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A monitor is a widely-used concurrent programming abstraction that encapsulates all shared state between
threads. Monitors can be classified as being either implicit or explicit depending on the primitives they provide.
Implicit monitors are much easier to program but typically not as efficient. To address this gap, there has been
recent research on automatically synthesizing explicit-signal monitors from an implicit specification [Ferles
et al. 2018], but prior work does not exploit all paralellization opportunities due to the use of a single lock for
the entire monitor. This paper presents a new technique for synthesizing fine-grained explicit-synchronization
protocols from implicit monitors. Our method is based on two key innovations: First, we present a new static
analysis for inferring safe interleavings that allow violating mutual exclusion of monitor operations without
changing its semantics. Second, we use the results of this static analysis to generate a MaxSAT instance whose
models correspond to correct-by-construction synchronization protocols. We have implemented our approach
in a tool called Cortado and evaluate it on monitors that contain parallelization opportunities. Our evaluation
shows that Cortado can synthesize synchronization policies that are competitive with, or even better than,
expert-written ones on these benchmarks.

1 INTRODUCTION
Concurrent programming is difficult because it requires developers to consider interactions between
multiple threads of execution and mediate access to shared resources and data. Programming
languages can offer higher-level abstractions to reduce this complexity by making concurrent
programming more declarative. One such abstraction is the monitor [Hansen 1973; Hoare 1974],
which is an object that encapsulates shared state and allows threads access to it only through a set
of operations, between which the monitor enforces mutual exclusion.

Ideally, developers would implement monitors using implicit synchronization, wherein the only
synchronization primitive is a waituntil(P) operation that blocks threads until condition P is satis-
fied. The compiler or runtime can then automatically generate the necessary explicit synchronization
operations (locks, condition variables, etc.) to implement the monitor in a way that respects the
semantics of the implicit monitor. However, automatically deriving an efficient explicit monitor
from its implicit specification is a challenging problem, and there have been several recent research
efforts, including both run-time techniques like AutoSynch [Hung and Garg 2013] and compile-time
tools like Expresso [Ferles et al. 2018], to support implicit-synchronization monitors.

While these state-of-the-art approaches make it possible to program using implicit monitors, they
still achieve sub-optimal performance because they adhere closely to the monitor’s mutual exclusion
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requirement. They generally use a single lock for the entire monitor and allow access by at most

one thread at a time across all monitor operations. In practice, however, many monitors can admit
additional concurrency while still preserving the appearance of mutual exclusion. For example,
consider a FIFO queue monitor that provides take and put operations. These two operations can
safely run concurrently unless the queue is empty or full, as they will not access the same slot in
the queue. Today, realizing this fine-grained concurrency requires expert developers to fall back
to hand-written explicit synchronization. These implementations are subtle and error-prone, and
there is no easy way for developers to determine when they have extracted the maximum possible
concurrency from such an implementation.

This paper presents a new technique to automatically synthesize fine-grained explicit-synchronization
monitors. Our technique takes as input an implicit monitor that specifies the desired operations and
automatically generates an implementation that allows as much concurrency as possible between
those operations while still preserving the appearance of mutual exclusion. The key idea is to de-
compose each monitor operation into a set of fragments and allocate a set of locks to each fragment
to enforce the mutual exclusion requirement while allowing as many fragments as possible to run
concurrently. The resulting implementation selectively acquires and releases locks at fragment
boundaries within each operation and signals condition variables as needed.
At a high level, our approach operates in three phases to generate a high-performance explicit

synchronization monitor from its implicit version:
• Signal placement: First, we use an off-the-shelf technique [Ferles et al. 2018] to infer a signaling
regime which determines where to insert signaling operations on condition variables. While the
output of this tool is sufficient to synthesize a single-lock implementation, it does not admit any
additional concurrency wherein different threads can performmonitor operations simultaneously.
• Static analysis: Second, we perform static analysis to infer sufficient conditions for correctness.
That is, the output of the static analysis is a set of conditions such that if the synthesized monitor
obeys them, it is guaranteed to be correct-by-construction. A key challenge for this static analysis
is to determine which fragments can safely execute concurrently without creating a potential
violation of the monitor semantics. The analysis simulates interleaving each fragment between
the fragments of other operations and determines which possible interleavings are safe.
• Synchronization protocol synthesis via MaxSAT: Finally, we reduce the synthesis problem
to a maximum satisfiability (MaxSAT) instance from whose solution an explicit sychronization
protocol can be extracted. The hard constraints in the MaxSAT problem enforce the correctness
requirements extracted by the static analysis, while the soft constraints encode two competing
objective functions: minimizing the total number of locks used, while maximizing the number of
pairs of fragments that can run concurrently.
We have implemented our proposed approach in a tool called Cortado that operates on Java

monitors and evaluated it on a collection of monitor implementations that are (1) drawn from
popular open-source projects and (2) contain parallelization opportunities that can be achieved
via fine-grained locking. Given only the implicit monitor as input, Cortado synthesizes explicit-
synchronization monitors that perform as well as, or better than, hand-written explicit imple-
mentations by expert developers. Compared to state-of-the-art automated tools for synthesizing
explicit monitors [Ferles et al. 2018], Cortado-synthesized monitors extract more concurrency
and therefore perform much better (up to 39.1×) on heavily contended workloads.

In summary, this paper makes four main contributions:
• A new technique for automatically synthesizing fine-grained monitor implementations that
admit the maximum possible concurrency.
• A novel static static analysis for inferring safe interleaving opportunities between threads.
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Synthesizing Fine-Grained Synchronization Protocols for Implicit Monitors 1:3

1 class ArrayBlockingQueue {
2 int first = 0, last = 0, count = 0;
3 Object[] queue;
4
5 ArrayBlockingQueue(int capacity) {
6 if (capacity < 1)
7 throw new IllegalArgumentException();
8 this.queue = new Object[capacity];
9 }
10
11 void put(Object o) {
12 // Fragment 1
13 waituntil(count < queue.length);
14 // Fragment 2
15 queue[last] = o;
16 // Fragment 3
17 last = (last + 1) % queue.length;
18 // Fragment 4
19 count++;
20 }
21
22 Object take() {
23 // Fragment 5
24 waituntil(count > 0);
25 // Fragment 6
26 Object r = queue[first];
27 queue[first] = null;
28 // Fragment 7
29 first = (first + 1) % queue.length;
30 // Fragment 8
31 count--;
32 return r;
33 }
34 }

(a) Implicit-synchronization ArrayBlockingQueue.

1 class ArrayBlockingQueue {
2 int first = 0, last = 0; Object[] queue;
3 AtomicInteger count = new AtomicInteger(0);
4
5 Lock putLock = new Lock(), takeLock = new Lock();
6 Condition notFull = putLock.newCondition();
7 Condition notEmpty = takeLock.newCondition();
8 // Constructor is the same as the implicit version.
9
10 void put(Object o) {
11 putLock.lock()
12 while (count.get() == queue.length)
13 notFull.await();
14 queue[last] = o;
15 last = (last + 1) % queue.length;
16 int c = count.getAndIncrement();
17 putLock.unlock();
18 if (c == 0) {
19 takeLock.lock();
20 notEmpty.signalAll();
21 takeLock.unlock();}}
22
23 Object take() {
24 takeLock.lock();
25 while (count.get() == 0)
26 notEmpty.await();
27 Object r = queue[first];
28 queue[first] = null;
29 first = (first + 1) % queue.length;
30 int c = count.getAndDecrement();
31 takeLock.unlock();
32 if (c == queue.length) {
33 putLock.lock();
34 notFull.signalAll();
35 putLock.unlock();}
36 return r;}}

(b) Explicit-synchronization ArrayBlockingQueue.

Fig. 1. Motivating example.

• A MaxSAT encoding to automate reasoning about both the correctness and performance of the
synthesized explicit-synchronization monitor.
• An implementation of our technique, Cortado, that outperforms both state-of-the-art automated
tools and expert-written code on benchmarks that can be parallelized via fine-grained locking.

2 OVERVIEW
In this section, we give an overview of our approach through a motivating example. Given the
implicit-synchronization monitor shown in Figure 1a, our goal is to automatically synthesize an
efficient and semantically equivalent explicit-synchronization monitor like the one presented in
Figure 1b. In what follows, we walk through this example and describe how our technique is able
to automatically generate the code in Figure 1b.

2.1 Implicit-synchronization monitor
Our technique takes as input an implicit-synchronization monitor that specifies which operations
should execute atomically and when certain operations are allowed to proceed but does not fix
a specific synchronization protocol for realizing that behavior. For example, Figure 1a shows an
implicit monitor that implements a limited capacity blocking queue via a bounded circular array
buffer. This monitor defines two operations, put and take, that execute atomically (i.e., the body of
each method must appear to execute as one indivisible unit). The put operation adds an object if the
queue is not full, and take removes an object if the queue is not empty. If one of these method calls
cannot proceed (i.e., queue is full or empty), the monitor blocks the calling thread’s execution using
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a waituntil statement until the operation can be executed. For example, the waituntil statement
at line 13 in take blocks execution until there is at least one object in the queue.
As Figure 1a illustrates, implicit-synchronization monitors make concurrent programming

simpler because they are declarative: they merely state which operations are atomic and when
operations can proceed, but they do not specify a particular synchronization protocol for realizing
that desired behavior. However, most programming languages do not offer implicit synchronization
facilities; so, concurrent programs must instead be implemented in terms of explicit synchronization
constructs such as locks and condition variables, as we discuss next.

2.2 Explicit-synchronization monitor
Figure 1b shows an explicit-synchronization implementation of the bounded queue from Figure 1a
that is written by an expert. This implementation uses two distinct locks, putLock and takeLock,
to protect the put and take methods respectively. The explicit-synchronization monitor also uses
an atomic integer for the count field, transforming reads into get() calls (e.g., line 12) and writes
into the appropriate atomic method (e.g., count.getAndIncrement() on line 16). The expert-written
monitor performs explicit signaling via condition variables notFull and notEmpty that are associated
with putLock and takeLock respectively. When a thread cannot execute one of these operations, it
calls await on the appropriate condition variable to block its execution (lines 13 and 26). A thread
blocked in put can only be unblocked by a corresponding take that frees up space in the queue. To
do so, the take must acquire putLock and perform a signal operation on condition variable notFull

(lines 33–35). The logic for take is symmetric (lines 19–21).
Although the expert-written version has more locks than a single global-lock implementation, its

performance will often be better: Introducing two locks allows put and take to execute concurrently,
although multiple concurrent puts are still serialized, as are multiple takes. A single global lock
would admit no concurrency in this case and would still incur the same synchronization overhead
of acquiring and releasing a lock on every method call. The expert implementation mitigates the
overhead of having two locks by acquiring locks selectively: take only acquires the putLock if
it is possible for there to be a put operation currently blocked waiting for space in the queue,
which happens only if the queue was full when take ran (the put/takeLock case is symmetric). This
example demonstrates the intricacy of synthesizing fine-grained locking protocols: instead of only
minimizing the total number of locks, we must also try to maximize the available concurrency.

2.3 Our Approach
Our tool Cortado automatically synthesizes the efficient explicit-synchronization monitor in
Figure 1b given the implicit version from Figure 1a. It does so in three phases: First, it infers when
and how signaling operations should take place. Second, it performs static analysis to infer sufficient
conditions for the synthesized monitor to be correct. Third, it encodes the synchronization protocol
synthesis problem as a MaxSAT instance and uses a model of the MaxSAT problem to generate an
explicit-sychronization monitor. Since prior work can already handle the first phase, we only focus
on the the latter two phases in the following discussion.

Granularity. The granularity of our synthesized locking protocol is at the level of code fragments,
where each fragment is a single-entry region of code within a single method. For example, the
fragments chosen for the blocking queue example are indicated by comments in Figure 1a. Fragments
are the indivisible unit of concurrency in our approach: we aim tomaximize the number of fragments
that can run concurrently, but we do not modify the code within a fragment to introduce extra
concurrency (e.g., by removing data races). Hence, the explicit monitor synthesized by our approach
acquires and releases locks only at fragment boundaries.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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Synthesizing Fine-Grained Synchronization Protocols for Implicit Monitors 1:5

Static analysis. To ensure correctness of the synthesized monitor, our technique needs to
enforce the following three key requirements:
(1) Data-race freedom: Fragments that involve a data race must not be able to run concurrently.
(2) Deadlock freedom: Locks must be acquired and released in an order that prevents deadlocks.
(3) Atomicity: Each monitor operation should appear to take place as one indivisible unit. That is,

even though the implementation can allow thread interleavings inside monitor operations, the
resulting state should be equivalent to one where each method executes truly atomically.
Here, the second requirement (i.e., deadlock freedom) does not necessitate any static analysis, as

we can prevent deadlocks by imposing a static total order ⪯ on locks [Birrell 1989] and ensuring
that locks are acquired and released in a manner that is consistent with ⪯. However, in order to
ensure data-race freedom and atomicity, we need to perform static analysis of the source code
to identify (1) code fragments that have a data race, and (2) interleaving opportunities between
code fragments. Since detection of data races is a well-studied problem, the novelty of our static
analysis lies in identifying safe interleaving opportunities. Hence, the key question addressed by
our analysis is the following: Given a code fragment 𝑓 executed by thread 𝑡 , and two consecutive
code fragments 𝑓1, 𝑓2 executed by a different thread 𝑡 ′, is it safe to interleave the execution of 𝑓 in

between 𝑓1 and 𝑓2 while ensuring that monitor operations appear to take place atomically?
To answer this question, our method performs a novel static analysis to identify a set of such safe

interleavings. For instance, going back to the running example, our analysis determines that it is safe
to interleave the execution of fragment 4 in Figure 1a in between fragments 5 and 6 by checking a
number of commutativity relations between code fragments. In this instance, since our analysis
proves that fragment 4 left-commutes [Lipton 1975] with fragment 5 and right-commutes [Lipton
1975] with 6 and all of its successors, we identify this as a safe interleaving opportunity. On the
other hand, our analysis concludes that interleaving fragment 4 in between 1 and 2 is not safe
because fragment 4 does not left-commute with fragment 1 — intuitively, this is because fragment 4
can falsify predicate count < queue.length that appears in the waituntil statement of fragment 1.

MaxSAT overview. Once we identify possible data races and safe interleavings via static analysis,
we use this information to generate a MaxSAT instance whose solution corresponds to a fine-
grained synchronization protocol. Specifically, our MaxSAT encoding uses a variable h𝑙 𝑗

𝑓𝑖
to indicate

that code fragment 𝑓𝑖 must hold lock 𝑙 𝑗 and generates both hard constraints (for correctness) and
soft constraints (for efficiency) over these variables. Thus, if the MaxSAT solver returns a model in
which variable h𝑙 𝑗

𝑓𝑖
is assigned to true, this means that the synthesized code must acquire lock 𝑙 𝑗

prior to executing fragment 𝑓𝑖 . Similarly, our MaxSAT encoding introduces a variable 𝑎fld indicating
that field fld should be implemented using an atomic type.

The hard constraints in our MaxSAT encoding correspond to the three correctness requirement
mentioned earlier, namely (1) data race prevention, (2) deadlock freedom, and (3) atomicity. On the
other hand, soft constraints encode our optimization objective. In what follows, we give a brief
overview of the different types of constraints in our encoding, focusing only on constraints that
involve lock acquisition variables h𝑙 𝑗

𝑓𝑖
. However, it is worth noting that our technique also generates

constraints on atomic variables 𝑎fld and can automatically convert fields to atomic types whenever
doing so is safe and more efficient than introducing a lock.

Data-race freedom. Given a pair of code fragments (𝑓𝑖 , 𝑓𝑗 ) that have a potential data race
according to the static analysis, our MaxSAT encoding introduces hard constraints of the form∨

𝑘 (h𝑙𝑘𝑓𝑖 ∧ h
𝑙𝑘
𝑓𝑗
) stating that 𝑓𝑖 and 𝑓𝑗 must share at least one common lock. For example, in Figure 1a,

our analysis determines that fragments 4 and 8 cannot run in parallel since they both write to the
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same memory location count. Thus, the MaxSAT instance contains boolean constraints to make
sure that two different threads cannot execute count-- and count++ at the same time.

Deadlock freedom. Our approach precludes deadlocks by imposing a total order ⪯ on locks. In
particular, it enforces that a thread 𝑡 can only acquire lock 𝑙 if 𝑡 does not already hold any lock 𝑙 ′
where 𝑙 ′ ≺ 𝑙 . For example, in Figure 1a, suppose the locking protocol determines that fragments 1
and 2 must hold all locks in sets 𝐿1 and 𝐿2 respectively. Between executing the two fragments, the
code will need to acquire all locks in 𝐿2 \ 𝐿1. Hence, we add constraints 𝑖 < 𝑗 for every pair of locks
𝑙 𝑗 ∈ 𝐿2 \ 𝐿1 and 𝑙𝑖 ∈ 𝐿1 ∩ 𝐿2 so that those locks can be acquired while respecting the order ⪯.

Atomicity. Our MaxSAT encoding also includes constraints to ensure that monitor operations
appear to execute atomically. Suppose that our static analysis determines that a thread cannot
safely execute code fragment 𝑓 in between some other thread’s execution of code fragments 𝑓1
and 𝑓2. To prevent such an unsafe interleaving, we add hard constraints to ensure that fragments
𝑓 , 𝑓1, and 𝑓2 all share at least one common lock. For example, since our analysis determines that
fragment 4 (count++) cannot be interleaved with any other pair of fragments in the same method
put (running concurrently on a different thread), our MaxSAT encoding includes a hard constraint
asserting that fragment 4 must share a lock with all other fragments in the put method.

Soft constraints. Because the efficiency of the synthesized code depends on both the allowed
parallelization opportunities as well as the number of locks, our optimization objective tries to
minimize the number of locks and maximize the number of fragments that can run in parallel. To
encode the latter objective, our MaxSAT encoding includes soft contraints asserting that any two
parallelizable fragments must not share a lock. On the other hand, to encode the former objective,
we add a soft constraint stating that no fragment in𝑚 is holding lock 𝑙 .

Monitor generation. A solution of the generated MaxSAT instance determines (a) which frag-
ments should hold which locks, (b) which fields should be implemented using atomic types, and (c)
which locks should be associated with which condition variables. Thus, together with the output of
the signal placement technique [Ferles et al. 2018], a model of the MaxSAT problem can be auto-
matically translated into the target monitor implementation. For our running example, Cortado
synthesizes precisely the implementation in Figure 1b given the implicit monitor of Figure 1a.

3 PRELIMINARIES
In this section, we describe our source and target languages and define what it means for an explicit
synchronization monitor to correctly implement an implicit one.

3.1 Background on Monitors
In this work, we assume that all shared resources between threads are handled by a monitor class

𝑀 which consists of fields 𝐹 and set of operations (methods) 𝑂 . The fields 𝐹 constitute the only
shared state between threads, which can only access shared state by performing one of the monitor
operations 𝑜 ∈ 𝑂 . These operations can be performed by an arbitrary, yet fixed, number of threads,
and locations reachable through arguments are assumed to be thread-local. We represent each
thread by a unique identifier from set T ⊆ N, and we model memory locations using access paths

(AP) [Landi and Ryder 1992] of the form 𝜋 = 𝑣 (.𝑓 )∗, consisting of a base variable 𝑣 optionally
followed by a finite sequence of field accesses. We also assume that a special this variable stores
the memory location of the monitor object.

