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Abstract

C-to-Rust transpilation is essential for modernizing legacy C code while
enhancing safety and interoperability with modern Rust ecosystems. How-
ever, no dataset currently exists for evaluating whether a system can tran-
spile C into safe Rust that passes a set of test cases. We introduce CRUST-
Bench, a dataset of 100 C repositories, each paired with manually-written
interfaces in safe Rust as well as test cases that can be used to validate
correctness of the transpilation. By considering entire repositories rather
than isolated functions, CRUST-Bench captures the challenges of translating
complex projects with dependencies across multiple files. The provided
Rust interfaces provide explicit specifications that ensure adherence to id-
iomatic, memory-safe Rust patterns, while the accompanying test cases
enforce functional correctness. We evaluate state-of-the-art large language
models (LLMs) on this task and find that safe and idiomatic Rust genera-
tion is still a challenging problem for various state-of-the-art methods and
techniques. We also provide insights into the errors LLMs usually make in
transpiling code from C to safe Rust. The best performing model, OpenAl
03, is able to solve only 19 tasks in a single-shot setting. Improvements
on CRUST-Bench would lead to improved transpilation systems that can
reason about complex scenarios and help in migrating legacy codebases

from C into languages like Rust that ensure memory safety.

1 Introduction

Code translation is essential for modernizing legacy systems, enabling cross-platform devel-
opment, and improving software security (U.S. Government Accountability Office, 2022;
Alexandrova et al., 2015; Egan, 2022; Giudice, 2024). As a memory-safe alternative to C, Rust
has gained widespread adoption due to its strong compile-time guarantees that eliminate
entire classes of memory bugs without relying on garbage collection. Major companies
such as Google, Microsoft, and Amazon have integrated Rust into their infrastructure,
and open-source efforts like the Linux kernel and WebRender have embraced it to reduce
memory safety vulnerabilities.

However, translating C to Rust is not just about achieving functional equivalence: it also
involves transitioning from non-memory-safe C semantics to memory-safe, idiomatic Rust.
While Rust supports unsafe code for low-level operations, the core value of migration lies
in producing code that compiles and executes within Rust’s safe subset, allowing users to
benefit from Rust’s guarantees. Given that much of today’s critical infrastructure is still
written in C, there is a pressing need for reliable automated techniques that support not only
C-to-Rust translation, but more importantly, C-to-safe-Rust migration.

Despite rapid progress in large language models (LLMs) for code generation, fully auto-
mated C-to-safe-Rust transpilation remains an open challenge. Existing ML benchmarks

*Authors contributing to dataset annotation.
1Code and Data available at https:/ /github.com/anirudhkhatry /CRUST-bench
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Figure 1: Example of a CRUST-Bench task: btree-map. Top: The task specification provided
by CRUST-Bench, including the C source code (left), a safe Rust interface (middle), and
Rust test cases (right). The C code implements the find_value function, which traverses
a B-tree map to locate the value for a given key. This implementation relies heavily on
raw pointers (e.g., key). In contrast, the Rust interface uses safe, structured types such as
Vec<u8>, requiring the transpiler to generate memory-safe, idiomatic Rust. Bottom right:
The expected Rust implementation, representing the actual target of the transpilation task.
Bottom left: Additional challenges of the transpilation task are highlighted, illustrating the
complexity of translating low-level pointer operations to safe abstractions.

largely focus on competitive programming problems (Chen et al., 2021; Austin et al., 2021;
Hendrycks et al., 2021; Jain et al., 2025; Quan et al., 2025), which emphasize isolated, self-
contained tasks rather than realistic, multi-file systems programming. Other efforts like
SWE-bench (Jimenez et al., 2024) target bug-fixing scenarios with localized edits, rather
than whole-program translation or structural refactoring. Prior benchmarks for C-to-Rust
transpilation have similarly been limited, typically focusing on individual functions without
testing for correctness at the integration level, and with little or no assessment of whether
the resulting Rust code is safe or idiomatic. We elaborate on these limitations in Section 2.

