needs to be coarsened in order for synthesis to be successful.
The average number of iterations (i.e., decomposition coarsening steps) across all benchmarks is
approximately 2; however, some benchmarks require up to 12 iterations.

Result #2: Among the 63 UDFs that have SQL equivalents, CLIS can successfully synthe-
size SQL expressions for 58 benchmarks (92%) within a time limit of one hour. Furthermore,
synthesis terminates within 9 seconds for half of the benchmarks and within one minute
for 73% of the UDFs.

7.4 Benefits of Decomposition and Laziness
In this section, we perform comparisons and ablation studies4 to answer RQ3. In particular, we
compare CLIS against an ablated version that does not perform lazy inductive synthesis. In partic-
ular, this baseline tries to find a SQL expression that is equivalent to the entire UDF rather than
decomposing it into small snippets. In addition, we also compare the performance of CLIS with
the synthesis technique used in Casper (Ahmad and Cheung, 2018). However, since Casper is
designed for translating Java programs to MapReduce programs, we cannot directly use it in our
setting. Thus, we re-implement Casper’s key techniques for our problem, including incremental
grammar generation and the CEGIS synthesizer backed by Sketch (Solar-Lezama et al., 2006).
The results of this comparison are included in Figure 10. Here, the x-axis shows the number

of benchmarks (sorted according to synthesis time), and the y-axis shows cumulative running
time in seconds. In this plot, the blue line (with dots) shows the results for CLIS running on four
4Ablation study is to compare a system against its variants generated by removing one or more parts of the system.

J. ACM, Vol. xx, No. x, Article xxx. Publication date: x 2021.

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882

xxx:18 Guoqiang Zhang, Yuanchao Xu, Xipeng Shen, and Işıl Dillig

UDFs ordered by synthesis time

C
um

ul
at

iv
e

sy
nt

he
si

s
tim

e
(s

)

1

10

100

1000

10000

10 20 30 40 50 60

CLIS (4 CPUs) CLIS (1 CPU) CLIS (No decomposition) Casper

Fig. 10. Comparing cumulative synthesis time of different settings and techniques

CPU cores, the red line (with triangles) corresponds to the results for CLIS without parallelization,
the yellow line (with squares) represents the ablated version, and the green line (with diamonds)
corresponds to Casper. Overall, CLIS (running on 4 CPUs) solves 2.4× more benchmarks than
the non-compositional (ablated) version and solves 2.8× as many benchmarks as Casper. The
parallel version of CLIS is slightly faster than the non-parallel version and solves two additional
benchmarks. Overall, these results demonstrate that the lazy inductive synthesis idea proposed in
this paper is effective and that our DFG-based decomposition is highly beneficial in practice.

Result #3: The lazy inductive synthesis approach allows CLIS to solve 2.4× more bench-
marks within the one hour time limit compared to an ablation that does not use this idea.
Furthermore, CLIS solves 2.8× as many benchmarks compared to the Casper approach.

7.5 Performance Improvement
In this section, we evaluate RQ4 by measuring the performance improvement obtained by convert-
ing UDFs to SQL. We measure performance improvement both for individual UDFs and TPC-H
workloads. We also consider two case studies for understanding end-to-end improvement in terms
of overall application performance.

7.5.1 Individual UDFs. In this section, we compare the performance of the 58 original Spark UDFs
that can be solved by CLIS against their SQL versions. To perform this comparison, we generate a
synthetic dataset containing 10 million rows for each benchmark. The results of this experiment
are summarized in Table 3. For all except two benchmarks, converting the UDF to a SQL expression
results in a speed-up, with the geometric mean speed-up being 3.5×. Furthermore, for 71% of the
benchmarks, we observe a speed-up exceeding 2×. Overall, these results confirm the hypothesis
that converting UDFs to SQL expressions is quite beneficial in terms of performance.