Definition 3.1. (Monitor State). A monitor state 𝜎 : T × AP → N is a mapping from pairs (𝑡, 𝜋)
(where 𝑡 is a thread identifier and 𝜋 an access path) to a value.
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Synthesizing Fine-Grained Synchronization Protocols for Implicit Monitors 1:7

Monitor M ::= monitor M {(fld | m)*}

Field fld ::= 𝜏 𝑓 := 𝑒

Method m ::= m(®𝑣){𝑐𝑐𝑟*}

CCR 𝑐𝑐𝑟 ::= waituntil(𝑝);s

Stmt 𝑠 ::= skip | 𝑣 := 𝑒 | 𝑣 .𝑓 := 𝑒

| v.m(®𝑒) | [if (𝑒)]? goto l

| ls1; ls2

LStmt 𝑙𝑠 ::= l:? s
(a) Implicit-synchronization monitor language.

Monitor M ::= monitor M {(fld | sync | m)*}

Field fld ::= 𝜏 𝑓 := 𝑒

Sync sync ::= Lock l := new Lock()

| CondVar cv := l.newCondVar()

| Atomic[𝜏] 𝑎 := 𝑒

Method m ::= m(®𝑣) { 𝑐𝑐𝑟* }

CCR 𝑐𝑐𝑟 ::= (ls)*

Stmt 𝑠 ::= skip | 𝑣 := 𝑒 | 𝑣 .𝑓 := 𝑒

| v.m(®𝑒) | [if (𝑣)]? goto l

| ls1; ls2
| 𝑎𝑝𝑟𝑒 := 𝑎.update(𝜆𝜒.𝑒)

LStmt 𝑙𝑠 ::= l:? s
(b) Explicit-synchronization monitor language.

Fig. 2. Source & target languages. We use 𝑒 and 𝑝 for expressions and predicates respectively.

3.2 Source Language
Our source language, presented in Figure 2a, corresponds to implicit synchronization monitors

without explicit locking or signaling. The body of each monitor operation consists of a sequence of
so-called Conditional Critical Regions (CCRs) [Hoare 1971], which in turn consist of a waituntil

statement followed by one or more regular non-blocking statements. We refer to the predicate of
the waituntil statement of a CCR as its guard and to the rest of the statements as its body. A thread
executes the body of the CCR atomically if its guard evaluates to true; otherwise it suspends its
execution and exits the monitor until the predicate becomes true. More formally, the semantics of
our source language are defined via the notion of an implicit monitor history:

Definition 3.2. (Implicit monitor history). Given a set of threads interacting with each other
through monitor 𝑀𝑠 = (𝐹,𝑂), an implicit monitor history ℎ𝑖 is a sequence (𝑐𝑐𝑟1, 𝑡1) . . . (𝑐𝑟𝑟𝑛, 𝑡𝑛)
where each 𝑐𝑐𝑟𝑖 is a CCR of M𝑠 and 𝑡𝑖 is a thread identifier.

Given history ℎ𝑖 , we define an argument mapping 𝜈𝑖 to be a list whose 𝑖’th element maps formal
parameters of Method(𝑐𝑐𝑟𝑖 ) to their actual value for each event (𝑐𝑐𝑟𝑖 , 𝑡𝑖 ) in ℎ𝑖 .

Definition 3.3. (Implicit monitor semantics). Given a monitor𝑀𝑠 , initial state 𝜎 , and monitor
history ℎ𝑖 with argument mapping 𝜈𝑖 , the operational semantics of𝑀 is defined using a judgment
M𝑠 ⊢ (ℎ𝑖 , 𝜈𝑖 , 𝜎) ⇓ 𝜎 ′ indicating that the new monitor state is 𝜎 ′ after executing ℎ𝑖 on state 𝜎 .

Because our source language is very similar to the one used in Ferles et al. [2018], we omit a
formal definition of the operational semantics. Following that work, we also consider an implicit
history to be valid only if it respects the program order of the input monitor.

3.3 Target Language
Figure 2b presents the language of explicit-synchronization monitors. The overall structure of
this target language is similar to the source language but with a few important differences. First,
an explicit monitor contains locks, conditional variables, and atomic fields, collectively referred
to as synchronization variables. Second, CCRs in the target language do not contain waituntil

statements; instead, the logic of a waituntil statement is implemented by calling methods on the
appropriate condition variable. We assume that synchronization variables support all the standard
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class M {
int x = 0, y = 0, z = 0;
void foo() { x++; y++; }
void bar() { z++; } }

(a) A simple implicit monitor.

class M {
int x = 0, y = 0, z = 0;
Lock l1 = new Lock(), l2 = new Lock();
void foo() { l1.lock(); x++; y++; l1.unlock(); }
void bar() { l2.lock(); z++; l2.unlock(); } }

(b) An explicit monitor implementation of Figure 3a.

ℎ𝑖 = (𝑓 𝑜𝑜, 𝑡1) (𝑏𝑎𝑟, 𝑡2)
ℎ𝑒 = (l1.lock(), 𝑡1) (x++, 𝑡1) (y++, 𝑡1) (l1.unlock(), 𝑡1) (l2.lock(), 𝑡2) (z++, 𝑡2) (l2.unlock(), 𝑡2)
ℎ′𝑒 = (l1.lock(), 𝑡1) (x++, 𝑡1) (l2.lock(), 𝑡2) (y++, 𝑡1) (z++, 𝑡2) (l1.unlock(), 𝑡1) (l2.unlock(), 𝑡2)

(c) Examples of implicit and explicit histories.

Fig. 3. A simple implicit monitor and its explicit implementation.

synchronization operations present in modern concurrent languages (e.g., await, signal, signalAll,
etc.). Finally, our target language contains a special update statement for performing updates on
atomic fields: it takes as argument an atomic field 𝑎 and a unary function 𝑓 and updates the value of
𝑎 atomically as 𝑓 (𝑎). For instance, the statement c𝑝𝑟𝑒 := c.update(𝜆𝜒.𝜒 + 1) atomically increments
c by one and stores the value of c before the update in c𝑝𝑟𝑒 .

Definition 3.4. (Explicit monitor history). Given a set of threads executing in monitor𝑀𝑡 =

(𝐹,𝑂), an explicit monitor history ℎ𝑒 is a sequence (𝑠1, 𝑡1) . . . (𝑠𝑛, 𝑡𝑛) where each 𝑠𝑖 is a (non-
composite) statement of a monitor operation 𝑜 ∈ 𝑂 and 𝑡𝑖 is a thread identifier.

Leveraging the same notion of argument mappings defined in Section 3.2, we define explicit
monitor semantics as follows:

Definition 3.5. (Explicit monitor semantics). Given a monitor𝑀𝑡 , initial state 𝜎 , and monitor
history ℎ𝑒 with argument mapping 𝜈𝑒 , the operational semantics of𝑀𝑡 is defined using a judgment
𝑀𝑡 ⊢ (ℎ𝑒 , 𝜈𝑒 , 𝜎) ↓ 𝜎 ′ indicating that the new state is 𝜎 ′ after executing ℎ𝑒 on initial state 𝜎 .

The full operational semantics of our target language is given in Appendix C.

3.4 Relating Implicit and Explicit Histories
In order to formalize the correctness of our approach, we need to relate an implicit history ℎ𝑖 of a

source monitor𝑀𝑠 with an explicit history ℎ𝑒 of its corresponding target version𝑀𝑡 . Because every
history of an implicit monitor M𝑠 induces a corresponding history of its explicit version M𝑡 , we
define an operation called that Expand that “translates" an implicit history to an explicit one. That
is, given an implicit history ℎ𝑖 with argument mapping 𝜈𝑖 and state 𝜎 , Expand

M𝑡
(ℎ𝑖 , 𝜈𝑖 , 𝜎) returns a

pair (ℎ𝑒 , 𝜈𝑒 ), where ℎ𝑒 is a history of M𝑡 containing all statements executed by ℎ𝑖 under initial state
𝜎 and 𝜈𝑒 is the argument mapping for ℎ𝑒 .

Example 3.6. Consider the implicit monitor of Figure 3a and its explicit counterpart in Figure 3b.
For histories ℎ𝑖 and ℎ𝑒 from Figure 3c we have Expand

M𝑡
(ℎ𝑖 , 𝜈𝑖 , 𝜎) = (ℎ𝑒 , 𝜈𝑒 ) for some 𝜈𝑖 , 𝜈𝑒 .

Using this Expand operation, we can classify explicit histories as being sequential or interleaved:

Definition 3.7. (Sequential history) Let M𝑡 be an explicit monitor implementation of M𝑠 . We
say that an explicit history ℎ𝑒 of monitor M𝑡 with argument mapping 𝜈𝑒 is sequential iff there exist
a history ℎ𝑖 of M𝑠 , argument mapping 𝜈𝑖 , and initial state 𝜎 such that Expand

M𝑡
(ℎ𝑖 , 𝜈𝑖 , 𝜎) = (ℎ𝑒 , 𝜈𝑒 ).

In other words, a sequential history corresponds to an execution in which statements of the
explicit monitor are not interleaved between threads.

Example 3.8. Going back to Figure 3c, history ℎ𝑒 is sequential but ℎ′𝑒 is not.

Next, we introduce the notion of well-formed histories, which, intuitively, respect the program
order of the original implicit monitor:
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Definition 3.9. (Well-formed history) Let Π(ℎ, 𝑡) be the projection of ℎ onto thread 𝑡 (i.e., it
filters out all elements of ℎ not involving thread 𝑡 ). We say that a history ℎ𝑒 of M𝑡 is well-formed iff,
for every thread 𝑡 , there exists sequential histories ℎ1𝑒 , . . . , ℎ𝑛𝑒 such that Π(ℎ𝑒 , 𝑡) = ℎ1𝑒 · · ·ℎ𝑛𝑒 .

Intuitively, well-formed histories respect program dependence in the original monitor for every
thread. By definition, every sequential history is also well-formed. In the remainder of this paper,
we implicitly mean well-formed explicit history whenever we refer to an explicit history.

Example 3.10. Histories ℎ𝑒 , ℎ′𝑒 from Figure 3c are both well-formed. However, the following
history is not well-formed because it does not respect program order: (l2.unlock(), 𝑡) (l2.lock(), 𝑡)
Definition 3.11. (Interleaved history) We say that a history ℎ𝑒 of M𝑡 is interleaved iff it is (1)

well-formed and (2) not sequential.
Example 3.12. History ℎ′𝑒 from Figure 3c is interleaved.
Next, we define what it means for an explicit history to simulate an implicit history.
Definition 3.13. (Simulation relation). Let𝑀𝑡 be an explicit version of implicit monitor𝑀𝑠 . We

say that an explicit history ℎ𝑒 of M𝑡 with argument mapping 𝜈𝑒 simulates (ℎ𝑖 , 𝜈𝑖 ) of M𝑠 on input 𝜎 ,
denoted (ℎ𝑒 , 𝜈𝑒 ) ∽ (ℎ𝑖 , 𝜈𝑖 ), if there exist sequential history ℎ′𝑒 and 𝜈 ′𝑒 such that:

(1) ∀𝑡 . Π(ℎ𝑒 , 𝑡) = Π(ℎ′𝑒 , 𝑡) and (2) Expand
M𝑡
(ℎ𝑖 , 𝜈𝑖 , 𝜎) = (ℎ′𝑒 , 𝜈 ′𝑒 ).

In other words, ℎ𝑒 simulates a history of the original monitor if it is a (well-formed) permutation
of some sequential history ℎ′𝑒 of the explicit monitor M𝑡 .

Example 3.14. Going back to Figure 3c, we have (ℎ′𝑒 , 𝜈 ′) ∽ (ℎ𝑖 , 𝜈) for some 𝜈 , 𝜈 ′.

3.5 Correctness of Explicit-Synchronization Monitors
Using the concepts introduced in the previous section, we now formalize what it means for an
explicit monitor to correctly implement an implicit one.

Definition 3.15. (State equivalence) Let 𝜎 be a program state of an implicit monitor M𝑠 and 𝜎 ′
that of an explicit monitor M𝑡 . We say that 𝜎 and 𝜎 ′ are equivalent modulo M𝑠 , denoted 𝜎 ≡M𝑠

𝜎 ′,
iff for all (𝑡, 𝜋) in the domain of 𝜎 , we have 𝜎 (𝑡, 𝜋) = 𝜎 ′(𝑡, 𝜋)
Intuitively, this notion of equivalence between two monitor states ignores any additional syn-

chronization fields and local variables introduced by translating M to an explicit-synchronization
monitor. Finally, we can define the correctness of an explicit monitor as follows:
Definition 3.16. (Correctness) We say that an explicit monitor 𝑀𝑡 correctly implements an

implicit monitor𝑀𝑠 , denoted as M𝑠 ∼ M𝑡 , iff for all input states 𝜎𝑠 , 𝜎𝑡 s.t. 𝜎𝑠 ≡M𝑠
𝜎𝑡 , we have:

(1) ∀ℎ𝑖 , 𝜈𝑖 . M𝑠 ⊢ (ℎ𝑖 , 𝜈𝑖 , 𝜎𝑠 ) ⇓ 𝜎 ′𝑠 =⇒
(
M𝑡 ⊢ (ExpandM𝑡

(ℎ𝑖 , 𝜈𝑖 , 𝜎𝑠 ), 𝜎𝑡 ) ↓ 𝜎 ′𝑡 ∧ 𝜎 ′𝑠 ≡M𝑠
𝜎 ′𝑡

)
(2) ∀ℎ𝑒 , 𝜈𝑒 . M𝑡 ⊢ (ℎ𝑒 , 𝜈𝑒 , 𝜎𝑡 ) ↓ 𝜎 ′𝑡 =⇒

(
∃ℎ𝑖 , 𝜈𝑖 . (ℎ𝑒 , 𝜈𝑒 ) ∽ (ℎ𝑖 , 𝜈𝑖 ) ∧M𝑠 ⊢ (ℎ𝑖 , 𝜈𝑖 , 𝜎𝑠 ) ⇓ 𝜎 ′𝑠 ∧ 𝜎 ′𝑠 ≡M𝑠

𝜎 ′𝑡
)

The first correctness condition simply states thatM𝑡 does not eliminate any feasible behaviors of
M𝑠 . The second condition, on the other hand, states that every feasible history ofM𝑡 simulates some

implicit history that results in the same state. Intuitively, this means that all statement interleavings
allowed by M𝑡 provide the illusion that all operations of M𝑠 are executed atomically.

4 MAIN ALGORITHM
In this section, we present our main synthesis algorithm. Specifically, Section 4.1 introduces some
preliminary definitions and proves an NP-completeness result to justify the reduction to MaxSAT.
Then, Section 4.2 presents the high-level algorithm, Section 4.3 presents the static analysis for
inferring safe interleavings, and Sections 4.4 presents the details of the MaxSAT encoding.
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4.1 Fragment Dependency Graphs and NP-Completeness
Our main synthesis algorithm is parametrized over a partitioning of the input monitor into code
fragments, where each code fragment defines a unit of computation that we need to assign locks
to. In this section, we clarify our assumptions about these code fragments and prove the NP-
completeness of the problem for a given choice of partition.

First, to define what we mean by a valid partition, we represent each method of the monitor as a
standard control-flow graph (CFG), where each atomic statement belongs to its own basic block.
Given a control-flow graph 𝐺 and node 𝑛, we write Preds(𝐺,𝑛) to indicate the predecessor nodes
of 𝑛 in 𝐺 and Succs(𝐺,𝑛) to indicate its successors. Then, a valid partition of a method into code
fragments is defined as follows:

Definition 4.1. (Partition) Let 𝐺 = (𝑉 , 𝐸) be the CFG representation of a method. Then, a
partition of this method is a set of CFGs {𝐺1, . . . ,𝐺𝑛} with 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 ) such that:
(1) 𝑉 = ⊎𝑛𝑖=1𝑉𝑖 and 𝐸𝑖 = 𝐸 ∩ (𝑉𝑖 ×𝑉𝑖 )
(2) For every 𝐺𝑖 , there is at most one node 𝑛 ∈ 𝑉𝑖 such that Preds(𝐺,𝑛) ⊈ 𝑉𝑖
(3) Every waituntil(𝑝) statement must belong to its own 𝐺𝑖 — i.e., if a node 𝑛 ∈ 𝑉 is a waituntil

statement, then there exists a 𝐺𝑖 = ({𝑛}, ∅)
Intuitively, a partition is a set of sub-CFGs such that (1) these sub-CFGs cover all nodes of the

original CFG, (2) each sub-CFG has a unique entry node, and (3) waituntil statements belong to
their own sub-CFG. We refer to the code snippet represented by each sub-CFG as a code fragment

and define a notion of fragment dependency graph (FDG) as follows:

Definition 4.2. (FDG) Given a method 𝑚 with CFG 𝐺 = (𝑉 , 𝐸) and a partition of 𝐺 into
{𝐺1, . . . ,𝐺𝑛}, a fragment dependency graph (FDG) is a directed acyclic graph (𝑉 ′, 𝐸 ′) such that
(1) every 𝑓𝑖 ∈ 𝑉 ′ is the code fragment associated with𝐺𝑖 ; (2) there is an edge (𝑓𝑖 , 𝑓𝑗 ) ∈ 𝐸 ′ iff there
is an edge in 𝐺 from any exit node of 𝐺𝑖 to the entry node of 𝐺 𝑗 .

Example 4.3. Figure 4 presents the FDG of method take for the partition in Figure 1a,

waituntil(count < length) queue[last] = o

last = (last + 1)%lengthcount++

Fig. 4. FDG for method take.

Observe that we require the FDG to be
acyclic, so some partitions do not give rise to
valid FDGs. In the rest of this paper, we assume
that partitions obey this restriction so that all
cycles are contained within individual nodes of
the FDG. We also lift this notion of FDG from
individual methods to entire monitors in the obvious way (i.e., union of all FDGs). As we will see
in the next section, our synthesis algorithm operates over FDG representations of monitors.

Next, we state the following NP-completeness result to justify our MaxSAT encoding:

Theorem 4.4. (NP-Completeness) Let G = (𝑉 , 𝐸) be an FDG of monitor M, and let Π ⊆ 𝑉 ×𝑉 be

a set of fragment pairs that can run in parallel. Then, deciding whether there exists a synchronization

protocol with at most 𝑘 locks and that allows all pairs in Π to run in parallel is NP-Complete.