To address these limitations, we introduce CRUST-Bench, a benchmark for evaluating
automated C-to-Rust transpilation in realistic settings. CRUST-Bench is comprised of 100 C
repositories, each paired with manually crafted Rust interfaces and test cases to assess the
correctness and quality of transpilation. The Rust interfaces serve as formal specifications,
defining function signatures, type annotations, and ownership constraints to guide the
translation process. These interfaces enforce idiomatic and memory-safe Rust patterns,
ensuring that transpiled code adheres to Rust’s safety guarantees. The accompanying test
cases provide an additional layer of validation, verifying that the generated Rust code
correctly implements the specified behavior. Figure 1 provides a concrete example of a
CRUST-Bench task, illustrating the gap between low-level pointer-based C code and the
corresponding safe Rust implementation.

CRUST-Bench is built through a hybrid annotation process that combines automated tooling
with human expertise. Annotators manually author safe and idiomatic Rust interfaces, along
with corresponding test cases, for each C project. These interfaces are then validated via
type checking using the Rust compiler to ensure they are well-formed and statically sound.
This process ensures that CRUST-Bench provides a rigorous framework for assessment.

Using CRUST-Bench, we evaluate 12 frontier LLMs and other models on the task of C-to-
Rust transpilation. The strongest frontier reasoning models such as OpenAl 03, Claude
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Benchmark # Projects  Multi-file? AvgLoC  Rust Interface? = Rust Tests?
CROWN 20 31.7K
TransCoder-Rust 520 108
FLOURINE 112 68
C2SaferRust 7 9.3K
SYZYGY 1 25K
LAERTES 17 24K
CRUST-Bench (Ours) 100 958

Table 1: Comparison of C-to-Rust transpilation benchmarks.

Opus 4, OpenAl o1 and Claude 3.7 Sonnet perform the best, successfully transpiling 13-
22% of tasks in the one-shot setting and 32-48% of tasks when using a repair loop. The
strongest open-source system is Virtuoso-Medium-32B (Arcee.ai, 2025), which outperforms
the previous state-of-the-art distilled Arcee Nova-32B model, although it underperforms
the closed-source models substantially. We also employ agentic systems such as SWE-agent
(Yang et al., 2024c) and find that they do not outperform a “generate-then-repair” loop. Our
error analysis highlights key challenges and directions for future work in LLM-powered
transpilation.

Our primary contributions are: (1) We introduce CRUST-Bench, a new benchmark that
enables systematic evaluation of C-to-Rust transpilation by incorporating repository-scale
projects, annotated Rust interfaces, and correctness-enforcing test cases. (2) We provide
an empirical analysis of the performance and limitations of frontier LLMs on this task,
identifying key challenges for future research in automated code migration.

2 Motivation and Related Benchmarks

A number of benchmarks have been proposed to evaluate source code translation and
transformation tasks, including transpilation (Sun et al., 2024), automated debugging (Li
et al., 2024b; Jimenez et al., 2024), and safe code generation (Nitin et al., 2025; Eniser et al.,
2024). While these benchmarks provide valuable insights, those that focus specifically on
C-to-Rust transpilation tend to exhibit important gaps—in particular, limited task scope,
lack of robust correctness validation, and insufficient evaluation of memory safety. Many
are restricted to small, synthetic examples or overlook whether the generated Rust code
adheres to safe and idiomatic practices. Table 1 summarizes the defining features of the
most relevant existing benchmarks.