7.5.2 TPC-H workloads. In this section, we evaluate our method on TPC-H workloads (TPC,
2005). Since the original TPC-H queries do not contain UDFs, we rewrite the queries by replacing
expressions with UDFs as done in previous work (Ramachandra et al., 2017b). While the queries

J. ACM, Vol. xx, No. x, Article xxx. Publication date: x 2021.

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

UDF to SQL Translation through Compositional Lazy Inductive Synthesis xxx:19

Table 3. Improvement on individual UDFs

Total solved UDFs 58 (92% of total convertible UDFs)
UDFs with speedups 56
Speedup factors 1.3-16.3×, geometric mean 3.5×
UDFs of 1-2× speedups 15 (26%)
UDFs of 2-3× speedups 15 (26%)
UDFs of 3-5× speedups 10 (17%)
UDFs of 5-10× speedups 11 (19%)
UDFs of >10× speedups 5 (9%)
UDF with slowdowns 2 (0.7× and 0.9 ×)

100 101

Ratio of execution time against original TPC-H query

Q19

Q17

Q16

Q11

Q8

Q2

TP
C-

H
qu

er
y

ID

5.19±0.26

1.17±0.05

7.13±0.20

1.18±0.11

1.70±0.05

1.32±0.05

1.02±0.06

1.00±0.05

0.97±0.04

0.97±0.10

1.04±0.04

0.99±0.06

Query rewritten with UDFs
Query optimized by CLIS

Fig. 11. Improvement of TPC-H queries with UDFs. Since the original TPC-H queries do not contain UDFs,
we rewrite the queries by replacing expressions with UDFs as done in previous work (Ramachandra et al.,
2017b). Error bars are 95% confidence intervals.

are synthetic, the workloads of TPC-H represent real-world workloads. The rewritten queries are
similar to those presented in the extended version of the Froid paper (Ramachandra et al., 2017b),
except for that our versions have no subqueries inside UDFs because they are not supported by
Spark SQL. We then compare performance between the original TPC-H queries and their rewritten
versions on a 10GB dataset. In this experiment, six of the rewritten queries show significant (> 10%)
performance degradation; thus, we use CLIS to optimize these six queries. Figure 11 shows the
execution time of the three variants (original, rewritten with UDFs, and optimized by CLIS) for
these queries. CLIS improves execution time of all six queries by 1.2 − 7.4×, with the geometric
mean speed-up being 2.2× compared to the version containing UDFs. Furthermore, the queries
optimized using CLIS execute as fast as the original TPC-H queries.

7.5.3 Case study on real Spark applications. In this section, we evaluate the performance benefits of
converting UDFs to SQL expressions in terms of end-to-end application running time. To perform
this case study, we identify two relevant Spark applications using the following methodology. First,
we collect a set of Github applications by searching for relevant keywords (namely, “SparkSession",

J. ACM, Vol. xx, No. x, Article xxx. Publication date: x 2021.

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

xxx:20 Guoqiang Zhang, Yuanchao Xu, Xipeng Shen, and Işıl Dillig

Table 4. Summary of applications

WordCount CcyAggregator

Spark API calls 7 19
API calls with UDF 2 11
convertible UDFs 2 9
UDFs CLIS can handle 1 9

Table 5. Four different test settings

WordCount
input

CcyAggregator
input

Unique
keys

Cluster
size

Setting A 463 MB 233 MB 10,000 8
Setting B 925 MB 466 MB 10,000 8
Setting C 463 MB 233 MB 1,000,000 8
Setting D 463 MB 233 MB 10,000 16

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Speedups

CcyAggregator

WordCount

2.7

1.5

3.1

1.4

2.2

1.3

2.2

1.4

Setting A
Setting B
Setting C
Setting C

Fig. 12. End-to-end improvement for real applications

“read", “groupByKey”). Among the first 10 search results, 5 of them are Spark applications, and,
based on our manual study, only two of those (WordCount and CcyAggregator) seem to consume
a significant portion of their running time executing UDFs. In the remainder of this section, we
describe our experience with using CLIS to optimize these applications.

Case study 1: WordCount. This application counts the number of occurrences of each word in a
text file and contains a total of 7 Spark API calls. As shown in Table 4, two of these calls involve
UDFs, and both of them have an equivalent SQL expression. However, converting one of these
UDFs to SQL requires using a built-in function that CLIS currently does not support. CLIS is able
to optimize the other UDF used in this application.

To measure the end-to-end performance improvement obtained by converting this UDF to SQL,
we use the four different workloads/configurations summarized in Table 5. The workloads are input
files with randomly generated contents. As shown in Figure 12, converting this single UDF to SQL
improves end-to-end running time of the application by 30-50% depending on the setting.