Proof. By reduction from the edge clique cover problem [Michael and Quint 2006]. The proof
can be found in Appendix B. □

4.2 Synthesis Algorithm
In this section, we describe our core synthesis procedure, which is summarized in Figure 5. At a high
level, the SynthesizeMonitor algorithm consists of the following steps. First, it uses the technique
of Ferles et al. [2018] to infer signaling operations (line 4). This yields a partially concretized
monitor𝑀 ′ with signaling operations but no locking. Next, it constructs an FDG representation
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1: procedure SynthesizeMonitor(M)
2: input: M: an implicit-synchronization monitor.
3: output: a semantically equivalent explicit-synchronization monitor.
4: M

′← PlaceSignals(M) ⊲ Use technique of Ferles et al. to infer signaling operations
5: G ← ConstructFDG(M ′)
6: N𝑢 ← ComputeMaxLocks(G)
7: S ← StaticAnalyze(G)
8: 𝑜𝑝𝑡 ← −1
9: for 𝑖 ∈ [1,N𝑢] do
10: (H ,S) ← MaxSatEncoding(M,G,S, 𝑖)
11: (𝑝, 𝑣, 𝑡𝑖𝑚𝑒𝑜𝑢𝑡) ← Solve(H ,S)
12: if 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 ∨ (𝑣 ≤ 𝑜𝑝𝑡) then break
13: (𝑏𝑒𝑠𝑡, 𝑜𝑝𝑡) ← (𝑝, 𝑣)
14: return Intrument(𝑏𝑒𝑠𝑡,G,M ′)

Fig. 5. Main Synthesis Algorithm.

of the resulting monitor 𝑀 ′ as defined in Section 4.1 (line 5). Third, it infers an upper bound N𝑢

on the maximum number of locks that the synthesized code should use (line 6). Then, it statically
analyzes the FDG to infer requirements that the synthesized code needs to obey (line 7) and uses
the results of the previous steps to generate the MaxSAT encoding (line 11). Finally, it instruments
𝑀 ′ (line 14) using the synchronization protocol inferred using MaxSAT. Since the most involved
aspects of this algorithm are the MaxSAT encoding and inference of safe interleavings, we defer a
detailed discussion of these to the next two subsections and focus on the rest.

Iterative exploration of lock count. As mentioned above, our synthesis algorithm conceptually
reduces the protocol synthesis problem to MaxSAT and uses an off-the-shelf solver to maximize
our optimization objective. To achieve this goal, one option is to generate the MaxSAT encoding
based on the maximum possible locks (obtained via the call to ComputeMaxLocks) and then let
the solver figure out the optimal number of locks to use. However, in practice, such an approach
does not scale because the size of the encoding increases with respect to the maximum number of
locks allowed. That is, for many realistic problems, the MaxSAT solver fails to terminate within
a reasonable time limit if we generate the encoding based on the maximum possible locks. Thus,
instead of directly generating a very large MaxSAT formula up front, our SynthesizeMonitor
procedure enters a loop (lines 9–13) wherein it gradually increases the maximum number of locks
allowed (and hence the size of the MaxSAT encoding). If we get to a point where the MaxSAT solver
starts timing out (indicated by boolean variable called timeout) or we fail to increase the objective
value despite using a larger upper bound on locks (see line 12), then the procedure terminates
with the best sychronization policy found so far. While this strategy does not guarantee global
optimality, it is much more practical than the alternative.
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void put(Object o) {
waituntil(count < queue.length);
boolean wasEmpty = count == 0;
queue[last] = o;
last = (last + 1) % queue.length;
count++;
broadcast(count == 0, wasEmpty);

}

Fig. 6. Method put with explicit signals.

Signaling operations. Our synthesis algorithm uses
an auxiliary procedure called PlaceSignals [Ferles et al.
2018] which yields a monitor M ′ that belongs to an in-
termediate language that is identical to our source lan-
guage (Figure 2a) except that it contains explicit sig-
naling operations. Specifically, this intermediate lan-
guage contains two additional signaling directives: (1)
signal(p,c) which notifies a single thread that is blocked on predicate p if condition c holds, and
(2) broadcast(p,c) which notifies all threads blocked on p if c holds. Figure 6 shows the result of
calling PlaceSignals on the put procedure from Figure 1a.

FDG construction. Recall that an FDG is a generalized version of a control-flow graph where
nodes are code fragments rather than basic blocks, and each code fragment is a unit of computation
that our algorithm should assign locks to. Since there can be many ways to partition a given
method into code fragments, the ConstructFDG procedure invoked at line 5 of Figure 5 implements
a particular heuristic for partitioning a method into code fragments. In particular, the more the
number of code fragments, the more the parallelization opportunities; thus, our ConstructFDG
procedure tries to maximize the number of code fragments while maintaining the invariant that
the FDG is acyclic and that each code fragment must have a unique entry point (see Section 5).

Computing upper bound on locks. Because the MaxSAT encoding assumes a fixed number
of locks, our synthesis algorithm calls the ComputeMaxLocks procedure at line 6 to compute an
upper bound on the number of locks needed. Given an FDG G = (𝑉 ,𝐺), the key idea behind this
procedure is to construct a so-called conflict graph𝐺𝐶 = (𝑉 , 𝐸𝐶 ) where (𝑓 , 𝑓 ′) is in 𝐸𝐶 iff fragments
𝑓 and 𝑓 ′ have a data race. Since it can be shown that the optimal solution to our problem is an edge

clique cover [Michael and Quint 2006] of this conflict graph (see Appendix), we can use known
theorems (e.g., Mantel’s theorem, Alon [1986] etc.) to obtain an upper bound on the number of
locks needed without having to solve an NP-complete problem.1

Static analysis. Recall from Section 2 that the constraints in our MaxSAT encoding utilize
information obtained via static analysis. Thus, line 7 of Figure 5 statically analyzes the input
monitor to obtain the following three pieces of information:
• Atomic fields F : One of the goals of the analysis is to infer a set of fields that could potentially

be implemented using Atomic types. Thus, our static analysis checks whether (a) a field of type T

has a corresponding AtomicT version, and (b) whether all updates to this field can be implemented
using one of the methods provided by AtomicT.
• Data races R: The second goal of our static analysis is to identify pairs of fragments that would
have a data race if they do not use a shared lock. Thus, given a pair of fragments (𝑓 , 𝑓 ′), our
static analysis checks whether 𝑓 writes to a memory location 𝑙 that is accessed in 𝑓 ′.
• Interleaving opportunities I: Finally, a third key goal of the analysis is to identify safe inter-
leaving opportunities between fragments. Since this aspect of the analysis is quite involved, we
discuss it in the next subsection.

MaxSAT encoding. As mentioned in Section 2, our MaxSAT encoding uses two types of boolean
variables, namely (1) ℎ𝑙 𝑗

𝑓𝑖
indicating that fragment 𝑓𝑖 must hold lock 𝑙 𝑗 and (2) 𝑎𝑓 indicating that field

𝑓 should be converted to atomic. Hence, a model of the MaxSAT problem can be easily converted
to a so-called locking protocol (L,A,P), where L is an assignment from fragments to a set of
locks, A is a set of fields that should be implemented using atomic types, and P is a mapping from
1In our implementation, we use multiple upper bounds using known theorems and return the best one.
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waituntil guards to locks. In particular, we have 𝑙 𝑗 ∈ L(𝑓𝑖 ) if and only if ℎ𝑙 𝑗
𝑓𝑖
is assigned to true in

the model returned by the MaxSAT solver, and we have fld ∈ A if 𝑎fld is assigned to true. Due to
the constraints in our MaxSAT encoding, it is similarly easy to derive P: because our encoding
ensures that every occurrence of a waituntil(p) statement is protected by the same set of locks 𝑆 ,
we associate one of the locks 𝑙 in 𝑆 with the condition variable introduced for predicate p.2

Instrumentation. The last step of our algorithm is to synthesize the explicit-synchronization
monitor via the Instrument procedure invoked at line 14. Given a synchronization protocol
(L,A,P), the Instrument procedure performs the following steps:
(1) First, it introduces all the synchronization fields (locks, condition variables, and atomic fields)

that appear in the protocol.
(2) It converts every update to an atomic field to the corresponding atomic update statement.
(3) Finally, it introduces all the necessary locking and signaling operations to implement the

synthesized synchronization protocol.
We refer the interested reader to Appendix D for more details on the instrumentation.

Theorem 4.5. (Correctness) Given an implicit-synchronization monitor M in the language of

Figure 2a, if SynthesizeMonitor(M) returns M ′, then we have M ∼ M
′
.

Proof. Can be found in Appendix E. □

4.3 Analysis to Identify Safe Interleavings
We now describe how to infer safe interleaving opportunities between threads while ensuring that
monitor operations appear to take place atomically. Given a fragment dependency graph G = (𝑉 , 𝐸)
for a monitor M , an interleaving opportunity (or interleaving for short) is a pair (𝑣, 𝑒) where 𝑣 ∈ 𝑉
is a code fragment of𝑀 and 𝑒 = (𝑣1, 𝑣2) ∈ 𝐸 is an edge of the FDG. Intuitively, such an interleaving
is safe if some thread can execute 𝑣 in between some other thread’s execution of 𝑣1 and 𝑣2 without
violating atomicity. The goal of our static analysis is to identify a set I of such safe interleavings.
In what follows, we formalize safe interleavings and describe an analysis for identifying them.

Formalizing safe interleavings. To formalize the notion of safe interleaving, we need to keep
track of which fragments of the monitor were executed in what order. For this purpose, given
an FDG G = (𝑉 , 𝐸) of M , we define a fragmented monitor MG to be the same as M except that
every fragment in G is placed in its own method. Observe that histories of MG encode all possible
interleavings of fragments in G. In this sense, histories of MG are similar to explicit monitor
histories but are slightly higher level in that they allow interleavings between fragments rather
than atomic statements. Thus, we adapt the same notions of sequential, well-formed, and interleaved
histories from Section 3.3 to fragmented monitors, as illustrated by the following examples.

Example 4.6. Given monitor M from Figure 1a, its fragmented version MG splits put and take

into four different methods, each named put𝑖 and take𝑖 . Given history ℎ = (𝑡𝑎𝑘𝑒, 𝑡) and initial state
𝜎 with a non-empty queue, we have

Expand
MG (ℎ, 𝜈, 𝜎) = ((take1, 𝑡) (take2, 𝑡) (take3, 𝑡) (take4, 𝑡), 𝜈

′)

where take1, . . . , take4 denote fragments 5-8 in Figure 1a and 𝜈 ,𝜈 ′ are empty argument mappings.
2Specifically, when choosing which lock 𝑙 in set 𝑆 to designate as the representative, we choose the smallest lock in 𝑆

according to the total order. Because all locks held by a thread must be released before it blocks on a condition variable and
must be acquired after it gets notified (with method await releasing and acquiring 𝑙 internally), choosing the smallest lock
prevents deadlocks.
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Example 4.7. In the example above, Expand
MG (ℎ, 𝜈, 𝜎) is both sequential and well-formed. How-

ever, (take1, 𝑡), (take2, 𝑡) is not well-formed because it does not involve all four methods, and
(take1, 𝑡), (take3, 𝑡), (take2, 𝑡), (take4, 𝑡) is also not well-formed because it executes take3 before
take2. Finally, the following history is an interleaved (and, by definition, well-formed) history where
threads 𝑡 and 𝑡 ′ execute method take and put respectively:

ℎG = (put1, 𝑡) (put2, 𝑡) (put3, 𝑡) (take1, 𝑡 ′) (put4, 𝑡) (take2, 𝑡 ′) (take3, 𝑡 ′) (take4, 𝑡 ′) (1)

Furthermore, for this history we have (ℎG, 𝜈G) ∽ ((𝑝𝑢𝑡, 𝑡) (𝑡𝑎𝑘𝑒, 𝑡 ′), 𝜈) for some 𝜈G and 𝜈 . That is,
ℎG simulates a history of M where thread 𝑡 executes method put and 𝑡 ′ executes take.

Definition 4.8. (Interleaving) Given an FDG G = (𝑉 , 𝐸) for monitor M , an interleaving is a pair
(𝑣, 𝑒) where 𝑣 ∈ 𝑉 and 𝑒 ∈ 𝐸. Furthermore, given a history ℎ of fragmented monitor MG , we write
X(ℎG) to denote the set of all interleavings that occur in ℎ.

Example 4.9. For the history ℎG from Eq. 1, we have:

X(ℎG) = {(take1, (put3, put4)), (put4, (take1, take2))}

This is the case because this history executes take1 in between consecutive fragments put3 and put4
of some other thread. Similarly, we have (put4, (take1, take2)) ∈ 𝜒 (ℎG) because it executes put4 in
between take1 and take2.

Definition 4.10. (Safe interleavings). Let G be an FDG of monitor M . We say that a set of
interleavings 𝑆 is safe, if for every input state 𝜎 and every interleaved history ℎG of MG we have:

If X(ℎG) ⊆ 𝑆 and MG ⊢ (ℎG, 𝜈G, 𝜎) ⇓ 𝜎 ′ then ∃ℎ, 𝜈 . (ℎG, 𝜈G) ∽ (ℎ, 𝜈) and M ⊢ (ℎ, 𝜈, 𝜎) ⇓ 𝜎 ′

In other words, a set of interleavings 𝑆 is safe if for every interleaved history of ℎG whose
interleavings are a subset of 𝑆 we can prove that ℎG leads to the same final state as some history
ℎ of𝑀 where ℎ simulates ℎG . This definition essentially lifts the second correctness criterion of
Definition 3.16 to a fragmented monitor.

Inferring Safe Interleavings. We now turn our attention to the problem of inferring safe
interleavings. Given a monitor M and its FDG G = (𝑉 , 𝐸), our goal is to find a set I ⊆ 𝑉 × 𝐸

such that all interleavings in I are safe. However, a key challenge is that the space of all safe
interleavings is exponential (i.e., the power set of𝑉 ×𝐸), so, even if we had a procedure for checking
whether some set I is safe, enumerating all candidates would be computationally intractable.

To overcome this challenge, we introduce the notion of strong safety that allows us to build
I iteratively. In particular, note that if 𝑆1 and 𝑆2 are both safe interleaving sets according to
Definition 4.10, it may not be the case that 𝑆1 ∪ 𝑆2 is also a safe interleaving. However, to build I
incrementally, we need a notion of safe interleaving that is closed under union. For this purpose, we
introduce a notion of strong safety for a single interleaving (𝑣, 𝑒). Since strongly safe interleavings
enjoy the property of being closed under union, this notion lends itself to a computationally feasible
technique for computing safe interleaving sets. In the remainder of this section, we define strong
safety and present our static analysis for computing safe interleaving sets. Towards this goal, we
first introduce the notions of left and right commutativity for our context:

Definition 4.11. (Left/Right Commutativity). Given fragments 𝑣 and 𝑣 ′, we say that 𝑣 left

commutes with 𝑣 ′, denoted LeftCommute(𝑣 , 𝑣 ′), iff, wheneverMG ⊢ ((𝑣 ′, 𝑡 ′) (𝑣, 𝑡), 𝜈, 𝜎) ⇓ 𝜎 ′ holds, so
does MG ⊢ ((𝑣, 𝑡) (𝑣 ′, 𝑡 ′), 𝜈, 𝜎) ⇓ 𝜎 ′. Conversely, 𝑣 right commutes with 𝑣 ′, denoted RightCommute(𝑣 ,

𝑣 ′), iff MG ⊢ ((𝑣, 𝑡) (𝑣 ′, 𝑡 ′), 𝜈, 𝜎) ⇓ 𝜎 ′ implies MG ⊢ ((𝑣 ′, 𝑡 ′) (𝑣, 𝑡), 𝜈, 𝜎) ⇓ 𝜎 ′.
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In other words, a fragment 𝑣 left commutes with 𝑣 ′ if, whenever 𝑣 executes just after 𝑣 ′, the
resulting state is the same as if 𝑣 had executed just before 𝑣 ′. For example, 𝑓4 (i.e. count++) in Figure 1a
left-commutes with 𝑓5 since increasing count right after waituntil(count > 0) is equivalent to
increasing count just before waituntil(count >0). That is, assuming that waituntil(count>0) was
not blocked before executing count++, then it will still not be blocked after executing count++.
However, 𝑓4 does not left-commute with 𝑓1: when count equals queue.length - 1, incrementing
count just after waituntil (count < queue.length) is not equivalent to incrementing queue.length

before the waituntil statement. That is, if waituntil(count < queue.length) did not block before
executing count++, we cannot guarantee that it also does not block after executing count++.
Next, we use this notion of left and right commutativity to define strong safety:

Definition 4.12. (Strong safety). Let G = (𝑉 , 𝐸) be an FDG for monitor M , and let 𝐸∗ denote the
reflexive transitive closure of 𝐸. We say that an interleaving (𝑣, 𝑒), where 𝑒 = (𝑣𝑠 , 𝑣𝑡 ), is strongly
safe if the following conditions are satisfied:
(1) ∀𝑣− .(𝑣−, 𝑣𝑠 ) ∈ 𝐸∗ =⇒ LeftCommute(𝑣, 𝑣−)
(2) ∀𝑣+ .(𝑣𝑡 , 𝑣+) ∈ 𝐸∗ =⇒ RightCommute(𝑣, 𝑣+)
That is, an interleaving (𝑣, 𝑒) is said to be strongly safe if we can prove that fragment 𝑣 left

commutes with every possible predecessor of 𝑣𝑠 and that it right commutes with every possible
successor of 𝑣𝑡 . To see why these conditions imply safety, recall that a set of interleavings 𝑆 is safe
if, for any history ℎG whose interleavings are a subset of 𝑆 , we can find some (sequential) history
of the original monitor that simulates ℎG . Assuming 𝑆 contains only strongly safe interleavings, we
can create such a sequential history by “removing” interleavings one at a time from ℎG . For instance,
let 𝜒 = (𝑣, (𝑣𝑠 , 𝑣𝑡 )) ∈ 𝑆 be an interleaving that occurs in ℎG . Since 𝜒 is strongly safe, we can always
obtain an equivalent history ℎ′G that has strictly less interleavings than ℎG by commuting 𝑣 past
either every successor of 𝑣𝑡 or every predecessor of 𝑣𝑠 that appears in ℎG .