CROWN (Zhang et al., 2023) includes 20 C programs that are syntactically transpiled with
guidance from Rust’s ownership model. While the dataset features multi-file programs, it
lacks structured interfaces or annotations to facilitate the generation of safe and idiomatic
Rust code. TransCoder (Sun et al., 2024) is a widely used benchmark for training and
evaluating neural machine translation models for code. For the C-to-Rust translation task,
recent work (Yang et al., 2024a) typically uses a subset of 520 C functions. However, these
are primarily small, self-contained units and do not represent full projects with complex
dependencies or rich interfaces. FLOURINE (Eniser et al., 2024) evaluates large language
models (LLMs) across 112 tasks derived from two larger real-world C projects. Nonetheless,
the individual tasks remain narrow in scope and lack the structural complexity of complete
software systems. C2SaferRust (Nitin et al., 2025) introduces a curated dataset of seven large-
scale C programs (averaging 9.3K lines of code), each translated to Rust using a combination
of LLMs and syntax-driven transpilation tools. Despite the scale of the individual programs,
the overall dataset size is too limited to serve as a comprehensive benchmark for general-
purpose evaluation. SYZYGY (Shetty et al., 2024) offers a single, large benchmark project of
approximately 2,500 lines of code, fully transpiled to Rust, emphasizing correctness and
idiomatic usage. LAERTES (Emre et al., 2021) provides a small collection of C programs
for evaluation but lacks corresponding Rust implementations and interface specifications,
limiting its utility for assessing safe or idiomatic transpilation.
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Compared to prior benchmarks, CRUST-Bench includes a substantial number of real-world
projects while keeping them within reach for LLM-guided transpilation techniques. With 100
repositories and an average size of 958 lines of code, it captures the challenges of migrating
real-world software without requiring models to handle excessively large codebases. A
key feature of CRUST-Bench is that it provides safe Rust interfaces and corresponding test
files. This is important because existing transpilation tools, such as c2rust (Immutant Inc.),
often produce naive translations that rely heavily on unsafe constructs, sidestepping Rust’s
safety guarantees rather than properly adapting C code. LLM-based approaches also risk
generating inconsistent interfaces across files, making it difficult to produce a coherent,
working Rust codebase. By defining explicit Rust interfaces and tests, CRUST-Bench forces
models to generate code that integrates cleanly with a well-defined target.

3 Benchmark Structure

Each instance in our benchmark is built on a C repository, which we formalize as a collection
of source files S = {Sy,...,S,}, where S; represents an individual C source file. The goal
of transpilation is to produce a corresponding Rust repository R = {Rj,...,R,} with a
parallel file structure, ensuring that each R; is a direct translation of the corresponding S;.

Validation of the transpiled Rust code is based on three criteria. First, it must conform to
a well-defined interface I = ((s1,...,5x1), (f1,.--., fm)), which specifies a set of n abstract
datatypes (e.g. struct, enums) and m functions. These interfaces enforce type constraints
and function signatures to steer C-to-Rust transpilers to produce code that follows Rust’s
safety and ownership model. Second, the transpiled Rust code must compile without errors,
meaning it must successfully type check and pass all borrow checker requirements enforced
by the Rust compiler. Third, we provide a set of tests T = (t1, ..., f;), where each test is
a function t;(R) — {pass, fail} that checks whether the transpiled code satisfies functional
correctness requirements. Transpilation is considered successful if (1) R conforms to I,
meaning all required functions are implemented with the appropriate types and ownership
semantics, (2) R builds successfully and (3) all tests pass, i.e., t;(R) = pass for all i.

Benchmark sourcing. The projects in our PL m_fra )
benchmark are sourced from open-source repos- Algorithmic
itories on GitHub, covering a diverse range of 20 Data structures
software categories. We consider repositories 1 15 System utilities
created between 2005 and 2025 that success- 7 Networkin

fully compile using GCC 11.4.0 and Clang 14.0.0. 23 \ 11 & _
As shown in Figure 2, CRUST-Bench includes 3 Crypto & security
projects from several domains, such as program- Other

ming language infrastructure (e.g., compilers),
algorithmic libraries (e.g., solvers), system utili-
ties (e.g., shell implementations), and others.

Figure 2: Application types.

C Code Properties Avg  Max

Preprocessing. To construct CRUST-Bench, we  Test cases 764 952
apply a multi-stage preprocessing and selection  Test files 3.0 19
pipeline. First, we filter for projects that are entirely =~ Test coverage 67%  100%
written in C and meet a minimum complexity thresh-  Lines of code 958 25436
old: they must contain at least one dynamic memory  Pointer dereferences 264 12,664
allocation keyword, include build scripts, and have Functions 34.6 418
associated test files. We also perform automated de-

duplication to eliminate near-identical repositories. Table 2: Properties of C code