Case study 2: CcyAggregator.We also evaluate the performance improvement on CcyAggregator,
which is used for aggregating different currency rates. This application contains 19 Spark API calls,

J. ACM, Vol. xx, No. x, Article xxx. Publication date: x 2021.

981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

UDF to SQL Translation through Compositional Lazy Inductive Synthesis xxx:21

Table 6. Comparison between CLIS and closely related work

Name∗ Technique Source program Target program Loops handled # Applicable
benchmarks†

CLIS Program synthesis Spark SQL with UDF UDF-free Spark SQL Arbitrary 58
Froid Syntax-driven T-SQL with UDF UDF-free T-SQL None ≤ 11

UDF Decorrelation Syntax-driven SQL with UDF UDF-free SQL Cursor loops ≤ 11
DBridge Syntax-driven Java ORM application SQL Cursor loops ≤ 11

QBS Program synthesis Java ORM application SQL Arbitrary ≤ 21
Casper Program synthesis Java program MapReduce program Arbitrary 21‡

* Citations: Froid (Ramachandra et al., 2017a), UDF Decorrelation (Simhadri et al., 2014), DBridge (Emani et al., 2017),
QBS (Cheung et al., 2013), Casper (Ahmad and Cheung, 2018)

† The number of collected benchmarks that can be solved within one hour. Upper bounds are conservatively estimated.
‡ The technique used by Casper is re-implemented to translate UDF to SQL.

11 of which contain UDFs. Among these eleven, nine have equivalent SQL expressions, and CLIS is
able to convert all nine to SQL.

We evaluate the performance improvement of the optimized application using the same four work-
loads/configurations reported in Table 5. For this application, we observe much larger speed-ups,
ranging from 2.2× to 3.1×, depending on which setting is used. These larger speed-ups compared
to WordCount are expected, as CcyAggregator contains more UDFs that can be optimized.

Result #4: At individual UDF level, we observe an average 3.5× speed-up by converting
UDFs to equivalent SQL expressions. At query level, we see 1.2 − 7.4× speed-up by using
CLIS to convert TPC-H queries with UDFs to pure SQL. In terms of end-to-end application
performance, CLIS enables significant improvements ranging from 1.3× to 3.1× for two
representative Spark applications and four different test settings.

7.6 Expressiveness Compared to Prior Work
Table 6 lists prior techniques for translating code to SQL expressions and reports the maximum
number of benchmarks that can be solved by each technique. As mentioned earlier, Froid (Ra-
machandra et al., 2017a) addresses a very similar problem setting but is only applicable to loop-free
UDFs. Since our benchmark suite5 contains exactly 11 loop-free benchmarks, an upper bound
on the number of benchmarks Froid can handle is 11. The next two techniques from Table 6 can
handle loops, but they are restricted to cursor loops that iterate over query results. Since Spark
SQL prohibits cursor loops, these techniques cannot handle the types of loops that appear in our
benchmark suite. Thus, 11 is also an upper bound on the number of benchmarks that can be handled
by DBridge and the UDF decorrelation technique. Among the 11 loop-free benchmarks, CLIS solves
10 of them within 20 seconds, and times out for only one benchmark, in which there is a statement
corresponding to a long SQL expression.
Next, we consider QBS (Cheung et al., 2013) and Casper (Ahmad and Cheung, 2018), where

the latter can be viewed as an improvement over the former. As mentioned earlier, we have re-
implemented Casper’s synthesis approach approach for our setting and showed that it can only
solve 21 out of the 63 benchmarks within a 1 hour time limit. Thus, this number also serves as an
upper bound on the number of benchmarks that can be solved by QBS and Casper. For only one
out of the 21 benchmarks solved by Casper, CLIS times out because it takes too long time to find a
good decomposition through coarsening.

5Here, we only focus on 63 UDFs that have SQL equivalents

J. ACM, Vol. xx, No. x, Article xxx. Publication date: x 2021.

1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

xxx:22 Guoqiang Zhang, Yuanchao Xu, Xipeng Shen, and Işıl Dillig

Result #5: CLIS can handle more than 5.3× benchmarks compared to prior syntax-driven
techniques, as they cannot deal with the loops found in Spark UDFs. Compared to prior
work based on program synthesis, CLIS can solve at least 2.8× as many benchmarks
within a one-hour time limit.