Example 4.13. For the monitor from Figure 1a, we can show that every interleaving (𝑣, 𝑒) where 𝑣
belongs to method take and edge 𝑒 belongs to method put (and vice versa) is strongly safe. However,
none of the interleavings where 𝑣 and 𝑒 belong to the same method are strongly safe. Finally,
because both of the interleavings of the history ℎG from Eq. 1 are strongly safe, we can derive a
sequential history that simulates history ℎG by swapping (take1, 𝑡 ′) with (put4, 𝑡).
We now state a key theorem that underlies the correctness of our approach:

Theorem 4.14. LetG be an FDG and let 𝜒1, . . . , 𝜒𝑛 be strongly safe interleavings. Then, {𝜒1, . . . , 𝜒𝑛}
satisfies Definition 4.10 (i.e., is a safe interleaving set for G).
Proof. Can be found in Appendix E. □

Static analysis algorithm. Finally, we conclude this section by presenting our static analysis
algorithm (shown in Figure 7) for computing a set I of safe interleavings. At a high level, this
algorithm identifies which (𝑣, 𝑒) pairs are strongly safe and then returns their union, which by
Theorem 4.14, corresponds to a safe interleaving set. To check whether an interleaving (𝑣, 𝑒) (for
𝑒 = (𝑣𝑠 , 𝑣𝑡 )) is strongly safe, we must check if 𝑣 left commutes with each predecessor of 𝑣𝑠 and
right commutes with each successor of 𝑣𝑡 . As shown in the LeftCommute procedure, we reduce
the verification of left commutativity to the problem of verifying a Hoare triple. In particular,
given fragments 𝑣, 𝑣 ′, we generate a code snippet 𝑆𝐿 ; 𝑆𝑅 where (1) 𝑆𝐿 is an alpha-renamed version
of 𝑣 ′; 𝑣 with waituntil’s replaced by assume statements, and (2) 𝑆𝑅 is an alpha-renamed version
of 𝑣 ; 𝑣 ′ with waituntil’s replaced by assert statements. Note that we turn waituntil’s in 𝑆𝐿 into
assumes because the definition of left commutativity assumes that 𝑣 ′; 𝑣 has terminated. On the
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1: procedure FindSafeInterleavings(G)
2: input: An FDG representation G = (𝑉 , 𝐸) of monitor M
3: output: A set I of all safe interleavings
4: I ← ∅
5: for 𝑣 ∈ 𝑉 , 𝑒 = (𝑣𝑠 , 𝑣𝑡 ) ∈ 𝐸 do
6: 𝑉 ∗𝑠 ← { 𝑣 ′ | (𝑣 ′, 𝑣𝑠 ) ∈ 𝐸∗ } ⊲ All predecessor vertices that reach 𝑣𝑠 .
7: 𝑉 ∗𝑡 ← { 𝑣 ′ | (𝑣𝑡 , 𝑣 ′) ∈ 𝐸∗ } ⊲ All successor vertices of 𝑣𝑡 .
8: if

(
∀𝑣∗𝑠 ∈ 𝑉 ∗𝑠 . LeftCommute(𝑣, 𝑣∗𝑠 )

)
∧
(
∀𝑣∗𝑡 ∈ 𝑉 ∗𝑡 . LeftCommute(𝑣∗𝑡 , 𝑣)

)
then

9: I ← I ∪ {(𝑣, 𝑒)}
10: return I

11: function LeftCommute(𝑣, 𝑣 ′)
12: input: Two fragments 𝑣 , 𝑣 ′
13: output: true iff 𝑣 left commutes with 𝑣 ′

14: 𝑋 ← {𝑥 | 𝑥 is a variable in 𝑣 or 𝑣 ′}.
15: 𝑋𝐿 ← {𝑥𝑙 fresh name | 𝑥 ∈ 𝑋 } 𝑋𝑅 ← {𝑥𝑟 fresh name | 𝑥 ∈ 𝑋 }
16: 𝑆𝐿 ← (𝑣 ′; 𝑣) [assume/waituntil, 𝑋𝐿/𝑋 ] 𝑆𝑅 ← (𝑣 ; 𝑣 ′) [assert/waituntil, 𝑋𝑅/𝑋 ]
17: return Verify({𝑋𝐿 = 𝑋𝑅} 𝑆𝐿 ; 𝑆𝑅 {𝑋𝐿 = 𝑋𝑅})

Fig. 7. Algorithm to find all safe interleavings.

other hand, we need to show that 𝑆𝑅 does not block; thus, we assert that the predicates in the
waituntil statement evaluate to true under the assumption that they also evaluate to true in 𝑆𝐿 .
Finally, in addition to showing that waituntil’s are not blocked, we also need to establish that
the monitor state is the same in 𝑆𝐿 and 𝑆𝑅 . Thus, the Hoare triple we construct checks that the
values of variables are the same at the end, assuming that they are the same in the beginning.
Note that the implementation of right commutativity is the same with 𝑣 and 𝑣 ′ swapped; thus,
RightCommute(𝑣, 𝑣 ′) can be checked by directly calling LeftCommute(𝑣 ′, 𝑣).

4.4 MaxSAT Encoding
In this section, we describe our MaxSAT encoding which is formalized as inference rules in Figure 8.
Recall that the encoding procedure takes as input (a) an FDG representation of the monitor, (b)
the results of the static analysis, and (c) an upper bound on the maximum number of locks, and
it produces a set of hard constraints H and a set of soft constraints S. In the remainder of this
section, we describe the inference rules in Figure 8 for generating these constraints in more detail.

Variables. Our MaxSAT encoding uses two types of variables. First, we introduce variables of
the form ℎ

𝑙 𝑗
𝑣𝑖 indicating that fragment 𝑣𝑖 needs to hold lock 𝑙 𝑗 . Thus, given an FDG with 𝑛 vertices

and an upper bound N on the number of locks, our encoding contains 𝑛 × N such variables.
The second type of variable used in our encoding is of the form 𝑎fld indicating that fld should be
implemented using an atomic type.

Mutex encoding. Given a set of fragments 𝐹 and an upper boundN on the number of locks, we
often need to enforce that all fragments in 𝐹 share at least one of the N possible locks. We write
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Race-1
𝐼𝑠𝐹𝑟𝑎𝑔(𝑣1) 𝐼𝑠𝐹𝑟𝑎𝑔(𝑣2) 𝑅𝑎𝑐𝑒𝑠 = R(𝑣1, 𝑣2) 𝑅𝑎𝑐𝑒𝑠 ⊆ F 𝑅𝑎𝑐𝑒𝑠 = { this.f }

𝑀𝑢𝑡𝑒𝑥 ({𝑣1, 𝑣2},N) ∨ a𝑓 ∈ H

Race-2
𝐼𝑠𝐹𝑟𝑎𝑔(𝑣1) 𝐼𝑠𝐹𝑟𝑎𝑔(𝑣2) 𝑅𝑎𝑐𝑒𝑠 = R(𝑣1, 𝑣2) 𝑅𝑎𝑐𝑒𝑠 ≠ ∅ (|𝑅𝑎𝑐𝑒𝑠 | > 1 ∨ 𝑅𝑎𝑐𝑒𝑠 ⊈ F )

𝑀𝑢𝑡𝑒𝑥 ({𝑣1, 𝑣2},N) ∈ H

I-Leave
𝐼𝑠𝐹𝑟𝑎𝑔(𝑣) 𝐼𝑠𝐸𝑑𝑔𝑒 (𝑒) 𝑒 = (𝑣𝑠 , 𝑣𝑡 ) ¬SafeInterleaving(𝑣, 𝑒)

𝑀𝑢𝑡𝑒𝑥 ({𝑣, 𝑣𝑠 , 𝑣𝑡 },N) ∈ H

Wait

𝑝 ∈ 𝑃𝑟𝑒𝑑𝑠 (M)
𝐹 = { 𝑓 | 𝐼𝑠𝐹𝑟𝑎𝑔(𝑓 ), 𝑓 ≡ waituntil(p)}

𝑀𝑢𝑡𝑒𝑥 (𝐹,N) ∈ H
N∧
𝑖=1

∧
𝑣1,𝑣2∈𝐹

(
h
𝑙𝑖
𝑣1 ↔ h

𝑙𝑖
𝑣2

)
∈ H

L-Order
𝐼𝑠𝐸𝑑𝑔𝑒 (𝑒)

𝐿𝑜𝑐𝑘𝑂𝑟𝑑𝑒𝑟 (𝑒,N) ∈ H

Min-Lock

𝑚 ∈ 𝑀𝑒𝑡ℎ𝑜𝑑𝑠 (M)
𝑀𝐹 = { 𝑣 | 𝐼𝑠𝐹𝑟𝑎𝑔(𝑣), 𝑀𝑒𝑡ℎ𝑜𝑑 (𝑣) =𝑚 }

N⋃
𝑖=1
{ ∧
𝑓 ∈𝑀𝐹

¬h𝑙𝑖
𝑓
} ⊆ S

Min-Atom
this.fld ∈ F
¬a𝑓 𝑙𝑑 ∈ S

Max-Par
𝐼𝑠𝐹𝑟𝑎𝑔(𝑣1) 𝐼𝑠𝐹𝑟𝑎𝑔(𝑣2) R(𝑣1, 𝑣2) = ∅

¬𝑀𝑢𝑡𝑒𝑥 ({𝑣1, 𝑣2},N) ∈ S

Aux-Defs 𝑀𝑢𝑡𝑒𝑥 (𝐹,N) =
N∨
𝑖=1

∧
𝑓 ∈𝐹

h
𝑙𝑖
𝑓

𝐿𝑜𝑐𝑘𝑂𝑟𝑑𝑒𝑟 ((𝑣𝑠 , 𝑣𝑡 ),N) =
∧

1≤ℓ<𝑢≤N
¬
(
h
𝑢
𝑣𝑠
∧ h𝑢𝑣𝑡 ∧ ¬h

ℓ
𝑣𝑠
∧ hℓ𝑣𝑡

)
Fig. 8. Inference rules for MaxSatEncoding(M,G,S,N ) procedure. G = (𝑉 , 𝐸) is an FDG of monitor M ,

S = (F ,R,I) are the results of the static analysis, andN is an upper bound on the number of locks. Predicate

𝐼𝑠𝐹𝑟𝑎𝑔(𝑣) is true if 𝑣 ∈ 𝑉 , 𝐼𝑠𝐸𝑑𝑔𝑒 (𝑒) if 𝑒 ∈ 𝐸, and 𝑆𝑎𝑓 𝑒𝐼𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑖𝑛𝑔(𝑣, 𝑒) if (𝑣, 𝑒) ∈ I. Relations𝑀𝑒𝑡ℎ𝑜𝑑𝑠 (M)
and 𝑃𝑟𝑒𝑑𝑠 (M) return all methods of monitorM and all predicates that appear as an argument of a waituntil
statement in M respectively.

Mutex(𝐹,N ) to denote this requirement. In particular, as shown at the bottom of Figure 8, this is

defined as𝑀𝑢𝑡𝑒𝑥 (𝐹,N) =
N∨
𝑖=1

∧
𝑓 ∈𝐹

h
𝑙𝑖
𝑓
.

Hard constraints. Next, we describe the hard constraints generated by our MaxSAT encoding.
These hard constraints H correspond to correctness requirements on the synthesized protocol
and include (1) data race freedom, (2) correct signaling and deadlock freedom and (3) atomicity.
Specifically, the first two rules in Figure 8 deal with data race freedom, the next rule deals with
atomicity, and the last two rules deal with deadlock freedom and correct signaling.

Race-1. The first rule, labeled Race-1, deals with data race freedom of two fragments that have a
data race on a single monitor field f. The premises of this rule stipulate that 𝑣1, 𝑣2 are fragments that
race only on field 𝑓 which can be converted to atomic (i.e., this.f ∈ F ). In this case, we prevent
data races by either (1) enforcing that 𝑣1, 𝑣2 share a lock (the Mutex constraint) or (2) ensuring that
field 𝑓 is converted to an atomic field.

Race-2. The next Race-2 rule prevents data races between fragments where the data race cannot
be resolved by making one of the fields atomic. In particular, given two fragments 𝑣1, 𝑣2 that have a
data race, this rule simply enforces that they share a common lock via the Mutex function.
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I-Leave. The next rule generates constraints to ensure that monitor operations appear to take
place atomically. In particular, if the static analysis cannot prove (𝑣, 𝑒) to be a strongly safe inter-
leaving (recall Definition 4.12), then we need to ensure that a thread cannot execute 𝑣 when some
other thread is executing 𝑒 . To do so, we ensure that 𝑣, 𝑣𝑠 , 𝑣𝑡 all share a common lock by generating
a Mutex hard constraint for these three fragments.

L-Order. The next rule, labeled L-Order, ensures that the resulting synchronization protocol is
deadlock-free. Specifically, for every edge 𝑒 = (𝑣𝑠 , 𝑣𝑡 ) in the input FDG, this rule generates a hard
constraint, via 𝐿𝑜𝑐𝑘𝑂𝑟𝑑𝑒𝑟 (𝑒,N) (defined at the bottom of Figure 8), that ensures that every lock
acquisition respects the total order on locks. In particular, for every pair of locks 𝑙, 𝑢 such that 𝑙 ≺ 𝑢,
𝐿𝑜𝑐𝑘𝑂𝑟𝑑𝑒𝑟 (𝑒,N) prevents the synchronization protocol from violating the global order on locks.
Recall that a protocol violates this global order if it acquires the “smaller" lock 𝑙 between 𝑣𝑠 and 𝑣𝑡
while both 𝑣𝑠 and 𝑣𝑡 hold lock 𝑢. Thus, the hard constraint generated by 𝐿𝑜𝑐𝑘𝑂𝑟𝑑𝑒𝑟 (𝑒,N) prevents
this from happening.

Example 4.15. Assuming N = 2, this rule generates ¬
(
h
𝑙2
𝑣𝑠 ∧ h

𝑙2
𝑣𝑡 ∧ ¬h

𝑙1
𝑣𝑠 ∧ h

𝑙1
𝑣𝑡

)
for edge (𝑣𝑠 , 𝑣𝑡 ).

Wait. The last hard constraint rule, called Wait, is used for associating a single lock with each
condition variable. In particular, since all fragments of the form waituntil(𝑝) must hold the same
set of locks, this rule generates two hard constraints for every waituntil predicate 𝑝 of the input
monitor: (1) a mutex constraint for all waituntil(𝑝) fragments and (2) a constraint that enforces
that all waituntil(𝑝) fragments must share all common locks.

Soft Constraints. As discussed earlier, our goal is to generate a synchronization protocol that is
not only correct-by-construction but one that also results in efficient code. Hence, as a proxy metric
for efficiency, we want to (1) minimize the number of locks and atomic fields that are introduced,
and (2) maximize the number of fragments that can run in parallel. The remaining three rules in
Figure 8 introduce soft constraints to encode this optimization objective.

Min-Lock. The rule labeled Min-Lock is used for minimizing the number of locks. However,
instead of simply minimizing the total number of locks used by the protocol, the soft constraints
generated by this rule minimize the number of locks used per method. Even though this is not
equivalent to minimizing the number of locks used by the entire protocol, we have found this
approach to synthesize protocols with a more even distribution of locks among the monitor methods.
In practice, such protocols are more desirable because they avoid scenarios where a subset of the
methods incur a higher synchronization cost than others. Specifically, this rule generates a soft
constraint for every lock 𝑙 ∈ {𝑙1...𝑙N} and every method 𝑚 of M and asserts that none of the
fragments in𝑚 hold lock 𝑙 .

Min-Atom. The Min-Atom rule generates soft constrains to minimize the number of fields that
are made atomic by asserting that a𝑓 𝑙𝑑 is assigned to false.

Max-Par. The last rule called Max-Par generates soft constraints to maximize parallelism.
Specifically, for every pair of fragments (𝑣, 𝑣 ′) that do not have data races, we add a soft constraint
stating that 𝑣 and 𝑣 ′ do not share any locks.

We conclude this Section with a theorem that states the correctness of our MaxSAT encoding.

Theorem 4.16. Let𝑚 be a model of the generated MaxSAT instance and (L,A,P) be the synchro-
nization protocol constructed as follows:

L =

{
𝑣 ↦→

{
𝑙 | 𝑚[ℎ𝑙𝑣]

}}
A =

{
fld | 𝑚[a𝑓 𝑙𝑑 ]

}
P =

{
𝑝 ↦→ 𝑙𝑖 | 𝐼𝑠𝑊𝑎𝑖𝑡 (𝑣, 𝑝), 𝑖 =𝑚𝑖𝑛({ 𝑗 | 𝑚[h𝑙 𝑗𝑣 ]})

}
Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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where, 𝐼𝑠𝑊𝑎𝑖𝑡 (𝑣, 𝑝) is true if v is a waituntil statement on 𝑝 . Then, (L,A,P) is a correct synchro-
nization protocol.

Proof. Can be found in Appendix E. □

5 IMPLEMENTATION
We have implemented our approach in a tool called Cortado that emits explicit-synchronization
monitors in Java. Cortado is based on the Soot program analysis infrastructure [Vallée-Rai et al.
1999] and the Z3 SMT solver [De Moura and Bjørner 2008]. In particular, we use Soot to perform
various kinds of static analyses needed by our method (e.g., pointer analysis) and to translate
the input monitor to an explicit-synchronization monitor in Java. Furthermore, we leverage Z3
for solving MaxSAT instances and discharging the validity queries that arise when checking
commutativity between fragments. In the remainder of this section, we discuss several design
choices and optimizations that were not discussed previously.

Weights of soft constraints. As expected, the quality of the synthesized protocol depends on the
model returned by the MaxSAT solver. In practice, we have observed certain types of soft constraints
to be more important than others for efficiency. Thus, our implementation assigns different weights
for different classes of soft constraints. For instance, because it is always preferable to use an atomic
field instead of a lock, Cortado assigns a higher weight to soft constraints generated by rule
Min-Atom from Figure 8 than the ones generated by rule Min-Lock.3

Constructing FDGs. As mentioned in Section 4, Cortado uses a heuristic to partition the
input CFG into fragments. The goal of this heuristic is to maximize parallelization opportunities
while ensuring that the partition results in a valid FDG according to Definition 4.2. Our heuristic
places every loop in its own fragment (to make sure that the FDG is well-formed) and, for code
outside loops, Cortado creates a new fragment whenever it detects an update to monitor state (i.e.,
this.fld = *). In practice, we found this heuristic to achieve a good balance between the number
of parallelization opportunities and the size of the resulting FDG.4

Static analysis optimization. Our approach uses an off-the-shelf pointer analysis to detect
which pairs of FDG fragments do not have a data race (and, so, can run in parallel). However,
such an approach, based on pointer analysis alone, often leads to imprecision. For example, Soot’s
pointer analysis cannot prove that fragments 2 and 6 in Figure 1a do not contain any races, as it
does not reason about individual array elements. Therefore, in order to increase the precision of
the static analysis, Cortado implements an SMT-based static analysis on top of Soot’s built-in
pointer analysis and generates appropriate verification conditions (similar to the ones generated
by Gurfinkel et al. [2015]) to prove that memory accesses of two fragments are disjoint.

6 EVALUATION
We evaluated Cortado’s ability to generate fine-grained locking protocols by performing a set of
experiments that are designed to answer the following research questions:
RQ1 How does the code generated by Cortado compare against explicit-synchronizationmonitors

written by experts?
RQ2 How does the technique implemented in Cortado compare against other compile-time

state-of-the-art approaches targeting implicit-synchronization monitors?

3An ablation study that demonstrates the need for adjusting the weights of soft constraints can be found in Appendix A.3.
4An ablation study that justifies the design of this heuristic can be found in Appendix A.2.
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RQ3 How does the static analysis for inferring safe interleavings impact the quality of the code
generated by Cortado?

RQ4 How long does Cortado take to synthesize code and how complex are the resulting protocols?

To answer these research questions, we conducted experiments on ten explicit-synchronization
monitors from popular open source repositories. Aside from Cortado, we consider two additional
baselines, described below, that aid us in answering our second and third research questions.