Following this initial filtering, we manually review

the remaining projects to assess overall code quality and ensure test completeness—for
example, verifying that critical source or header files are not missing. We also exclude
architecture-specific repositories, selecting only those that can run on both x86 and x64
systems to maintain portability. Finally, we omit GUI-based projects, as they often rely on
external dependencies, platform-specific event loops, or graphical toolkits that are not easily
testable in a headless, compiler- and test-driven evaluation setting.
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Table 2 provides statistics about the C projects selected for CRUST-Bench. These projects
exhibit a wide range of codebase sizes, with an average of approximately 958 lines of
code. 60% of the projects in CRUST-bench contain a single source file with corresponding
header files and test cases, and the remaining 40% projects contain more than one source
file with associated header files and test cases. The average test coverage? is 67%, showing a
moderate level of testing across the projects.

Annotation process. A team of four annotators who are authors of this paper manually
defined the Rust interface I for each benchmark, ensuring that function signatures and data
structures are both safe and idiomatic in Rust. The first annotation step is to convert C
custom types, such as structs and enums, into their Rust equivalents. Annotators ensure
that all types are native to Rust and adhere to its safety guarantees, avoiding unnecessary
unsafe constructs and enforcing Rust’s ownership model. After defining the types, they
specify function signatures, including return types and ownership annotations. Instead of
providing implementations, they replace function bodies with unimplemented! () to allow
the Rust compiler to validate the interface independently.

Using these interfaces, annotators then construct Rust test files by adapting existing C tests.
The test code invokes the corresponding Rust functions, ensuring that it correctly uses the
defined interface. While the test files may include unsafe code for validation purposes, the
core interfaces remain safe and idiomatic.

Finally, annotators compile the annotated Rust code to verify that all function signatures
and test invocations are well-formed. On average, each annotator spent around an hour
and a half per benchmark, and the first author manually reviewed all benchmarks for
correctness. To check if the interfaces were implemented correctly, we did a pilot study
where we implemented 20 benchmarks adhering to the interfaces and ran tests to see if
they passed. We sampled long and short single-file projects, as well as projects containing
multiple files with inter-dependencies. We also ensured that we included one sample from
each domain from Figure 2. The annotators were able to successfully implement the projects
with the desired functionality and pass all provided test cases.

Evaluating the dataset. Our final  Metric Total  Avg Max
benchmark consists of 100 C projects ™ futerface Structure
annotated with corresponding Rust in-

, . Interface files 299 3.0 21

terfaces, Capturmg a wide SPECtI‘um Interface functions 3,085 309 415
of interface complexity and idiomatic =~ Function arguments 5716  57.2 1484
Rust features, as summarized in Ta- Ownership and Type Features Percent
ble 3. i The dataset ipcludes a total _Of % Functions with reference args 56%
3,085 interface functions across 299 in- % Custom types in arguments 44%
. . 0 1 0,

terface files, with an average of 30.9 /o Custom fypes in return types 20%
% Functions with mutable references 30%

functions per project. Many of these
functions involve rich type-level struc-
ture: 44% use custom types as argu-
ments, and 50% return custom types, reflecting a reliance on user-defined data structures.
These types often require associated methods and trait implementations to enable idiomatic
usage within Rust. Ownership is also prominently featured—56% of functions use reference
arguments, and 30% involve mutable references—demanding precise handling of Rust’s
borrowing and mutability semantics.

Table 3: Statistics of the Rust interface.

4 Experimental Setup: Models and Systems Evaluated

Prompted LLMs. We evaluate both closed-source and open-weight large language models
(LLMs) on the CRUST-Bench benchmark. For closed-source models, we include 03, o1, o1-
mini, and GPT-4o from OpenAl; Claude Opus 4, Claude-3.7-Sonnet and Claude-3.5-Sonnet
from Anthropic; and Gemini-1.5-Pro from Google. On the open-weight side, we evaluate
models with strong code generation capabilities: Virtuoso (Arcee.ai, 2025), a distilled variant

2We compute code coverage metrics over 25 repositories and discuss challenges of computing code
coverage in Appendix A.
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of DeepSeek-V3; QwQ-32B -Preview(Yang et al., 2024b); Qwen-Coder-32B-Instruct(Yang
et al., 2024b); Deepseek-Coder-33B-Instruct(Guo et al., 2024); and LLaMA-3-8B (Llama-3
Team, 2024). Open-weight models are executed using the vLLM inference framework (Kwon
et al., 2023) on a server equipped with four NVIDIA A40 GPUs.