8 RELATEDWORK
Among prior techniques for translating code to SQL, the most related one to ours is the Froid
tool (Ramachandra et al., 2017a), which is now a feature of the Microsoft SQL Server (Ramachandra
and Park, 2019) for translating T-SQL UDFs to declarative SQL. Froid focuses on a loop-free subset
of UDFs and generates equivalent SQL expressions using rewrite rules. In contrast, CLIS can handle
a much wider class of UDFs using (lazy) inductive synthesis instead of term rewriting. However,
since the Froid approach neither involves search nor requires an equivalence checker, it can be
more efficient on the class of UDFs that it does handle. Simhadri et al. propose a query optimization
technique (Simhadri et al., 2014) to decorrelate UDFs, but this technique can only handle so-called
cursor loops that iterate over query results.

Another closely related tool is QBS (Cheung et al., 2013), which also uses the CEGIS paradigm to
optimize ORM applications. The observation behind this work (as well as other papers (Emani et al.,
2017, 2016, Wiedermann and Cook, 2007, Wiedermann et al., 2008) that focus on the query extraction
problem) is that ORMapplications encourage developers to implement complex relational operations
in application code, so the idea is to optimize such applications by generating more efficient SQL
queries. An improvement over QBS is Casper, which augments CEGIS with incremental grammar
generation. As described in Section 6, CLIS also uses the same optimization proposed in Casper;
however, as demonstrated empirically in Section 7, that technique is not sufficient to solve many
of our benchmarks. Finally, the more recent DBridge work (Emani et al., 2017, 2016) focuses on
the same query extraction problem; however, similar to Froid, they solve this problem using a
(more efficient, but less general) rewrite-based approach. Aggify (Gupta et al., 2020) converts cursor
loops in UDFs or ORM applications to custom aggregates, which are also known as user-defined
aggregate functions. Similar to Froid and DBridge, Aggify also uses a rewrite-based approach and
inherits the same general trade-offs between generality and efficiency.

Optimizing code with UDFs. There have been several recent efforts to optimize UDFs used in
data flow (MapReduce-style) programs. For instance, PeriSCOPE (Guo et al., 2012) tries to optimize
UDFs by breaking UDF code into pieces that can be moved around in the execution plan. The
Pact programming model (Hueske et al., 2013) reorders UDFs based on semantic information
obtained from static code analysis. Sofa (Rheinländer et al., 2014) introduces UDF annotations to
help optimization, and the Tupleware (Crotty et al., 2015) compiler architecture unifies workflow
and UDF in the LLVM IR to perform optimization. Flare (Essertel et al., 2018) unifies UDFs and
queries in a generative programming framework (Rompf and Odersky, 2012) to enable native code
generation of the whole query. Biltz (Schlaipfer et al., 2017) optimizes queries in an interestingly
contrary direction to our work: Instead of converting UDF to SQL, it synthesizes UDFs to replace
certain expensive subqueries. Finally, the technique proposed in (Sousa et al., 2014) optimizes
dataflow programs by re-using computations across different UDFs that operate on the same data.

Compositional program synthesis. The technical approach used in this paper is related to other
techniques that try to decompose a program synthesis problem into simpler sub-problems. For
example, 𝜆2 (Feser et al., 2015) and FlashMeta (Polozov and Gulwani, 2015) perform compositional
programming-by-example by inferring input-output examples for sub-problems, and Synquid (Po-
likarpova et al., 2016) performs compositional synthesis from refinement types using so-called

J. ACM, Vol. xx, No. x, Article xxx. Publication date: x 2021.

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

UDF to SQL Translation through Compositional Lazy Inductive Synthesis xxx:23

round-trip type checking and abduction. CPS (Raza et al., 2015) leverages natural language descrip-
tions (in addition to examples) to decompose the synthesis problem into smaller sub-problems.
Domino (Sivaraman et al., 2016), a DSL designed for programmable network switches, performs
compilation using decomposition and program synthesis: the compiler first decomposes a loop-free
Domino program to a pipeline and then employs a CEGIS synthesizer to generate code for each
pipeline stage. Dexter (Ahmad et al., 2019) translates image processing libraries written in C++ to
Halide (an image processing DSL) and exploits domain-specific knowledge to decompose the source
program. Recent work by (Huang et al., 2020) proposes a compositional synthesis framework that
leverages both deductive and inductive to solve SyGuS problems (Alur et al., 2013). However, in
contrast to these techniques, our decomposition is guided by a dataflow graph, and it is iteratively
coarsened to perform inductive synthesis in a lazy manner.