Benchmarks. The benchmarks used in our evaluation are collected from popular open source
GitHub repositories. We wrote a crawler (based on GitHub’s REST API [GitHub 2022]) to auto-
matically identify candidate explicit-synchronization monitors implemented in Java by searching
for keywords like lock, unlock, await, etc. We then manually inspected class files returned by the
crawler in decreasing order of GitHub popularity (stars and forks) and identified self-contained
monitor-style classes that encapsulate shared state accessed by multiple threads. We included such
a monitor in our benchmarks only if it satisfies the following conditions: (1) the class has a well-
defined API for client threads and (2) it contains parallelization opportunities that can be realized

via fine-grained locking.5 We manually isolated the shared state and monitor methods of the class
file to obtain a standalone explicit-synchronization monitor and then manually translated it to an
equivalent implicit monitor. To convert a benchmark to an implicit monitor, we simply removed all
synchronization code (i.e., locking and signaling operations) and introduced appropriate waituntil
statements. In total, we collected 10 monitors from popular repositories such as Spring Framework
(a Java-based framework for creating enterprise applications), Java JDK, Apache Spark (an analytics
engine for large-scale data processing), etc.6

Baselines. As mentioned above, our evaluation uses two additional baselines in order to answer
RQ2 and RQ3. To compare against other compile-time techniques (RQ2), we evaluate Expresso [Fer-
les et al. 2018], a tool that addresses the same problem as this paper but generates an explicit signal
monitor using a single global lock shared by all monitor methods. To evaluate the importance of
our static analysis (RQ3), we created an ablated version of Cortado, called Ablated, which uses a
very coarse analysis to infer safe interleavings. This ablated version considers (𝑣, (𝑣𝑠 , 𝑣𝑡 )) a safe
interleaving only if 𝑣 does not have any data races with any predecessor (resp. successor) of 𝑣𝑠
(resp. 𝑣𝑡 ). This is a sufficient condition for strong safety, but it only requires checking data races
rather than discharging a set of Hoare triples.

Evaluating performance. Following prior work [Ferles et al. 2018; Hung and Garg 2013], we
evaluate the performance of each monitor implementation by performing saturation tests [Cherem
et al. 2008] wherein threads perform monitor operations without doing any additional work. We
collect our performance measurements using the Java Microbenchmark Harness (JMH) [Shipilev
et al. 2021]. All measurements are conducted on a 112-way (56-core × 2 SMT) Intel Xeon CPU
W-3275 2.50GHz with 256 GB of memory using JDK 1.8.0_272. In this section, we present results for
each benchmark for up to 128 threads, chosen as an arbitrary stopping point past the total number
of hyper-threads. Results for up to 256 threads can be found in Appendix A.

5If a monitor does not contain parallelization opportunities, our technique generates code equivalent to that synthesized
by Ferles et al. [2018]. Since the goal of our evaluation is to evaluate Cortado’s ability to generate fine-grained locking
protocols, we did not include benchmarks from prior work [Ferles et al. 2018; Hung and Garg 2013] that do not contain
such parallelization opportunities.
6All benchmarks are publicly available here: https://github.com/utopia-group/cortado
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6.1 Performance Results
Figure 9 plots the average time taken per monitor method invocation (i.e., milliseconds/operation)
against the number of threads. In what follows, we analyze the plots in more detail and present
several conclusions drawn from these results. Because our benchmarks only contain monitors
where fine-grained locking is beneficial, we emphasize that our conclusions only apply to such
monitors.

Comparison against hand-written implementations (RQ1). For every benchmark, the ex-
plicit synchronization monitor generated by Cortado performs better than the expert-written
implementation as the number of threads increases. In particular, Cortado-synthesized code
performs on average 3.7×7 and up to 39.1× times faster than the original code.

Comparison against Expresso (RQ2). Cortado-generated explicit monitors perform better
than Expresso explicit monitors generated from the same implicit specification on all benchmarks.
Cortado-synthesized code outperforms Expresso by 4.0× on average (and up to 48.7×).

Comparison against Ablated (RQ3). Finally, we analyze how Cortado compares to its
simplified version, Ablated, which does not use the results of the safe interleavings analysis from
Section 4.3. In five cases, the code generated by Ablated is equivalent to the code generated by
Expresso and therefore worse than Cortado. In two other cases (PausableThreadPoolExecutor
and ProgressTracker), Ablated generates code different from both Expresso and Cortado. For
PausableThreadPoolExecutor, the code generated by Ablated is slower than that of Expresso
because many of the operations it parallelizes are very cheap, so the overhead of extra locks
outweighs their benefit. On the other hand, our static analysis detects several safe interleavings
which enable Cortado to synthesize a protocol with cheaper synchronization operations. Finally,
for the remaining three cases, the code generated by Ablated matches the one generated by
Cortado. This ablation study demonstrates that the safe interleaving analysis from Section 4.3
helps extract additional concurrency on five of our benchmarks.

6.2 Synthesis Time & Protocol Complexity
To evaluate the cost and complexity of synthesizing code with Cortado (RQ4), Table 1 summarizes
its running time and presents some statistics about the synthesized protocols. For each benchmark,
we report the running time for the various phases of the tool: pointer analysis with Soot, signal
placement with Expresso, and synthesis with Cortado. We also report the number of locks and
atomic fields in the synthesized protocol.
Table 1 shows that Cortado terminates in under one minute for all but two benchmarks. For

these two outliers, the synthesis time is dominated by Expresso’s monitor invariant inference,
which is necessary for signal placement. Overall, Cortado is able to extract better performance
than Expresso alone with only a small additional compile-time cost.

The last three columns in Table 1 provide statistics about the synthesized explicit monitors. Most
monitors benefit from Cortado’s ability to introduce atomic fields, which reduces the overhead of
operations on monitor state that would otherwise require a lock. The lines of code (LOC) results
show that Cortado synthesizes explicit monitors that are on average 1.7× larger than their implicit
specifications.

7In order to handle outliers such as in JobWrapper, for all reported aggregate speedups (max, mean, etc.) we throw out data
points with a z-score greater than two.
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Fig. 9. Performance Results For All Tools. The y-axis is in log scale and time measurements are in milliseconds.

The shadowed regions surrounding each line present 99.9% confidence interval of each measurement.
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Synthesis Time (secs) Synthesized Protocol

Benchmark LOC Soot Expresso Cortado Total #Lock/#Op #Atomic/#Op LOC

ArrayBlockingQueue 287 16.7 1897.7 372.7 2302.5 2 / 18 1 / 25 514
ConcurrencyThrottleSupport 33 17.0 1.4 0.2 18.7 1 / 1 1 / 4 68
CountableThreadPool 54 20.4 0.8 0.2 21.5 1 / 1 1 / 5 85
JobWrapper 33 17.0 0.6 0.1 17.7 1 / 1 1 / 3 63
PausableThreadPoolExecutor 79 20.7 0.8 0.9 22.5 3 / 4 2 / 9 122
ProgressTracker 65 0.7 6.8 0.2 8.0 2 / 7 1 / 4 119
RealmThreadPoolExecutor 34 18.4 0.3 0.1 18.7 1 / 1 1 / 3 61
RoundTripWorker 62 16.7 3.1 0.4 20.4 2 / 4 1 / 4 103
SinkQueue 75 15.7 981.4 34.6 1031.8 2 / 4 1 / 8 131
WSDataListener 158 18.3 5.2 1.0 25.1 4 / 11 0 / 0 222

Table 1. Synthesis time for each phase of Cortado and summaries of the synthesized protocols. LOC is lines

of code. Soot indicates pointer analysis time, Expresso is the time for monitor invariant generation and signal

placement, and Cortado shows the additional time on top of Soot and Expresso.

7 RELATEDWORK
Monitor abstractions. The notion of monitors as an organizing abstraction for concurrent program-

ming originates with Hoare [1974] and Hansen [1973]. Monitors offer the same synchronization
facilities as semaphores—the ability to coordinate multiple threads and enforce mutual exclusion—
but encapsulate the state protected by those facilities and automate mutual exclusion when entering
and exiting the monitor’s operations. Lampson and Redell [1980] further extended the monitor
abstraction in the Mesa programming language to handle spurious wake ups.
These early monitor abstractions are explicit-signal monitors in the taxonomy of Buhr et al.

[1995] because they require the programmer to explicitly insert condition variables and signalling
operations to coordinate threads within the monitor. This requirement places both a safety and a
liveness burden on the programmer: they must place signals correctly to preserve invariants about
the monitor’s state, but must also insert enough signals to avoid deadlock. An alternative is to use
an implicit-signal (or automatic-signal) monitor, in which signals are inserted automatically by the
compiler, language runtime, or operating system. Hoare [1971] proposed the notion of conditional
critical regions (CCRs), which allow for monitor operations to block until a guard predicate over
the monitor state is satisfied by some other thread. A CCR implementation would automatically
block and signal threads in a fashion consistent with this guard semantics.
Implicit-signal monitors simplify concurrent programming, but come at a steep performance

cost—Buhr et al. [1995] estimate that implicit-signal monitors are 10–50× slower than explicit ones.
More recent work has tried to lower the cost of implicit-signal monitors. AutoSynch [Hung and Garg
2013] uses a combination of compile-time instrumentation and run-time evaluation to efficiently
compute which threads should be woken when monitor state changes. This approach lowers the
cost of implicit monitors to be close to, or sometimes better than, explicit ones. Expresso [Ferles et al.
2018] takes a different approach, using compile-time static analysis to synthesize an explicit-signal
monitor equivalent to an implicit-signal version given as input. In this way, Expresso is able to
erase the dynamic cost of implicit-signal monitors, and in most cases is comparable to hand-written
explicit monitors. However, Expresso uses a single lock for the entire monitor and does not allow
concurrent execution of threads within the monitor even when safe. Our work expands on this
direction by using a richer static analysis to infer additional concurrency opportunities and uses
MaxSAT to synthesize a safe and efficient locking protocol. Hence, our key contribution is to
synthesize an explicit monitor that appears to match the semantics of the implicit one, but runs
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monitor operations concurrently when possible and efficient. As we show in the evaluation, our
proposed approach can often make the synthesized monitor faster than a hand-written equivalent.

Automatic synchronization. An appealing approach to lower the difficulty of concurrent pro-
gramming is to deploy program analysis and synthesis techniques for automation. The common
abstraction for much of this work is for the programmer to annotate atomic sections that should
be executed atomically. Emmi et al. [2007] present a technique for lock allocation to an annotated
program. They reduce the problem to integer linear programming and deploy the resulting tool
on large-scale C and Java programs. Other approaches [Halpert et al. 2007; Hicks et al. 2006; Mc-
Closkey et al. 2006], on the other hand, take a purely static analysis route and attempt to maximize
parallelism based solely on the results of the analysis. Cherem et al. [2008] present an alternative
technique that uses runtime support to enable finer-grained concurrency. Compared to these efforts,
Cortado applies to the more limited domain of monitors, but in exchange for this limitation is
able to reason about conditional signalling and can allow atomic sections to run concurrently so
long as the illusion of atomicity is maintained.
Other approaches start from a sequential program and automatically generate an equivalent

concurrent program. The closest work to ours in this space is that of Golan-Gueta et al. [2011]
which generates concurrent data structures given their sequential implementation. Compared to
our method, their approach is applicable only to data structures that satisfy certain shape properties
and all synthesized programs adhere to the same locking protocol, whereas Cortado generates a
synchronization protocol specialized to the input monitor.

Concurrency verification. Cortado reasons about concurrent program executions by building on
work in concurrent program analysis and verification. Our notion of left- and right-commutativity
(Definition 4.11) comes from Lipton’s work on reduction as a concurrency proof technique [Lipton
1975]. Reduction translates interleaved program executions to simpler, equivalent sequential execu-
tions by exploiting the commutativity properties of individual program steps. We use the same
idea but in reverse: starting with a sequential history (Definition 3.7), we use a static analysis of
commutativity to determine how to safely introduce interleavings into that history, and use that
information to determine how to assign locks to program fragments.

8 CONCLUSION
We presented a technique for synthesizing fine-grained synchronization protocols for implicitly
synchronized monitors. Our approach first employs a novel static analysis to identify safe inter-
leavings opportunities between code fragments and uses the results of this analysis to generate a
MaxSAT encoding whose solution can be used to synthesize an efficient and correct-by-construction
explicit-synchronization monitor. We have implemented our method in a tool called Cortado and
evaluated its effectiveness eight monitors collected from popular open source applications. The
results of our experimental evaluation demonstrate that Cortado is able to generate non-trivial
synchronization protocols that are 3.7× times faster than the original implementation on average
(and up to 39.1× times for some outliers).
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A ADDITIONAL EXPERIMENTAL EVALUATIONS
This section presents additional experimental data for the evaluation of Section 6 as well as ablations
related to several design decisions in the implementation of Cortado. In particular, Section A.1
presents additional data points for the evaluation presented in Section 6, Section A.2 presents an
ablation study that justifies the design of our heuristic for constructing an FDG, and Section A.3
presents an ablation study that demonstrates the need for adjusting the weights of soft constraints
in our MaxSAT encoding.

A.1 Additional Data Points per Benchmark
In this Section we present additional data points for all the experiments presented in Section 6.
As mentioned in Section 6, we chose 128 threads as a stopping point past the number of total
hyper-threads in the machine used in our evaluation. In this Section, we provide data points up to
256 threads.

Figure 10 presents the results for all benchmarks in our evaluation up to 256 threads. As demon-
strated by Figure 10, the general trend for all benchmarks is the same as the date presented
in Section 6. Note that for benchmarks where the code generated by Cortado exhibits similar
run-time performance with the other three implementation we consider in our evaluation (e.g.,
RoundTripWorker), context-switches seem to dominate the running time as the number of threads
increases.

A.2 Ablation Study for FDG Construction Heuristic
This section presents an ablation study for the design of our FDG construction heuristic described in
Section 5. To justify the decisions behind the design of our heuristic, we implemented two additional
versions of Cortado that differ in the way they construct the FDG. In particular, we implemented
a version that creates finer-grained FDGs than Cortado and one that creates coarser-grained ones.
The finer-grained version, named Stmt-Ablation, puts every non-composite statement outside of
a loop in its own fragment. Statements inside a loop are grouped together in the same fragment
since FDGs are acyclic. The coarser version of our tool, named CCR-Ablation, simply puts each
CCR in its own fragment.
Figure 11 presents the results of this ablation study. As demonstrated by the results, there

are several cases where Cortado performs better than at least one of its two modified versions.
The cases where all three versions perform similarly are benchmarks where the synthesized
synchronization protocol mainly exploits data-level parallelism among different CCRs in the
monitor, which our tool can exploit given any FDG. Overall, this study demonstrates the need for
a customized heuristic for constructing an FDG suitable for maximizing parallelism of implicit
synchronisation monitors.

A.3 Ablation Study for MaxSAT Soft Constraint Weights
Finally, this Section presents an ablation of the soft constraints weights in our MaxSAT encoding.
As mentioned in Section 5, Cortado assigns different weights to different classes of soft constraints
because some of them are more important for synthesizing the optimal synchronization protocol.
To demonstrate this, we have created a modified version of our tool, named Weight-Ablation,
that assigns the same weight to all soft constraints.
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Fig. 10. Performance results for all tools up to 256 threads. The y-axis is in log scale and time measurements

are in milliseconds. The shadowed regions surrounding each line present 99.9% confidence interval of each

measurement.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.



1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Kostas Ferles, Benjamin Sepanski, Rahul Krishnan, James Bornholt, and Isil Dillig

# 
of

 c
or

es
 =

 5
6

# 
of

 h
yp

er
-t

hr
ea

ds
 =

 1
12

16

128

1024

24816 32 48 64 80 96 112 128 160 192 224 256
# of threads

m
s/

op

CCR-Ablation
Cortado
Stmt-Ablation

ArrayBlockingQueue

# 
of

 c
or

es
 =

 5
6

# 
of

 h
yp

er
-t

hr
ea

ds
 =

 1
12

16

128

1024

24816 32 48 64 80 96 112 128 160 192 224 256
# of threads

m
s/

op

CCR-Ablation
Cortado
Stmt-Ablation

ConcurrencyThrottleSupport

# 
of

 c
or

es
 =

 5
6

# 
of

 h
yp

er
-t

hr
ea

ds
 =

 1
12

256

2048

16384

24816 32 48 64 80 96 112 128 160 192 224 256
# of threads

m
s/

op

CCR-Ablation
Cortado
Stmt-Ablation

CountableThreadPool
# 

of
 c

or
es

 =
 5

6

# 
of

 h
yp

er
-t

hr
ea

ds
 =

 1
12

32

512

8192

24 162432 48 64 80 96 112 128 160 192 224 2568
# of threads

m
s/

op

CCR-Ablation
Cortado
Stmt-Ablation

JobWrapper
# 

of
 c

or
es

 =
 5

6

# 
of

 h
yp

er
-t

hr
ea

ds
 =

 1
12

32

128

512

2048

24816 32 48 64 80 96 112 128 160 192 224 256
# of threads

m
s/

op

CCR-Ablation
Cortado
Stmt-Ablation

PausableThreadPoolExecutor

# 
of

 c
or

es
 =

 5
6

# 
of

 h
yp

er
-t

hr
ea

ds
 =

 1
12

64

256

1024

24816 32 48 64 80 96 112 128 160 192 224 256
# of threads

m
s/

op

CCR-Ablation
Cortado
Stmt-Ablation

ProgressTracker

# 
of

 c
or

es
 =

 5
6

# 
of

 h
yp

er
-t

hr
ea

ds
 =

 1
12

8

64

512

24816 32 48 64 80 96 112 128 160 192 224 256
# of threads

m
s/

op

CCR-Ablation
Cortado
Stmt-Ablation

RealmThreadPoolExecutor

# 
of

 c
or

es
 =

 5
6

# 
of

 h
yp

er
-t

hr
ea

ds
 =

 1
12

64

512

4096

32768

24816 32 48 64 80 96 112 128 160 192 224 256
# of threads

m
s/

op

CCR-Ablation
Cortado
Stmt-Ablation

RoundTripWorker

# 
of

 c
or

es
 =

 5
6

# 
of

 h
yp

er
-t

hr
ea

ds
 =

 1
12

64

1024

16384

160 192 224 25624816 32 48 64 80 96 112 128
# of threads

m
s/

op

CCR-Ablation
Cortado
Stmt-Ablation

SinkQueue

# 
of

 c
or

es
 =

 5
6

# 
of

 h
yp

er
-t

hr
ea

ds
 =

 1
12

256

1024

4096

24816 32 48 64 80 96 112 128 160 192 224 256
# of threads

m
s/

op

CCR-Ablation
Cortado
Stmt-Ablation

WSDataListener

Fig. 11. Performance results for the FDG ablation study. The y-axis is in log scale and time measurements

are in milliseconds. The shadowed regions surrounding each line present 99.9% confidence interval of each

measurement.
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class M {
int x = 0;
void foo() {
waituntil(x < 10);
x++;

}

void bar() {
x--;

}
}

Fig. 12. A simple implicit monitor.