For models that support temperature control (e.g., GPT-40, Claude, Gemini), we use greedy
decoding (T = 0) to ensure deterministic outputs and consistent pass@1 evaluation. Empiri-
cally, we found that higher temperatures significantly degraded performance, likely due to
the long-context requirements and stringent correctness constraints of the tasks. On average,
each model generates 5,165 tokens per task.

We experimented with variations in prompt formatting to identify the most effective strategy.
The best results were obtained using a general task description followed by concise, point-
based instructions. Notably, explicit directives—such as “do not use libc” and “the code
must compile”—proved more effective than vague statements like “generate safe Rust.”
Each model is provided with the full C source file, the corresponding header file (if available),
and the Rust interface specification and tests. We provide the prompts in Appendix C.

LLM Scaling via Self-Repair. We investigate two strategies for leveraging additional
compute to improve model performance through iterative self-repair. Both approaches
begin with an initial model-generated candidate and refine it over multiple rounds based on
feedback. The first strategy, referred to as Compiler repair, incorporates only compiler error
messages into the prompt during each repair round. This allows the model to iteratively
address syntactic and type-level issues flagged by the Rust compiler. The second strategy,
called Test repair, extends this by also including information about failing test cases in the
prompt, providing richer feedback about the correctness of the generated code.

For both strategies, we perform three rounds of self-repair per task. This bounded budget
balances the benefits of iterative refinement with practical runtime constraints. In a pilot
study on 10 benchmarks, we evaluated different configurations and found that starting with
a single initial generation and applying greedy decoding across all repair rounds consistently
outperformed sampling-based strategies, including the approach proposed by Olausson
et al. (2024). In particular, we observed that deterministic repair with feedback led to more
stable improvements, especially under the long-context, high-precision demands of the
C-to-Rust transpilation task. Based on this finding, we adopt the single-candidate greedy
repair strategy for our full evaluation. We describe further in Appendix B.

Pipelined SWE-agent. Recent work on agent-based systems, such as SWE-agent (Yang
et al., 2024c), has demonstrated strong capabilities in iteratively debugging and refining
code by leveraging compiler feedback within isolated development environments. Notably,
the combination of SWE-agent and Claude-3.7-Sonnet achieves state-of-the-art performance
on the Full SWE-bench dataset as of May 2025.3 Although these systems are primarily
designed to address GitHub issues or apply localized patches in large codebases, their
ability to interpret and act on compiler and testing errors makes them a promising candidate
for supporting C-to-Rust transpilation.

To evaluate this potential, we adapt SWE-agent into a two-stage workflow we refer to as
pipelined SWE-agent. In this setup, an LLM (e.g., Claude or GPT-40) first generates an initial
Rust implementation from a C source file and its associated Rust interface. SWE-agent
then attempts to repair any resulting compiler errors by iteratively editing the generated
code. To support this workflow, we configure SWE-agent with a Docker environment that
includes the Rust toolchain (cargo, rustc) and Python, and we supply a custom problem
specification and demonstration tailored to transpilation, following guidance from the
SWE-agent documentation.* All other parameters are left at their default values. This
design allows us to evaluate SWE-agent as a targeted post-processing and repair mechanism
applied on top of LLM-generated code.

We also investigated the feasibility of using SWE-agent (Yang et al., 2024c) and OpenHands’
CodedAct agent (Wang et al., 2025) for full end-to-end transpilation—i.e., supplying a C

3https ://www. swebench. com/#test
4https://swe-agent.com/latest/config/demonstrations/
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Model Pass@1 Pass@1 + Compiler Pass@1 + Test repair
repair (r=3) (r=3)