9 LIMITATIONS
Despite enabling the conversion of many Spark UDFs to SQL expressions, CLIS has a number of
limitations. First, CLIS relies on a verification oracle to check equivalence between a source UDF
and a target SQL expression. Like all CEGIS-based synthesis tools, we implement this verification
oracle using a bounded model checker, which only guarantees equivalence up to some bound
(where the bound is the number of times loops are unrolled). Thus, in principle, it is possible for
CLIS to produce a SQL expression that is not actually equivalent to the original UDF. However,
we have confirmed through manual inspection that this is not the case for any of the benchmarks
in our evaluation. This limitation of CLIS can be overcome by using heavier-weight equivalence
checking tools such as SymDiff (Lahiri et al., 2012) or Coeus (Chen et al., 2019).
Second, CLIS does not support all Scala features that may be used in a UDF. Most of these

limitations are inherited from shortcomings of other tools that CLIS leverages. For example, the
CBMC tool used as our verification oracle has limited support for floating point arithmetic; thus
UDFs containing floating point operations may fail to be verified.
Third, CLIS focuses on scalar Spark UDFs written in Scala. Beyond scalar UDFs that produce

one output row from one input row, there are also other kinds of UDFs, such as custom aggregate
functions that aggregate multiple rows into one row or table-valued functions that produce many
rows from one row. While our current implementation does not support such UDFs, we see no
fundamental problem in applying the lazy inductive synthesis method proposed in this paper to
other types of UDFs, SQL engines, or other languages beyond Scala.

10 CONCLUSION
We have proposed a new technique, and its implementation in a tool called CLIS, for converting
Spark UDFs (written in Scala) to equivalent SQL expressions. Our method is based on a new
technical idea call compositional lazy inductive synthesis, where the goal is to reduce the search
space of the inductive synthesizer through speculative decomposition and then lazily coarsen the
decomposition if synthesis fails. Both the decomposition and gradual coarsening are driven by the
dataflow graph representation of the UDF.

To evaluate CLIS, we collected 100 scalar Spark UDFs written in Scala and manually confirmed
that 63 of them can be converted to SQL. Among these 63 UDFs, CLIS can successfully synthesize
58 of them within a time limit of one hour, and its median synthesis time is 9 seconds. We also
performed an ablation study to evaluate the effectiveness of the proposed approach and showed that
CLIS can solve 2.4× more benchmarks compared to an ablation that does not leverage DFG-guided
decomposition. Finally, we demonstrated that CLIS yields significant speeds-ups (average speed-up
of 3.5× per UDF and between 1.3− 3.1× in terms of end-to-end running time for two representative
applications and several workloads).

J. ACM, Vol. xx, No. x, Article xxx. Publication date: x 2021.

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176

xxx:24 Guoqiang Zhang, Yuanchao Xu, Xipeng Shen, and Işıl Dillig

Although our focus in this work is on UDF to SQL translation in this work, our proposed approach
is more generally expected to be useful in settings where the source program can be decomposed
into small translatable pieces. For example, another use case for this technique could be translating
linear algebra or data cleansing code written in the basic Java language to expressions in specialized
APIs targeting these domains. We leave it to future work to explore the applicability of the CLIS
approach in other domains.

REFERENCES
Maaz Bin Safeer Ahmad and Alvin Cheung. 2018. Automatically Leveraging MapReduce Frameworks for Data-Intensive

Applications. In Proceedings of the 2018 International Conference on Management of Data (Houston, TX, USA) (SIGMOD
’18). Association for Computing Machinery, New York, NY, USA, 1205–1220. https://doi.org/10.1145/3183713.3196891

Maaz Bin Safeer Ahmad, Jonathan Ragan-Kelley, Alvin Cheung, and Shoaib Kamil. 2019. Automatically Translating Image
Processing Libraries to Halide. ACM Trans. Graph. 38, 6, Article 204 (Nov. 2019), 13 pages. https://doi.org/10.1145/
3355089.3356549

R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A.
Udupa. 2013. Syntax-guided synthesis. In 2013 Formal Methods in Computer-Aided Design. 1–8.

Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman, and Yunshan Zhu. 2003. Bounded model checking.
(2003).