The results of this ablation are presented in Figure 13.
As this figure demonstrates, there are several cases where
the ablated version of the tool performs significantly
worse than Cortado. To give a concrete example of why
this is the case, consider the monitor of Figure 12 that
contains two methods both of which modify field 𝑥 . Be-
cause the body of method bar can be interleaved between
the waituntil statement and the increment statement of
method foo, the optimal synchronization protocol would
convert field 𝑥 to an atomic integer and introduce a lock
that would only be held in method foo. However, an
equivalent protocol would be to simply protect both foo and bar with the same global lock. So, if
all constraints have an equal weight, Cortado could generate both of these protocols, since they
would have the same optimum objective value. As mentioned in Section 5, Cortado’s MaxSAT
encoding prefers assignments where a race between two fragments (like the one on field 𝑥) are
resolved via an atomic field rather than a lock. This forces Cortado to generate the optimal solution
for the monitor of Figure 13. The adjusted weights for other classes of soft constraints try to steer
Cortado to better performing synchronization protocols in a similar way.
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Fig. 13. Performance results for the soft constraints weights ablation. The y-axis is in log scale and time

measurements are in milliseconds. The shadowed regions surrounding each line present 99.9% confidence

interval of each measurement.
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B PROOF OF NP-COMPLETENESS
To aid the reader, we restate Theorem 4.4.

Theorem B.1. (NP-Completeness) Let G = (𝑉 , 𝐸) be the FDG representation of a monitor M

and let Π ⊆ 𝑉 ×𝑉 be a set of fragment pairs that can safely run in parallel. Then, deciding whether

there exists a synchronization protocol with at most 𝑘 locks and atomic fields that allows all pairs in Π
to run in parallel is an NP-Complete problem.

Proof of Theorem 4.4. We prove the theorem by reduction to the edge clique cover prob-
lem [Michael and Quint 2006]. Let 𝐺 = (𝑉 , 𝐸) be an undirected graph. For each 𝑣 ∈ 𝑉 , let 𝐸 (𝑣) be
the set of edges incident to 𝑣 .
Define monitor𝑀 as follows: for each edge 𝑒 ∈ 𝐸 define a new field 𝑓𝑒 of the monitor, initially

set to zero. For each vertex 𝑣 ∈ 𝑉 , define a CCR 𝑖𝑛𝑐𝑣 () which increments each 𝑓𝑒 for 𝑒 ∈ 𝐸 (𝑉 ), has
a guard of ⊤, and returns nothing.

Let𝐺𝑀 be the control-flow graph of monitor𝑀 . Note that there is one𝑤𝑎𝑖𝑡𝑢𝑛𝑡𝑖𝑙 (⊤) statement
for each 𝑖𝑛𝑐𝑣 () and |𝐸 (𝑣) | = 𝑑𝑒𝑔𝑟𝑒𝑒 (𝑣) increment statements in 𝑖𝑛𝑐𝑣 (), so there are |𝑉 | + 2|𝐸 |
total nodes in 𝐺𝑀 . Define {𝐺1,𝑀 , . . . ,𝐺 |𝑉 |+2 |𝐸 |,𝑀 } to be the partition of 𝐺𝑀 into singletons. Then,
let G𝑀 = (𝑉𝑀 , 𝐸𝑀 ) to be the fragment dependency graph obtained from this partition, and let
Π ⊆ 𝑉𝑀 ×𝑉𝑀 be the set of fragment pairs that can safely run in parallel.

We write 𝑓 𝑟𝑎𝑔𝑣,𝑒 for the fragment which increments 𝑓𝑒 in method 𝑖𝑛𝑐𝑣 (), and𝑤𝑎𝑖𝑡𝑢𝑛𝑡𝑖𝑙𝑣 for the
𝑤𝑎𝑖𝑡𝑢𝑛𝑡𝑖𝑙 (⊤) statement at the beginning of 𝑖𝑛𝑐𝑣 (). Observe that

Π =
{
(𝑓1, 𝑓2) | ∃𝑣 ∈ 𝑉 such that 𝑓1 = 𝑤𝑎𝑖𝑡𝑢𝑛𝑡𝑖𝑙𝑣, or 𝑓2 = 𝑤𝑎𝑖𝑡𝑢𝑛𝑡𝑖𝑙𝑣

}
(2)

∪
{
(𝑓 𝑟𝑎𝑔𝑣1,𝑒1 , 𝑓 𝑟𝑎𝑔𝑣2,𝑒2 ) | 𝑒1 ≠ 𝑒2

}
.

Note that any synchronization protocol which implements 𝑓𝑒 for some 𝑒 = (𝑢, 𝑣) ∈ 𝐸 as an
atomic variable is equivalent to one which wraps a unique lock around each 𝑓 𝑟𝑎𝑔𝑢,𝑒 and 𝑓 𝑟𝑎𝑔𝑣,𝑒 .
Therefore, we only need to consider synchronization protocols which use only locks.

Suppose we are given a synchronization protocol which allows all pairs in Π to run in parallel
and uses exactly 𝑘 locks, {ℓ1, . . . , ℓ𝑘 }, for some 𝑘 ∈ N. Define the vertices holding each lock to be

𝐶𝑖 =
{
𝑣 ∈ 𝑉 | ∃𝑒 ∈ 𝐸 (𝑣) such that 𝑓 𝑟𝑎𝑔𝑣,𝑒 holds lock ℓ𝑖

}
. (3)

We claim that {𝐶1, . . . ,𝐶𝑘 } is a clique edge cover of 𝐺 . First, observe that every edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸
corresponds to two fragments in G𝑀 : 𝑓 𝑟𝑎𝑔𝑢,𝑒 and 𝑓 𝑟𝑎𝑔𝑣,𝑒 . Since these fragments must not run in
parallel (due to a data race), they must share some lock. Let ℓ𝑖 be that lock. By the definition of 𝐶𝑖

in Equation 3, 𝑢 ∈ 𝐶𝑖 and 𝑣 ∈ 𝐶𝑖 . Therefore, every edge appears in 𝐶𝑖 for some 1 ≤ 𝑖 ≤ 𝑘 . Second,
suppose that 𝑢 ≠ 𝑣 ∈ 𝑉 are both contained in 𝐶𝑖 for some 𝑖 . By Equation 3, there must be some
𝑒𝑢 ∈ 𝐸 (𝑢) and 𝑒𝑣 ∈ 𝐸 (𝑣) such that both 𝑓 𝑟𝑎𝑔𝑣,𝑒𝑣 and 𝑓 𝑟𝑎𝑔𝑢,𝑒𝑢 hold lock 𝑖 . Since the two fragments
share a lock, we know (𝑓 𝑟𝑎𝑔𝑣,𝑒𝑣 , 𝑓 𝑟𝑎𝑔𝑢,𝑒𝑢 ) ∉ Π. Therefore, 𝑒𝑣 = 𝑒𝑢 (by Equation 2). Hence, there is
an edge 𝑒𝑢 = 𝑒𝑣 = (𝑢, 𝑣) in 𝐸. Consequently, any two distinct vertices in 𝐶𝑖 are incident, so 𝐶𝑖 is a
clique.

A symmetric argument shows how to construct a synchronization protocol using exactly 𝑘 locks
from any edge clique-cover of 𝐺 which has 𝑘 cliques.

We have shown that, given an arbitrary graph𝐺 , in polynomial time we may compute a monitor
𝑀 such that𝑀 has a synchronization protocol using at most 𝑘 locks and atomic variables if and
only if 𝐺 has an edge clique-cover with at most 𝑘 cliques.

□
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(1)
𝑒 = (𝑠, 𝑡) CheckNotif(T , 𝑡) ¬Synch(𝑠) (𝑠, 𝜈), 𝜎 ⇓ 𝜎 ′ T ′ = UpdateState(T , 𝑡)

(𝜎, 𝑒, 𝜈,T) ⇒ (𝜎 ′, 𝜖, 𝜖,T ′)

(2)

𝑒 = (𝑠, 𝑡) CheckNotif(T , 𝑡) 𝑠 = l.lock()
LockHeld(T , 𝑡, 𝜎 [𝑙]) T ′ = BlockThreadOnLock(T , 𝑡, 𝜎 [𝑙]) NoDeadLocks(T ′)

(𝜎, 𝑒, 𝜈,T) ⇒ (𝜎 ′, 𝜖, 𝜖,T ′)

(3)

𝑒 = (𝑠, 𝑡) CheckNotif(T , 𝑡) 𝑠 = l.lock()
¬LockHeld(T , 𝑡, 𝜎 [𝑙]) T ′ = AcqLock(T , 𝑡, 𝜎 [𝑙])

(𝜎, 𝑒, 𝜈,T) ⇒ (𝜎 ′, 𝜖, 𝜖,T ′)

(4)
𝑒 = (𝑠, 𝑡) CheckNotif(T , 𝑡) 𝑠 = l.unlock() T ′ = RelLock(T , 𝑡, 𝜎 [𝑙])

(𝜎, 𝑒, 𝜈,T) ⇒ (𝜎 ′, 𝜖, 𝜖,T ′)

(5)
𝑒 = (𝑠, 𝑡) CheckNotif(T , 𝑡) 𝑠 = c.await() T ′ = BlockOnCVar(T , 𝑡, 𝜎 [𝑐])

(𝜎, 𝑒, 𝜈,T) ⇒ (𝜎 ′, 𝜖, 𝜖,T ′)

(6)
𝑒 = (𝑠, 𝑡) CheckNotif(T , 𝑡) 𝑠 = c.signal() T ′ = SigCVar(T , 𝜎 [𝑐])

(𝜎, 𝑒, 𝜈,T) ⇒ (𝜎 ′, 𝜖, 𝜖,T ′)

(7)
𝑒 = (𝑠, 𝑡) CheckNotif(T , 𝑡) 𝑠 = c.signalAll() T ′ = BCastCVar(T , 𝜎 [𝑐])

(𝜎, 𝑒, 𝜈,T) ⇒ (𝜎 ′, 𝜖, 𝜖,T ′)

(8)
(𝜎, 𝑒, 𝜈,T) ⇒ (𝜎 ′, 𝜖, 𝜖,T ′)

(𝜎, 𝑒 :: ℎ, 𝜈 :: 𝜈 ′,T) ⇒ (𝜎 ′, ℎ, 𝜈 ′,T ′)

Fig. 14. Semantics for our target language 2b. Here, his a history, 𝜈 a list of arguments for every element in ℎ,

and T a tuple of sets and mappings that keep track of all pending signaling and locking operations. Methods

and predicates that appear in small caps are defined the text.

C TARGET LANGUAGE OPERATIONAL SEMANTICS
This section presents the semantics of our target language presented in Figure 2b. As mentioned
in Section 3, given an explicit monitor𝑀𝑡 , initial state 𝜎 , and monitor history ℎ𝑒 with argument
mapping 𝜈𝑒 , the operational semantics of 𝑀𝑡 is defined using a judgment 𝑀𝑡 ⊢ (ℎ𝑒 , 𝜈𝑒 , 𝜎) ↓ 𝜎 ′
indicating that the new state is 𝜎 ′ after executing ℎ𝑒 on initial state 𝜎 . The semantics of such a
monitor are implemented using the inference rules of Figure 14 that use judgements of the form
(𝜎,ℎ𝑒 , 𝜈𝑒 ,T) ⇒ (𝜎 ′, ℎ′𝑒 , 𝜈 ′𝑒 ,T ′). Here, T and T ′ are tuples of the form (B𝑆 ,N𝑆 ,H𝐿,B𝐿,N𝐿) and
their role is to keep track all signaling and locking operations of the history. Specifically, each
element of the tuple is defined below:

• B𝑆 ⊆ 𝑇 ×𝐶𝑉𝑎𝑟 : a set of thread-condition variable pairs, (𝑡, 𝑐) ∈ B𝑆 means that thread 𝑡 is
blocked on condition variable 𝑐 .
• N𝑆 ⊆ 𝑇 ×𝐶𝑉𝑎𝑟 : a set of thread-condition variable pairs, (𝑡, 𝑐) ∈ N𝑆 means that thread 𝑡 has
been notified on condition 𝑐 .
• H𝐿 ⊆ 𝑇 × 𝐿: a set of thread-lock pairs, (𝑡, 𝑙) ∈ H𝐿 means that thread 𝑡 holds lock 𝑙 .
• B𝐿 ⊆ 𝑇 × 𝐿: a set of thread-lock pairs, (𝑡, 𝑙) ∈ B𝐿 means that thread 𝑡 is blocked waiting to
acquire lock 𝑙 .

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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1: procedure UpdateState(T , 𝑡 )
2: input: T = (B𝑆 ,N𝑆 ,H𝐿,B𝐿,N𝐿)
3: input: 𝑡 , thread executing a non-synchronization statement.
4: output: updated mappings.
5: if (𝑡, 𝑐) ∈ B𝑆 then
6: B ′

𝑆
← B𝑆 \ {(𝑡, 𝑐)} N ′𝑆 ← N𝑆 \ {(𝑡, 𝑐)}

7: if (𝑡, 𝑙) ∈ B𝐿 then
8: H ′

𝐿
←H𝐿 ∪ {(𝑡, 𝑙)}

9: N ′
𝐿
← N𝐿 \ {(𝑡, 𝑙)}

10: B ′
𝐿
← B𝐿 \ {(𝑡, 𝑙)}

11: return (B ′
𝑆
,N ′

𝑆
,H ′

𝐿
,B𝐿,N ′𝐿)

Fig. 15. Procedure UpdateState

• N𝐿 ⊆ 𝑇 ×𝐿: a set of thread-lock pairs, (𝑡, 𝑙) ∈ N𝐿 means that thread 𝑡 can acquire a previously
held lock 𝑙

We say that 𝑀𝑡 ⊢ (ℎ𝑒 , 𝜈𝑒 , 𝜎) ↓ 𝜎 ′ if and only if (𝜎,ℎ𝑒 , 𝜈𝑒 ,T) ⇒∗ (𝜎 ′, 𝜖, 𝜖,T ′), where ⇒∗ is the
reflexive transitive closure of relation⇒. In other words, a ℎ𝑒 is a valid explicit history according
to our operational semantics only if the rules of Figure 14 can “consume” the entire history. If none
of the rules of Figure 14 apply to a history, then we consider the computation of relation⇒ stuck
and thus the history is not valid.

On a high level, the rules of our operational semantics iterate over all statements of input history
ℎ and updates the sets inside T accordingly. Because during the execution of a ℎ a thread 𝑡 might
perform a blocking operation (e.g., call l.lock on a state where l is being held), the rules require
every statement to be executed in a state where a thread is not blocked. To ensure this, every rule
in Figure 14 requires predicate𝑀𝑡 ⊢ (ℎ𝑒 , 𝜈𝑒 , 𝜎) ↓ 𝜎 ′, defined below, to hold for the executing thread
𝑡 .

CheckNotif((B𝑆 ,N𝑆 ,H𝐿,B𝐿,N𝐿), 𝑡) = (𝑡, 𝑐) ∈ B𝑆 ↔ (𝑡, 𝑐) ∈ N𝑆 ∧
(𝑡, 𝑙) ∈ B𝐿 ↔ (𝑡, 𝑙) ∈ N𝐿

Essentially, CheckNotif((B𝑆 ,N𝑆 ,H𝐿,B𝐿,N𝐿), 𝑡) requires every thread 𝑡 that was previously
blocked by some operation ((𝑡, _) ∈ B𝑆 or (𝑡, 𝑙) ∈ B𝐿) to be first notified ((𝑡, _) ∈ N𝑆 or (𝑡, 𝑙) ∈ N𝐿)
in order to execute a statement.

In what follows, we explain each of the rules of Figure 14 in more detail.

Rule (1). This rule applies for all statements that are not a synchronization statement (i.e., lock
or signal operation). Because the operational semantics for non-synchronization statements are
well-studied, we assume the existence of an oracle ⇓ that give a statement 𝑠 and its argument 𝜈 ,
it returns the resulting monitor state 𝜎 ′. Furthermore, because thread 𝑡 could be blocked before
executing statement 𝑠 , this rule uses procedure UpdateState (defined in Figure 15) to update the
sets inside T accordingly. Specifically, if thread 𝑡 was blocked in some condition variable 𝑐 , then
procedure UpdateState removes pair (𝑡, 𝑐) from both B𝑆 andN𝑆 (recall that if 𝑡 was blocked then
it is guaranteed to be notified). Similarly, if thread 𝑡 was blocked on some lock 𝑙 , then procedure
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UpdateState add the pair (𝑡, 𝑙) to H𝐿 (i.e., now 𝑡 holds lock 𝑙) and removes it from N𝐿 and B𝐿
(same as in the condition variable case).

Rule (2). This rule applies to all statements where a thread 𝑡 attempts to acquire lock l that is
currently held by another thread. In order to determine whether a lock is held by another thread,
this rule makes use of predicate LockHeld defined as follows:

LockHeld((B𝑆 ,N𝑆 ,H𝐿,B𝐿,N𝐿), 𝑡, 𝑙) = 𝑙 ∈ H𝐿 [𝑡 ′] . 𝑡 ≠ 𝑡 ′

Then, the rule marks thread 𝑡 as blocked on lock 𝑙 by using the following procedure that updates
map B𝐿 by adding pair (𝑡, 𝑙):

BlockThreadOnLock((B𝑆 ,N𝑆 ,H𝐿,B𝐿,N𝐿), 𝑡, 𝑙) = (B𝑆 ,N𝑆 ,H𝐿,B ′𝐿,N𝐿)
where B ′𝐿 = B𝐿 \ {(𝑡, 𝑙)}

Finally, the rule requires that the new attempt to acquire lock 𝑙 does not introduce any deadlocks by
invoking oracle NoDeadLocks. This oracle detects any cycles in the lock acquisition by examining
maps B𝐿 andH𝐿 .

Rule (3). Conversely, the third rule applies to all cases where thread thread 𝑡 attempts to acquire
a lock not currently held by some other thread. In this case, the rule simply adds pair (𝑡, 𝑙) in map
H𝐿 as follows:

AcqLock((B𝑆 ,N𝑆 ,H𝐿,B𝐿,N𝐿), 𝑡, 𝑙) = (B𝑆 ,N𝑆 ,H ′𝐿,B𝐿,N𝐿)
whereH ′𝐿 = H𝐿 ∪ {(𝑡, 𝑙)}

Rule (4). This rule is triggered when a thread 𝑡 releases lock 𝑙 . The rule performs the following
two updates to mapsH𝐿 and N𝐿 :

RelLock((B𝑆 ,N𝑆 ,H𝐿,B𝐿,N𝐿), 𝑡, 𝑙) = (B𝑆 ,N𝑆 ,H ′𝐿,B𝐿,N ′𝐿)
whereH ′𝐿 = H𝐿 \ {(𝑡, 𝑙)}, N ′𝐿 = N𝐿 ∪ {(𝑡 ′, 𝑙)} s.t. (𝑡 ′, 𝑙) ∈ B𝐿

Specifically, it removes pair (𝑡, 𝑙) fromH𝐿 and notifies some thread 𝑡 ′ currently blocked on lock 𝑙 .

Rule (5). This rule applies when a thread 𝑡 calls method await on a condition variable 𝑐 . The rule
simply adds pair (𝑡, 𝑐) in set B𝑆 .