Jia Chen, Jiayi Wei, Yu Feng, Osbert Bastani, and Isil Dillig. 2019. Relational Verification Using Reinforcement Learning. 3,
OOPSLA, Article 141 (Oct. 2019), 30 pages. https://doi.org/10.1145/3360567

Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. 2013. Optimizing Database-Backed Applications with Query
Synthesis. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation
(Seattle, Washington, USA) (PLDI ’13). Association for Computing Machinery, New York, NY, USA, 3–14. https:
//doi.org/10.1145/2491956.2462180

Edmund Clarke, Daniel Kroening, and Flavio Lerda. 2004. A Tool for Checking ANSI-C Programs. In Tools and Algorithms
for the Construction and Analysis of Systems (TACAS 2004) (Lecture Notes in Computer Science, Vol. 2988), Kurt Jensen and
Andreas Podelski (Eds.). Springer, 168–176.

Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska, Carsten Binnig, Ugur Cetintemel, and Stan Zdonik. 2015.
An Architecture for Compiling UDF-Centric Workflows. Proc. VLDB Endow. 8, 12 (Aug. 2015), 1466–1477. https:
//doi.org/10.14778/2824032.2824045

Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and F Kenneth Zadeck. 1991. Efficiently computing static
single assignment form and the control dependence graph. ACM Transactions on Programming Languages and Systems
(TOPLAS) 13, 4 (1991), 451–490.

K. Venkatesh Emani, Tejas Deshpande, Karthik Ramachandra, and S. Sudarshan. 2017. DBridge: Translating Imperative Code
to SQL. In Proceedings of the 2017 ACM International Conference on Management of Data (Chicago, Illinois, USA) (SIGMOD
’17). Association for Computing Machinery, New York, NY, USA, 1663–1666. https://doi.org/10.1145/3035918.3058747

K. Venkatesh Emani, Karthik Ramachandra, Subhro Bhattacharya, and S. Sudarshan. 2016. Extracting Equivalent SQL from
Imperative Code in Database Applications. In Proceedings of the 2016 International Conference on Management of Data
(San Francisco, California, USA) (SIGMOD ’16). Association for Computing Machinery, New York, NY, USA, 1781–1796.
https://doi.org/10.1145/2882903.2882926

Gregory Essertel, Ruby Tahboub, James Decker, Kevin Brown, Kunle Olukotun, and Tiark Rompf. 2018. Flare: Optimizing
Apache Spark with Native Compilation for Scale-Up Architectures and Medium-Size Data. In 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 799–815. https:
//www.usenix.org/conference/osdi18/presentation/essertel

John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing Data Structure Transformations from Input-Output
Examples. SIGPLAN Not. 50, 6 (June 2015), 229–239. https://doi.org/10.1145/2813885.2737977

Zhenyu Guo, Xuepeng Fan, Rishan Chen, Jiaxing Zhang, Hucheng Zhou, Sean McDirmid, Chang Liu, Wei Lin, Jingren Zhou,
and Lidong Zhou. 2012. Spotting Code Optimizations in Data-Parallel Pipelines through PeriSCOPE. In Proceedings of
the 10th USENIX Conference on Operating Systems Design and Implementation (Hollywood, CA, USA) (OSDI’12). USENIX
Association, USA, 121–133.

Surabhi Gupta, Sanket Purandare, and Karthik Ramachandra. 2020. Aggify: Lifting the Curse of Cursor Loops using Custom
Aggregates. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. 559–573.

Kangjing Huang, Xiaokang Qiu, Peiyuan Shen, and Yanjun Wang. 2020. Reconciling Enumerative and Deductive Program
Synthesis. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation
(London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY, USA, 1159–1174. https://doi.org/10.
1145/3385412.3386027

J. ACM, Vol. xx, No. x, Article xxx. Publication date: x 2021.

https://doi.org/10.1145/3183713.3196891
https://doi.org/10.1145/3355089.3356549
https://doi.org/10.1145/3355089.3356549
https://doi.org/10.1145/3360567
https://doi.org/10.1145/2491956.2462180
https://doi.org/10.1145/2491956.2462180
https://doi.org/10.14778/2824032.2824045
https://doi.org/10.14778/2824032.2824045
https://doi.org/10.1145/3035918.3058747
https://doi.org/10.1145/2882903.2882926
https://www.usenix.org/conference/osdi18/presentation/essertel
https://www.usenix.org/conference/osdi18/presentation/essertel
https://doi.org/10.1145/2813885.2737977
https://doi.org/10.1145/3385412.3386027
https://doi.org/10.1145/3385412.3386027