BlockOnCVar((B𝑆 ,N𝑆 ,H𝐿,B𝐿,N𝐿), 𝑡, 𝑐) = (B ′𝑆 ,N𝑆 ,H𝐿,B𝐿,N𝐿)
where B ′𝑆 = B𝑆 \ {(𝑡, 𝑐)}

Rules (6) and (7). These two rules are used when a thread signals or broadcasts a condition
variable 𝑐 . They simply update set N𝑆 as follows:

SigCVar((B𝑆 ,N𝑆 ,H𝐿,B𝐿,N𝐿), 𝑐) = (B𝑆 ,N ′𝑆 ,H𝐿,B𝐿,N𝐿)
where N ′𝑆 = N𝑆 ∪ {(𝑡, 𝑐)} s.t. (𝑡, 𝑐) ∈ B𝑆

BcastCVar((B𝑆 ,N𝑆 ,H𝐿,B𝐿,N𝐿), 𝑐) = (B𝑆 ,N ′𝑆 ,H𝐿,B𝐿,N𝐿)
where N ′𝑆 = N𝑆 ∪ {(𝑡, 𝑐) | (𝑡, 𝑐) ∈ B𝑆 }

Specifically, rule 6 adds a single thread 𝑡 currently blocked on condition variable 𝑐 in N𝑆 , whereas
rule 7 adds all such threads in N𝑆 .

Rule (8). Finally, rule 8 recursively applies the procedure to the whole input history ℎ.
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D MONITOR INSTRUMENTATION.
In this section, we describe procedure Instrument which given an implicit-synchronization monitor
M , it corresponding FGD G = (𝑉 , 𝐸), and a synchronization protocol S = (L,A,P), it instrument
protocolS intoM yielding an explicit-synchronization monitorM ′ equivalent toM . This is achieved
by first introducing all the necessary synchronization fields (locks, condition variables, and atomic
fields) in the input class and then instrumenting locking and signaling operations in all methods as
follows:
• Lock acquisition and release: The synthesized code must ensure that all the locks in L(𝑓 ) are
held when executing fragment 𝑓 . Thus, for every edge (𝑓 , 𝑓 ′) in the FDG, we instrument the
code to acquire locks L(𝑓 ′)\L(𝑓 ) and release locks L(𝑓 )\L(𝑓 ′). Furthermore, as mentioned in
Section 2, we acquire and release these locks according to a static total order to prevent deadlocks.
• Blocking on predicates: Our instrumentation must also convert every waituntil statement
to a sequence of operations on locks and condition variables. Specifically, we instrument a
waituntil(p) statement as follows:
while(!p) { ln.unlock(); ...; l2.unlock(); c.await(); l2.lock(); ...; ln.lock(); }

where c is the condition variable associated with p; l1, ... ln are the locks associated with this
fragment, and l1 is the lock associated with condition variable c.
• Signaling operations: Finally, we instrument signaling operations introduced by PlaceSignals to
acquire and release the appropriate locks. In particular, given a statement signal(p,c) (similarly
for broadcast(p,c)), our instrumentation generates the following code:

if (c) { lp.lock(); cp.signal(); lp.release(); }

where cp is the condition variable for predicate p and lp is the corresponding lock for cp.
Procedure Instrument is presented in Figure 16 in the form of inference rules that use the

following two judgements:
• 𝜈 ⊢ Δ ⇝ Δ′, where 𝜈 is a subset of the arguments of procedure Instrument (we overload
operator⇝ depending on the arguments) and Δ is one of the following: the input monitor, a
field, a method, a CCR or a statement.
• L,G ⊢ 𝑣 ↩→ 𝑣 ′, where L is the lock map of the input synchronization protocol S, FDG is the
input G, and 𝑣 is a fragment in G.

The meaning of each judgement is that whenever procedure Instrument is applied to an element
that appears on the left-hand side of an arrow (⇝, ↩→) it generates the element on the right-hand
side.

Overall Structure. The core logic of this procedure is to recursively iterate every element of the
input monitor and use the inferred synchronization protocol in order to convert each element to
an equivalent element of the target language. At a top level, the procedure begins by transforming
every field and method of the input monitor. For every method, the procedure recursively visits
every CCR using operator⇝. Then, for every CCR, it collects all its fragments and uses operator
↩→ to instrument all the lock operations dictated by the input protocol. In what follows, we give a
brief description of every rule presented in Figure 16.

Mtr. This is the top-level rule called by procedure Instrument and performs the following
tasks: 1. it introduces all the synchronization fields (locks and condition variables) needed by the
synchronization protocol and initializes them accordingly and 2. it recursively calls itself for every
field, and method of M .

Fld-1 & Fld-2. These two rules are used to translate fields ofM , with the first one being applicable
to fields that must be converted to atomic fields and the second one to fields that should remain the
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same. Only the first rule alters the original field by converting to an atomic field with the same
name as the original.

Method & CCR.. These two rules simply recursively apply operator⇝ to their constituent
elements.

CCR-Statement. This rule is the one that splits each top-level CCR-Statement to a set of frag-
ments that belong in the input FGG G and then recursively transforms each of the fragments. Note,
because of the properties of FDG (Definitions 4.1 and 4.2), there is only one way to decompose each
CCR to its constituents fragments.

Frag-Stmt. This rule applies to all statements 𝑠 that are a fragment in the input G. It first uses
operator ↩→ to instrument all necessary lock operations and then uses a special oracle→A that
converts all operations that involve a field converted to atomic to the equivalent update statement
in the target language.8

Wait. Rule labeledWait is a special case of the above rule because, by definition, every waituntil

statement defines its own fragment in an FDG. Similar to the rule above, this rule also uses operator
↩→ to instrument the appropriate lock operation in the fragment but it additionally translates
the waituntil statement into an equivalent statement in the target language that uses condition
variables. As mentioned in Section 4, each waituntil statement is translated into a while loop that
waits on the appropriate condition variable and properly releases and acquires all locks before and
after the call to method await. Additionally, it acquires all locks needed by its successor statement
𝑣 in the FDG and releases all locks held by it but not needed by 𝑣 (similar to the logic described
below).

Sig. This rule applies to all fragments that are a signalling directive of the monitor’s intermediate
representation.9 In a similar manner as the rule for waituntil statements, this rule first uses operator
↩→ to instrument all lock operations needed to implement the synchronization protocol. Then, it
consults the predicate map P of the synchronization protocol to acquire the appropriate lock and
perform the signaling operation on the associated condition variable.

Instrumenting Fragments With Lock Operations. Finally, we describe operator ↩→ which
given a fragment 𝑣 , the lock map L of the input synchronization protocol S, and the FDG G, it
instruments all the necessary lock operations. The logic of this operator is split between two groups
of rules, described in more detail below:
• Rules for entry & exit fragments (i.e., fragments without predecessors and successors respec-
tively), which are handled by rules Entry-Frag and Exit-Frag respectively. These rules
simply lookup the entry or exit fragment in L and acquire or release the locks returned by
the L accordingly.
• Rules for fragments with successors. Fragments that contain some successor in the graph
are handled by rules Branch-Frag, Reg-Frag-1 and Reg-Frag-2. The logic for each of these
rule is similar, i.e., for any successor fragment 𝑣𝑠 of fragment 𝑣 , the instrumentation releases
all locks required by 𝑣 but not by 𝑣𝑠 (L[𝑣] \ L[𝑣𝑠 ]) and acquires all locks required by 𝑣𝑠 but
not 𝑣 (L[𝑣𝑠 ] \ L[𝑣]). All these operation are operation in accordance to the global lock order
to prevent deadlocks. Last, it is worth mentioning that the main difference of these three rules
is how they instrument the edge between 𝑣 and 𝑣𝑠 . That is, if 𝑣 ends with a goto statement

8Due to its simplicity, we omit a formal description of oracle→A .
9For simplicity, we assume that every signaling operation defines its own fragment.
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(conditional or not), then the instrumentation redirects the control-flow appropriately so all
lock operations occur along edge (𝑣, 𝑣𝑠 ).

Finally, we conclude with the following theorem that states the correctness of our instrumentation
phase.

Theorem D.1. Let S = (L,A,P) be a synchronization protocol inferred over FGD G = (𝑉 , 𝐸)
of input monitor 𝑀 and 𝑀 ′ be the result of procedure Instrument for 𝑀 . Then, the following three

conditions hold:

(1) For every fragment 𝑣 ∈ 𝑉 , 𝑙𝑖 ∈ L[𝑣] iff fragment 𝑣 holds lock 𝑙𝑖 in𝑀 ′

(2) If 𝑖 < 𝑗 , then 𝑙𝑖 is never acquired whenever 𝑙 𝑗 is held.

(3) Field 𝑓 ∈ A iff all its occurrences in𝑀 have been replaced with an atomic operation in𝑀 ′.

Proof. Proof can be find in Appendix E. □

E CORRECTNESS-RELATED PROOFS
This section contains all the proofs related to the correctness of our approach. Section E.1 presents
the proof of Theorem 4.5, Section E.2 presents the proof of Theorem 4.14, Section E.3 presents the
proof of Theorem 4.16, and Section E.4 presents the proof of Theorem D.1.

E.1 Proof of Theorem 4.5
Theorem 4.5 states the following:

(Correctness). We say that an explicit monitor𝑀𝑡 correctly implements an implicit monitor𝑀𝑠 ,
denoted as M𝑠 ∼ M𝑡 , iff for all input states 𝜎𝑠 , 𝜎𝑡 s.t. 𝜎𝑠 ≡M𝑠

𝜎𝑡 , we have:

(1) ∀ℎ𝑖 , 𝜈𝑖 . M𝑠 ⊢ (ℎ𝑖 , 𝜈𝑖 , 𝜎𝑠 ) ⇓ 𝜎 ′𝑠 =⇒
(
M𝑡 ⊢ (ExpandM𝑡

(ℎ𝑖 , 𝜈𝑖 , 𝜎𝑠 ), 𝜎𝑡 ) ↓ 𝜎 ′𝑡 ∧ 𝜎 ′𝑠 ≡M𝑠
𝜎 ′𝑡

)
(2) ∀ℎ𝑒 , 𝜈𝑒 . M𝑡 ⊢ (ℎ𝑒 , 𝜈𝑒 , 𝜎𝑡 ) ↓ 𝜎 ′𝑡 =⇒

(
∃ℎ𝑖 , 𝜈𝑖 . (ℎ𝑒 , 𝜈𝑒 ) ∽ (ℎ𝑖 , 𝜈𝑖 ) ∧M𝑠 ⊢ (ℎ𝑖 , 𝜈𝑖 , 𝜎𝑠 ) ⇓ 𝜎 ′𝑠 ∧ 𝜎 ′𝑠 ≡M𝑠

𝜎 ′𝑡
)

Proof. For all proofs in this Section, we assume the correctness of procedure PlaceSingals
(proved in previous work [Ferles et al. 2018]).

The proof of condition (1) above follows directly from Theorems 4.16, D.1, and the correct-
ness of procedure PlaceSingals. The proof of condition (2) follows directly from Theorem 4.14,
Theorem 4.16, Theorem D.1, and correctness of PlaceSignals. □

E.2 Proof of Theorem 4.14
In this section, we present the proof of Theorem 4.14 which we reiterate here for convenience.
Before presenting the actual proof, we first introduce some auxiliary notation, relations, and

lemmas. First, given a history ℎ, we define a predicate ℎJJ(𝑣1, 𝑡1)𝑖1, . . . , (𝑣𝑘 , 𝑡𝑘 )𝑖𝑘KK that evaluates to
true iff each event (𝑣𝑖 , 𝑡𝑖 )𝑖 is 𝑖-th element in ℎ and 𝑖1 < . . . < 𝑖𝑘 . That is, this predicate encodes
that these event occur in this particular order within ℎ. Second, we define Next(ℎ, 𝑖, 𝑡) as follows:
𝑚𝑖𝑛({ 𝑗 | 𝑗 > 𝑖, ℎGJJ(_, 𝑡) 𝑗 KK}). In other words, Next(ℎ, 𝑖, 𝑡) returns the first element in ℎ after
index 𝑖 whose thread identifier is 𝑡 . Additionally, we use ℎ[𝑖] to denote the 𝑖-th element in ℎ and
ℎ[𝑖 : 𝑗], 𝑖 < 𝑗 to denote the “sub-history” of ℎ between its 𝑖-th element (inclusive) and 𝑗-th element
(exclusive). Finally, we extend the definition of a history projection to filter out elements that do
not involve a thread , e.g., Π(ℎ,¬𝑡) filters out all events of ℎ that involve thread 𝑡 .
Next, using the notation above we define some relations that identify interleavings inside a

history of a fragmented monitor MG .

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.



1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1:38 Kostas Ferles, Benjamin Sepanski, Rahul Krishnan, James Bornholt, and Isil Dillig

Entry-Frag
¬∃𝑣𝑝 . (𝑣𝑝 , 𝑣) ∈ 𝐸 𝐴 = L[𝑣]
L, (𝐹, 𝐸) ⊢ 𝑣 ↩→ 𝐴𝑐𝑞(𝐴); 𝑣 Exit-Frag

¬∃𝑣𝑠 . (𝑣, 𝑣𝑠 ) ∈ 𝐸 𝑅 = L[𝑣]
L, (𝐹, 𝐸) ⊢ 𝑣 ↩→ 𝑣 ;𝑅𝑒𝑙 (𝑅)

Branch-Frag

𝐸𝑥𝑖𝑡 (𝑣) ≡ if (c) goto l (𝑣, 𝑣𝑠1) ∈ 𝐸 (𝑣, 𝑣𝑠2) ∈ 𝐸 𝑣𝑠1 ≠ 𝑣𝑠2 𝑣𝑠2 ≡ l: s
(𝐴𝑖 , 𝑅𝑖 ) = (L[𝑣𝑠𝑖 ] \ L[𝑣],L[𝑣] \ L[𝑣𝑠𝑖 ]), 𝑖 ∈ {1, 2} 𝑣 ′ = 𝑣 [l’/l]

𝑒1 = (𝑅𝑒𝑙 (𝑅1);𝐴𝑐𝑞(𝐴1); goto l”) 𝑒2 = (l’ : 𝑅𝑒𝑙 (𝑅2);𝐴𝑐𝑞(𝐴2); goto l)
L, (𝐹, 𝐸) ⊢ 𝑣 ↩→ 𝑣 ′; 𝑒1; 𝑒2; l”: skip

Reg-Frag-1

𝐸𝑥𝑖𝑡 (𝑣) ≡ goto l (𝑣, 𝑣𝑠 ) ∈ 𝐸 (𝐴, 𝑅) = (L[𝑣𝑠 ] \ L[𝑣],L[𝑣] \ L[𝑣𝑠 ])
𝑣 ′ = 𝑣 [l’/l]; (l’ : 𝑅𝑒𝑙 (𝑅);𝐴𝑐𝑞(𝐴); goto l)

L, (𝐹, 𝐸) ⊢ 𝑣 ↩→ 𝑣 ′

Reg-Frag-2
𝐸𝑥𝑖𝑡 (𝑣) . goto l (𝑣, 𝑣𝑠 ) ∈ 𝐸 (𝐴, 𝑅) = (L[𝑣𝑠 ] \ L[𝑣],L[𝑣] \ L[𝑣𝑠 ])

L, (𝐹, 𝐸) ⊢ 𝑣 ↩→ 𝑣 ;𝑅𝑒𝑙 (𝑅);𝐴𝑐𝑞(𝐴)

Wait

L, (𝐹, 𝐸) ⊢ 𝑤 ↩→ 𝑤 ′ (c, e) = 𝑁𝑒𝑤𝐿𝑎𝑏𝑒𝑙𝑠 () 𝑙𝑝 = P[𝑤]
𝐿𝑤 = L[𝑤] 𝑟𝑒𝑙 = 𝑅𝑒𝑙 (𝐿𝑤 \ {𝑙𝑝 }) 𝑎𝑐𝑞 = 𝐴𝑐𝑞(𝐿𝑤 \ {𝑙𝑝 })

(𝑤, 𝑣) ∈ 𝐸 (𝐴, 𝑅) = (L[𝑤] \ L[𝑣],L[𝑣] \ L[𝑤]) 𝑠𝑢𝑐𝑐𝐿𝑜𝑐𝑘𝑠 ≡ 𝑅𝑒𝑙 (𝑅);𝐴𝑐𝑞(𝐴)
𝑤 ′′ = 𝑤 ′[(c: if (p) goto e);(rel;c𝑝.await();acq;goto c);(e: succLocks)/𝑤]

(L,A,P), (𝐹, 𝐸) ⊢ 𝑤 ≡ waituntil(𝑝) ⇝ 𝑤 ′′

Frag-Stmt
𝐼𝑠𝐹𝑟𝑎𝑔(𝑠) L,G ⊢ 𝑠 ↩→ 𝑠 ′ 𝑠 ′ →A 𝑠 ′′

(L,A,P),G ⊢ 𝑠 ⇝ 𝑠 ′′
Sig

𝑆𝑖𝑔𝑂𝑝 (𝑠) L,G ⊢ 𝑠 ↩→ 𝑠 ′

𝑠 ′′ = 𝑠 ′[𝐸𝑥𝑝𝑙𝑆𝑖𝑔(𝑠,P)/𝑠]
(L,A,P),G ⊢ 𝑠 ⇝ 𝑠 ′

CCR-Statement
G ≡ (𝐹, 𝐸) 𝑠 ≡ 𝑠1;...;𝑠𝑛 𝑠𝑖 ∈ 𝐹 𝑠𝑖 ⇝ 𝑠 ′

𝑖

S,G ⊢ 𝑠 ⇝ 𝑠 ′1;...;𝑠
′
𝑛

Method
S,G ⊢ 𝑐𝑖 ⇝ 𝑐 ′

𝑖

S,G ⊢ m(®𝑣){𝑐1 ...𝑐𝑛}⇝ m(®𝑣){𝑐 ′1 ...𝑐
′
𝑛}

CCR

S,G ⊢ 𝑠 ⇝ 𝑠 ′

S,G ⊢ 𝑤 ⇝ 𝑤 ′

S,G ⊢ 𝑤;𝑠 ⇝ 𝑤 ′; 𝑠 ′

Fld-1
fld ∈ A

A ⊢ 𝜏 fld := 𝑒 ⇝ Atomic[𝜏] fld := 𝑒
Fld-2

fld ∉ A
A ⊢ 𝜏 fld := 𝑒 ⇝ 𝜏 fld := 𝑒

Mtr

S ≡ (L,A,P) G ≡ (𝐹, 𝐸) 𝑙𝑖 ≜ Lock 𝑙 𝑗 := new Lock() 𝑠 .𝑡 . 𝑙 𝑗 ∈ 𝐿𝑜𝑐𝑘𝑠 (L)
𝑐𝑣𝑖 ≜ CondVar cv𝑝 := 𝑙 𝑗.newCV() 𝑠 .𝑡 . (𝑝, 𝑙 𝑗 ) ∈ P A ⊢ 𝑓𝑖 ⇝ 𝑓 ′

𝑖
S,G ⊢𝑚𝑖 ⇝𝑚′

𝑖

S,G ⊢ mtr M { 𝑓1 ...𝑓𝑚 𝑚1 ...𝑚𝑛 }⇝ mtr M { 𝑙1 ...𝑙𝑘 𝑐𝑣1 ...𝑐𝑣𝑙 𝑓
′
1 ...𝑓

′
𝑚 𝑚′1 ...𝑚

′
𝑛 }

Aux-Defs 𝐴𝑐𝑞(𝐿) ≜ 𝑙𝑖1.lock(); ...; 𝑙𝑖𝑘 .lock() 𝑠 .𝑡 . 𝑙𝑖 𝑗 ∈ 𝐿,∀𝑗 . 1 ≤ 𝑗 ≤ 𝑘, 𝑖 𝑗 < 𝑖 𝑗+1

𝑅𝑒𝑙 (𝐿) ≜ 𝑙𝑖𝑘 .unlock(); ...; 𝑙𝑖1.unlock() 𝑠 .𝑡 . 𝑙𝑖 𝑗 ∈ 𝐿,∀𝑗 . 1 ≤ 𝑗 ≤ 𝑘, 𝑖 𝑗 < 𝑖 𝑗+1

𝐸𝑥𝑝𝑙𝑆𝑖𝑔(𝑠,P) =
{
if (c) { l.lock();c𝑝.signal();l.unlock();} 𝑠 ≡ 𝑠𝑖𝑔𝑛𝑎𝑙 (𝑝, 𝑐), 𝑙 ≡ P[𝑝]
if (c) { l.lock();c𝑝.signalAll();l.unlock();} 𝑠 ≡ 𝑏𝑐𝑎𝑠𝑡 (𝑝, 𝑐), 𝑙 ≡ P[𝑝]

Fig. 16. Procedure Instrument(S,G), where S is a synchronization protocol for FDG G.
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Definition E.1. (History Interleaving). Given history ℎ𝑓 𝑑𝑔 = (𝑉 , 𝐸) and interleaving 𝜒 = (𝑣, 𝑒 =
(𝑣𝑠 , 𝑣𝑡 )). We define the occurrences of 𝜒 as follows:

𝐼𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑖𝑛𝑔𝑠 (𝜒, ℎG) = [( 𝑗, (𝑖, 𝑘)) | ℎGJJ(𝑣𝑠 , 𝑡)𝑖 , (𝑣, 𝑡 ′) 𝑗 , (𝑣𝑡 , 𝑡)𝑘KK, 𝑡 ≠ 𝑡 ′, 𝑘 = Next(ℎG, 𝑖, 𝑡)]
Also, we write X(ℎG) to be the set of all interleavings that occur in ℎG , i.e.