1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225

UDF to SQL Translation through Compositional Lazy Inductive Synthesis xxx:25

F. Hueske, M. Peters, A. Krettek, M. Ringwald, K. Tzoumas, V. Markl, and J. Freytag. 2013. Peeking into the optimization of
data flow programs with MapReduce-style UDFs. In 2013 IEEE 29th International Conference on Data Engineering (ICDE).
1292–1295.

Shuvendu K Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Henrique Rebêlo. 2012. Symdiff: A language-agnostic semantic
diff tool for imperative programs. In International Conference on Computer Aided Verification. Springer, 712–717.

Ruben Martins, Jia Chen, Yanju Chen, Yu Feng, and Isil Dillig. 2019. Trinity: An extensible synthesis framework for data
science. Proceedings of the VLDB Endowment 12, 12 (2019), 1914–1917.

Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program Synthesis from Polymorphic Refinement Types
(PLDI ’16). Association for Computing Machinery, New York, NY, USA, 522–538. https://doi.org/10.1145/2908080.2908093

Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: a framework for inductive program synthesis. In Proceedings of
the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications.
107–126.

Karthik Ramachandra and Kwanghyun Park. 2019. BlackMagic: Automatic Inlining of Scalar UDFs into SQL Queries with
Froid. Proc. VLDB Endow. 12, 12 (Aug. 2019), 1810–1813. https://doi.org/10.14778/3352063.3352072

Karthik Ramachandra, Kwanghyun Park, K. Venkatesh Emani, Alan Halverson, César Galindo-Legaria, and Conor Cunning-
ham. 2017a. Froid: Optimization of Imperative Programs in a Relational Database. Proc. VLDB Endow. 11, 4 (Dec. 2017),
432–444. https://doi.org/10.1145/3186728.3164140

Karthik Ramachandra, Kwanghyun Park, K. Venkatesh Emani, Alan Halverson, César A. Galindo-Legaria, and Conor
Cunningham. 2017b. Optimization of Imperative Programs in a Relational Database. CoRR abs/1712.00498 (2017).
arXiv:1712.00498 http://arxiv.org/abs/1712.00498

Mohammad Raza, Sumit Gulwani, and NatasaMilic-Frayling. 2015. Compositional Program Synthesis fromNatural Language
and Examples. In Proceedings of the 24th International Conference on Artificial Intelligence (Buenos Aires, Argentina)
(IJCAI’15). AAAI Press, 792–800.

Astrid Rheinländer, Martin Beckmann, Anja Kunkel, Arvid Heise, Thomas Stoltmann, and Ulf Leser. 2014. Versatile
Optimization of UDF-Heavy Data Flows with Sofa. In Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data (Snowbird, Utah, USA) (SIGMOD ’14). Association for Computing Machinery, New York, NY, USA,
685–688. https://doi.org/10.1145/2588555.2594517

Tiark Rompf and Martin Odersky. 2012. Lightweight Modular Staging: A Pragmatic Approach to Runtime Code Generation
and Compiled DSLs. Commun. ACM 55, 6 (June 2012), 121–130. https://doi.org/10.1145/2184319.2184345

Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic Superoptimization. In Proceedings of the Eighteenth
International Conference on Architectural Support for Programming Languages and Operating Systems (Houston, Texas,
USA) (ASPLOS ’13). Association for Computing Machinery, New York, NY, USA, 305–316. https://doi.org/10.1145/
2451116.2451150

Matthias Schlaipfer, Kaushik Rajan, Akash Lal, and Malavika Samak. 2017. Optimizing Big-Data Queries Using Program
Synthesis. In Proceedings of the 26th Symposium on Operating Systems Principles (Shanghai, China) (SOSP ’17). Association
for Computing Machinery, New York, NY, USA, 631–646. https://doi.org/10.1145/3132747.3132773

V. Simhadri, K. Ramachandra, A. Chaitanya, R. Guravannavar, and S. Sudarshan. 2014. Decorrelation of user defined function
invocations in queries. In 2014 IEEE 30th International Conference on Data Engineering. 532–543.

Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad Alizadeh, Hari Balakrishnan, George
Varghese, Nick McKeown, and Steve Licking. 2016. Packet Transactions: High-Level Programming for Line-Rate Switches.
In Proceedings of the 2016 ACM SIGCOMM Conference (Florianopolis, Brazil) (SIGCOMM ’16). Association for Computing
Machinery, New York, NY, USA, 15–28. https://doi.org/10.1145/2934872.2934900

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat. 2006. Combinatorial Sketching
for Finite Programs. SIGARCH Comput. Archit. News 34, 5 (Oct. 2006), 404–415. https://doi.org/10.1145/1168919.1168907

Marcelo Sousa, Isil Dillig, Dimitrios Vytiniotis, Thomas Dillig, and Christos Gkantsidis. 2014. Consolidation of queries with
user-defined functions. ACM SIGPLAN Notices 49, 6 (2014), 554–564.

TPC. 2005. TPC-H Benchmark Specification. http://www.tpc.org
Jacob Van Geffen, Luke Nelson, Isil Dillig, Xi Wang, and Emina Torlak. 2020. Synthesizing JIT Compilers for In-Kernel DSLs.

In Computer Aided Verification, Shuvendu K. Lahiri and Chao Wang (Eds.). Springer International Publishing, Cham,
564–586.

Yuepeng Wang, James Dong, Rushi Shah, and Isil Dillig. 2019. Synthesizing Database Programs for Schema Refactoring. In
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (Phoenix, AZ,
USA) (PLDI 2019). Association for Computing Machinery, New York, NY, USA, 286–300. https://doi.org/10.1145/3314221.
3314588

BenWiedermann andWilliam R. Cook. 2007. Extracting Queries by Static Analysis of Transparent Persistence. In Proceedings
of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Nice, France) (POPL ’07).
Association for Computing Machinery, New York, NY, USA, 199–210. https://doi.org/10.1145/1190216.1190248

J. ACM, Vol. xx, No. x, Article xxx. Publication date: x 2021.

https://doi.org/10.1145/2908080.2908093
https://doi.org/10.14778/3352063.3352072
https://doi.org/10.1145/3186728.3164140
https://arxiv.org/abs/1712.00498
http://arxiv.org/abs/1712.00498
https://doi.org/10.1145/2588555.2594517
https://doi.org/10.1145/2184319.2184345
https://doi.org/10.1145/2451116.2451150
https://doi.org/10.1145/2451116.2451150
https://doi.org/10.1145/3132747.3132773
https://doi.org/10.1145/2934872.2934900
https://doi.org/10.1145/1168919.1168907
http://www.tpc.org
https://doi.org/10.1145/3314221.3314588
https://doi.org/10.1145/3314221.3314588
https://doi.org/10.1145/1190216.1190248

1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

xxx:26 Guoqiang Zhang, Yuanchao Xu, Xipeng Shen, and Işıl Dillig

Ben Wiedermann, Ali Ibrahim, and William R. Cook. 2008. Interprocedural Query Extraction for Transparent Persistence.
SIGPLAN Not. 43, 10 (Oct. 2008), 19–36. https://doi.org/10.1145/1449955.1449767

Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica. 2010. Spark: Cluster computing
with working sets. HotCloud 10, 10-10 (2010), 95.

J. ACM, Vol. xx, No. x, Article xxx. Publication date: x 2021.

https://doi.org/10.1145/1449955.1449767

	Abstract
	1 Introduction
	2 Overview
	3 Problem Definition
	4 Preliminaries
	4.1 Background on Dataflow Graphs
	4.2 Background on CEGIS

	5 Synthesis Algorithm
	5.1 Top-level algorithm
	5.2 Synthesis from Dataflow Graph
	5.3 Coarsening the Decomposition
	5.4 Complexity Analysis

	6 Implementation and Optimizations
	6.1 Parallelization
	6.2 Type-based Pruning
	6.3 UDF-level Transformations
	6.4 PBE Back-end
	6.5 Checking Equivalence

	7 Evaluation
	7.1 Benchmarks
	7.2 Manual Study
	7.3 Effectiveness of CLIS
	7.4 Benefits of Decomposition and Laziness
	7.5 Performance Improvement
	7.6 Expressiveness Compared to Prior Work

	8 Related Work
	9 Limitations
	10 Conclusion
	References