X(ℎG) = {𝜒 | 𝑋 = 𝐼𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑖𝑛𝑔𝑠 (𝜒, ℎG), |𝑋 | > 0}
Finally, we write X# (ℎG) to denote the number of interleavings inside ℎ. Formally:

X# (ℎG) =
∑

𝜒 ∈𝑉×𝐸
|𝐼𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑖𝑛𝑔𝑠 (𝜒, ℎG) |

Next, given a fragment 𝑣 we assume the existence of two predicates, namely, EntryFrag and
ExitFrag, that hold only if 𝑣 is the entry fragment or the exit fragment of its CCR respectively.
Based on these relations, we define the next relation that partitions a fragment history into CCR
sub-histories.

CCRHistory Partition. LetℎG be a history of fragments in FDG G. We define the CCR partition
of ℎG that returns a list of potentially overlapping sub-histories of ℎG as follows:

𝐶𝐶𝑅𝑃𝑎𝑟𝑡 (ℎG) =
[
ℎG [𝑖 : 𝑗]

�� ℎG [𝑖] = (𝑣𝑖𝑛, 𝑡, _), 𝐸𝑛𝑡𝑟𝑦𝐹𝑟𝑎𝑔(𝑣𝑖𝑛),
𝑗 =𝑚𝑖𝑛({𝑘 | 𝑘 > 𝑖, ℎG [𝑘 + 1] = (𝑣𝑜𝑢𝑡 , 𝑡, _), 𝐸𝑥𝑖𝑡𝐹𝑟𝑎𝑔(𝑣𝑜𝑢𝑡 )})

]
Let 𝑃 = 𝐶𝐶𝑅𝑃𝑎𝑟𝑡 (ℎG), then we use 𝑃 [𝑖] to refer to the 𝑖-th sub-history in 𝑃 . Note we assume
that partitions returned by 𝐶𝐶𝑅𝑃𝑎𝑟𝑡 are ordered according to the index of the first element in the
sub-history. That is, if 𝑐𝑐𝑟1 began its execution before 𝑐𝑐𝑟2 in ℎG , then the partition of 𝑐𝑐𝑟1 appears
before the partition of 𝑐𝑐𝑟2 in 𝑃 . Furthermore, given a CCR partition 𝑃 [𝑖], we write 𝑇ℎ𝑟𝑒𝑎𝑑 (𝑃 [𝑖])
to represent the thread of the first element in sub-history 𝑃 [𝑖].

Removing Interleavings from Histories. Before we prove our main theorem, we define some
transformations on interleaved histories that helps us remove interleavings.

First, given a CCR sub-history that is interleaved, we define its sequential history as follows:

Definition E.2. Sequential CCRSub-history LetℎG be an interleaved history, 𝑃 = 𝐶𝐶𝑅𝑃𝑎𝑟𝑡 (ℎG),
and ℎ′G = 𝑃 [𝑖] be an interleaved CCR partition. We define that the sequential history of ℎ′G , denoted
as 𝑆𝑒𝑞 |𝐶𝐶𝑅 (ℎ′G) to be the following history: Π(ℎ′G, 𝑡)Π(ℎ

′
G,¬𝑡), where 𝑡 = 𝑇ℎ𝑟𝑒𝑎𝑑 (𝑃 [𝑖]). Given

an argument mapping 𝜈 for history ℎ′G , we write 𝑆𝑒𝑞(𝜈) to denote the corresponding argument
mapping for 𝑆𝑒𝑞 |𝐶𝐶𝑅 (ℎ′G).
We now prove the following useful lemmas about sequential CCR sub-histories.

Lemma E.3. Let ℎG be an interleaved sub-history and ℎ′G = 𝑆𝑒𝑞 |𝐶𝐶𝑅 (ℎG), then the following two

things hold:

(1) X(ℎ′G) ⊆ X(ℎG)
(2) X# (ℎ′G) < X# (ℎG)

Proof. Both of the properties logically follow from the construction of ℎ′G . That is, a sequential
CCR sub-history of the form (𝑣1, 𝑡) . . . (𝑣𝑖 , 𝑡), (𝑣𝑖+1, 𝑡 ′), . . . , (𝑣 𝑗 , 𝑡 ′′), where all elements before the
𝑖-th position are from thread 𝑡 and all elements past that are from some thread 𝑡 ′ s.t. 𝑡 ≠ 𝑡 ′. On the
other hand, the original history ℎG is of the form:

(𝑣1, 𝑡) . . . (𝑣𝑘 , 𝑡) (𝑣𝑘+1, 𝑡 ′) . . . (𝑣 𝑗 , 𝑡)
Where ℎG [1 : 𝑘 + 1] = ℎ′G [1 : 𝑘 + 1] (i.e., ℎG and ℎ′G have a common prefix). Therefore, since by
its construction ℎ′G does not move the relative order of element is ℎG that do not involve thread 𝑡 ,
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if an interleaving 𝜒 ∈ X(ℎ′G) then we also have 𝜒 ∈ X(ℎG). Conversely, any thread interleaving
that involved thread 𝑡 in ℎG does not appear in ℎG (by construction). Since by its definition the
interleaved history ℎG contains at least one interleaving that involves an edge executed by 𝑡 , we
can conclude that X# (ℎ′G) < X# (ℎG). □

Lemma E.4. Let ℎG be an interleaved sub-history and ℎ′G = 𝑆𝑒𝑞 |𝐶𝐶𝑅 (ℎG), then if X(ℎG) is a set of
strongly safe interleavings we have that: ∀𝜎, 𝜈 .MG ⊢ (ℎG, 𝜈, 𝜎) ⇓ 𝜎 ′⇒ MG ⊢ (ℎ′G, 𝑆𝑒𝑞(𝜈), 𝜎) ⇓ 𝜎

′

Proof. We prove this by induction on the number of distinct interleavings of history ℎG (X#ℎG).

Base Case: X# (ℎG) = 1. If there is a single interleaving in ℎG , this implies that ℎG is of the form:

(𝑣1, 𝑡) . . . (𝑣𝑖 , 𝑡 ′) . . . (𝑣 𝑗 , 𝑡)
where 𝑡 = 𝑇ℎ𝑟𝑒𝑎𝑑 (ℎG) and (𝑣𝑖 , 𝑡 ′) is the only element in ℎG not executed by 𝑡 . Because, the
interleaving of ℎG is strongly safe, we have that fragment 𝑣𝑖 executed by 𝑡 ′, right commutes with

any possible successor of the edge it interleaves. Also, by definition, ℎ′G is (𝑣1, 𝑡) . . . (𝑣 𝑗 , 𝑡) (𝑣𝑖 , 𝑡 ′).
Combining this two facts with lemma E.3, we can prove the theorem for our base case:

∀𝜎, 𝜈 .MG ⊢ (ℎG, 𝜈, 𝜎) ⇓ 𝜎 ′→ MG ⊢ (ℎ′G, 𝑆𝑒𝑞(𝜈), 𝜎) ⇓ 𝜎
′

Inductive Step. In our inductive step, we assume that our lemma holds for X# (ℎG) = 𝑛 and
we are going to prove it for 𝑛 + 1. The logic is similar to the base case, specifically, we get the
right-most interleaved fragment in ℎG and right-commute to the end of the history while obtaining
a semantically equivalent history ℎ′′G . After that, we can apply our inductive hypothesis on ℎ′′G ,
which again proves our goal. □

Finally, we prove our main theorem, which we re-iterate below for convenience.

Theorem 4.14. Let G be an FDG and let 𝜒1, . . . , 𝜒𝑛 be strongly safe interleavings. Then, 𝑆 =

{𝜒1, . . . , 𝜒𝑛} is a safe interleaving set for G.

Proof. By definition of safe set of interleavings, we have to prove the following for every
interleaved history ℎG of monitor MG

If X(ℎG) ⊆ 𝑆 and MG ⊢ (ℎG, 𝜈G, 𝜎) ⇓ 𝜎 ′ then ∃ℎ, 𝜈 . (ℎG, 𝜈G) ∽ (ℎ, 𝜈) and M ⊢ (ℎ, 𝜈, 𝜎) ⇓ 𝜎 ′

In order to prove that, we have to prove that for every interleaved history ℎG that only allows
interleavings in 𝑆 and argument mapping 𝜈G we can find a history of the original monitor with
corresponding argument mapping s.t., ((ℎG, 𝜈G) ∽ (ℎ, 𝜈). Which in turn means that we have to
find a sequential history of MG ℎ′G s.t.

(1) ∀𝑡 . 𝜋 (ℎG, 𝑡) = 𝜋 (ℎ′G, 𝑡) and (2) Expand
MG (ℎ, 𝜈, 𝜎) = (ℎ

′
G, 𝜈G)

To prove the goal above, we start with an arbitrary interleaved history ℎG s.t. X(ℎG) ⊆ 𝑆 and
convert it to a sequential history ℎ′G with the above properties. We perform this proof, by first
creating the CCR partition of ℎG , 𝑃 = 𝐶𝐶𝑅𝑃𝑎𝑟𝑡 (ℎG), and then induct on the number of partitions
in 𝑃 that are interleaved.

Base Case: One interleaved CCR in P. Let ℎ𝑐𝑐𝑟G = 𝑃 [𝑖] be the interleaved history in ℎG . Now,
let ℎ′G = ℎG [𝑆𝑒𝑞 |𝐶𝐶𝑅 (ℎ𝑐𝑐𝑟G )/ℎ

𝑐𝑐𝑟
G ]. Because ℎ

𝑐𝑐𝑟
G is the only interleaved sub-history in 𝑃 and because

of lemma E.3, we have that ℎ′G is a sequential history s.t. ∀𝑡, 𝜈G . 𝜋 (ℎG, 𝑡) = 𝜋 (ℎ′G, 𝑡). Furthermore,
because of lemma E.4 we have ∀𝜎, 𝜈 .MG ⊢ (ℎG, 𝜈G, 𝜎) ⇓ 𝜎 ′ ⇒ MG ⊢ (ℎ′G, 𝑆𝑒𝑞(𝜈G), 𝜎) ⇓ 𝜎 ′.
Finally, because we have MG ⊢ (ℎG, 𝜈G, 𝜎) ⇓ 𝜎 ′ for some 𝜎 , this implies that Expand

MG (ℎ, 𝜈G, 𝜎) =
(ℎ′G, 𝑆𝑒𝑞(𝜈G)), which in turns implies (ℎ′G, 𝜈G) ∽ (ℎ, 𝑆𝑒𝑞(𝜈G)).
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Inductive Step. Next, we assume that our theorem holds for up to 𝑛 interleaved CCRs in 𝑃 , and
will prove it for 𝑛 + 1. Similarly as above, we find the smallest 𝑖 s.t. 𝑃 [𝑖] = ℎ𝑐𝑐𝑟G is an interleaved
history. Again, we construct ℎ′G = ℎG [𝑆𝑒𝑞 |𝐶𝐶𝑅 (ℎ𝑐𝑐𝑟G )/ℎ

𝑐𝑐𝑟
G ]. Because of lemma E.3, we have that

the number of interleaved histories in 𝐶𝐶𝑅𝑃𝑎𝑟𝑡 (ℎ′G) has strictly fewer number of interleaved
sub-histories than 𝑃 . Therefore, by our inductive hypothesis, we have that (ℎ′G, 𝜈

′
G ∽ (ℎ, 𝑆𝑒𝑞(𝜈G))

for some history of ℎ of M . This, combined with lemma E.4, proves that (ℎG, 𝜈G) ∽ (ℎ, 𝑆𝑒𝑞(𝜈G)).
□

E.3 Proof of Theorem 4.16
We now prove theorem 4.16 which states the correctness of our MaxSAT encoding.

Theorem 4.16. Let 𝑚 be a model of the generated MaxSAT instance and (L,A,P) be the
synchronization protocol constructed as follows:

L =

{
𝑣 ↦→

{
𝑙 | 𝑚[ℎ𝑙𝑣]

}}
A =

{
fld | 𝑚[a𝑓 𝑙𝑑 ]

}
P =

{
𝑝 ↦→ 𝑙𝑖 | 𝐼𝑠𝑊𝑎𝑖𝑡 (𝑣, 𝑝), 𝑖 =𝑚𝑖𝑛({ 𝑗 | 𝑚[h𝑙 𝑗𝑣 ]})

}
where, 𝐼𝑠𝑊𝑎𝑖𝑡 (𝑣, 𝑝) is true if v is a waituntil statement on 𝑝 . Then, (L,A,P) is a correct synchro-
nization protocol.

Proof. As mentioned earlier, a synchronization protocol must meet the following correctness
criteria:
(1) If two fragments 𝑣1, 𝑣2 have a race (i.e., R(𝑣1, 𝑣2) ≠ ∅), then the protocol must prevent this

race with a lock or an atomic field.
(2) If a fragment interleaving 𝜒 = (𝑣, 𝑒) is not safe, then the synchronization protocol must not

allow fragment 𝑣 to execute in between edge 𝑒 .
(3) The protocol must be deadlock-free.
We show that, by construction, a model𝑚 returned by a MaxSAT solver always satisfies the

above conditions.
(1) Model𝑚 prevents any races between two fragments because it must satisfy all hard con-

straints generated by rules Race-1 and Race-2 from Figure 8. Therefore,𝑚 will force two
racy fragments to either share a lock or, when possible, convert all operations involving the
racy field to equivalent atomic ones.

(2) Similarly, because model𝑚 must satisfy the hard constraints generated by rule I-Leave, any
interleaving that was deemed unsafe by our static analysis is guaranteed to be infeasible in
the resulting synchronization monitor.

(3) Finally, because of rules Wait and L-Order, the resulting synchronization monitor is guar-
anteed to be deadlock-free. Specifically, the hard constraints generated by rule L-Order
enforce the invariant that all lock acquisitions respect the global lock order. Whereas, the
hard constraints of rule Wait, enforce the same invariant for the translation of a waituntil

statement into an equivalent statement in the target language (see Figure 16).
□

E.4 Proof of Theorem D.1
Finally, we prove the correctness of our monitor instrumentation procedure (Fig. 16).

Theorem E.5. Let S = (L,A,P) be a synchronization protocol inferred over FGD G = (𝑉 , 𝐸)
of input monitor 𝑀 and 𝑀 ′ be the result of procedure Instrument for 𝑀 . Then, the following three

conditions hold:

(1) For every fragment 𝑣 ∈ 𝑉 , 𝑙𝑖 ∈ L[𝑣] iff fragment 𝑣 holds lock 𝑙𝑖 in𝑀 ′
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(2) If 𝑖 < 𝑗 , then 𝑙𝑖 is never acquired whenever 𝑙 𝑗 is held.

(3) Field 𝑓 ∈ A iff all its occurrences in𝑀 have been replaced with an atomic operation in𝑀 ′.

Proof. All three conditions can be proved by providing certain guarantees for a subset of the
rules of Figure 16. Note that operator⇝ (Figure 16) is guaranteed to visit every code fragment
𝑣 ∈ 𝑉 in the FDG, since it recursively visits every element of the input monitor until it discovers all
fragments of the given FDG. Next, we prove all three conditions.

Condition (1): For this condition, we need to prove that both fragments will only hold the locks
required by the synthesized protocol S. The logic of this proof depends on the number and type of
predecessors of fragment 𝑣 . We now present a case analysis:

Zero predecessors. This is the case of an entry fragment of a method in G. Due to the structure of
our input language and the definition of an FDG, this fragment must be a fragment that contains a
single waituntil statement. The instrumentation of such a fragments is handled by rules Wait and
Entry-Frag. Note, that rule Wait first calls Entry-Frag which acquires all locks needed by the
fragmented defined by the waituntil fragment.

At least one predecessor. These types of fragments are handled by rules Wait, Branch-Frag,
Reg-Frag-1, and Reg-Frag-2. All these rules maintain the following invariant for the fragment 𝑣
that triggers them: before transferring control to any of 𝑣 ’s successor, they release all locks needed
by 𝑣 but not needed by the successor (locksets of the form 𝑅𝑖 ) and acquire all locks needed by the
successor but not held by 𝑣 (locksets of the form 𝐴𝑖 ). This invariant combined with the fact that
these are the only ways to transfer control flow in our input language, ensure that before executing
a fragment in the output monitor all necessary locks (and only those) will be acquired.

Condition (2): This directly follows from:
(1) That procedure Instrument uses auxiliary relation Acq to instrument lock acquisitions, which

as shown in Figure 16 does so in increasing order of lock indices.
(2) The guarantee provided by Theorem 4.16 that the synthesized protocol acquires locks in

increasing order along every control-flow edge.

Condition (3): This condition is ensured by rule Frag-Stmt of Figure 16 that ensures oracle→A
is called on every fragment of G. □
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