Build Test Build Test Build Test
OpenAlI 03 35 19 68 31 63 48
Claude Opus 4 43 22 78 29 65 40
OpenAlI ol 32 15 69 28 54 37
Claude 3.7 26 13 54 23 49 32
Claude 3.5 26 11 49 21 38 24
ol-mini 19 9 47 16 27 21
GPT-40 18 7 52 18 42 22
Gemini 1.5 Pro 11 3 35 11 30 14
Virtuoso (Distilled Deepseek V3) 2 2 21 6 10 6
Deepseek-Coder-32B 1 0 2 0 2 0
QwQ-32B-Preview 1 0 1 0 1 0
Qwen-2.5-Coder-32B 0 0 0 0 0 0
Adapted SWE-agent (Claude-3.7) 41 32 - - - -

Table 4: Pass rates on CRUST-Bench for different models in single-shot and repair settings.

repository as input and expecting complete Rust output. However, our experiments revealed
that SWE-agent exhibited brittle and unreliable behavior in this setting. Furthermore, a
developer of OpenHands confirmed via personal communication that such usage falls
outside the intended design and is unlikely to yield satisfactory results. Consequently, we
focus our evaluation on a pipelined workflow, which demonstrated significantly greater
robustness and effectiveness in our experiments.

Excluded Baselines. We do not include syntax-directed C-to-Rust transpilers (Immutant
Inc.; Zhang et al., 2023; Emre et al., 2021) in our evaluation, as these systems are incompatible
with our framework. In particular, they frequently generate unsafe Rust code that relies on
foreign function interfaces such as libc, thereby violating the safe and idiomatic interface
constraints enforced in CRUST-Bench. Similarly, C2SAFERRUST (Nitin et al., 2025), which
augments C2RUST with LLM-based post-processing, defaults to generating unsafe code
when the target interface cannot be satisfied. Adapting these systems to support our
interface-first, safety-preserving evaluation would require significant reengineering and is
beyond the scope of this work.

5 Results and Analysis

Single-Shot Transpilation Results. The first column of Table 4 reports pass@1 test success
rates, capturing model performance in a single-shot setting where each model is prompted
once per task, without access to compiler or test feedback. Thus, these results evaluate a
model’s ability to generate correct, safe Rust code on its first attempt. Overall, performance
is low across the board: the best-performing model, Claude Opus 4 from Anthropic, passes
test cases for only 22% of CRUST-Bench tasks. We omit results for LLaMA-3-8B, which fails
to produce any correct solutions.

Self-Repair Improves Success Rate. As shown in Table 4, applying iterative self-repair
leads to substantial gains in both build and test success rates across all models. With three
rounds of Compiler repair, we observe various improvements in build success (as high as
37% gain for 01), and in test pass rates (as high as 13%) compared to the single-shot pass@1
baseline. Appendix D qualitatively discusses the effects of repair. Extending this approach
with Test repair, which incorporates failing Rust test cases into the repair loop, yields
additional improvements in test success—between 0% and 17% over the corresponding
Compiler repair setting.

However, this gain in test correctness comes at the cost of build stability: we observe
a 5% to 20% drop in build success when moving from Compiler to Test repair. This
degradation can be attributed to the fact that incorporating test case information encourages
the model to make more aggressive semantic changes, which may inadvertently introduce
new compilation errors—particularly borrowing violations or type mismatches that are
difficult to resolve without precise static analysis.
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Model Config % projects with error

Mismatch  Borrow  Missing  Unimpl Trait Args Unsafe

OpenAl 03 base 13 21 8 34 4 0 1
repair 9 2 2 27 4 2 0
Claude Opus 4 base 28 29 7 13 14 1 6
repair 11 3 2 5 1 3 0
OpenAl ol base 30 42 13 14 17 3 0
repair 8 9 2 11 0 1 0
Claude 3.7 base 15 18 4 44 10 0 0
repair 4 4 4 46 1 1 0
Claude 3.5 base 24 27 23 37 14 4 0
repair 22 6 16 55 5 5 0
ol-mini base 46 34 40 28 34 5 0
repair 21 13 10 29 1 6 0
GPT-40 base 48 35 25 20 22 4 1
repair 12 20 10 26 6 2 0
Gemini 1.5 Pro base 40 24 23 33 17 2 1
repair 18 13 7 35 8 3 1
Virtuoso (Distilled Deepseek V3)  base 60 26 19 45 33 12 0
repair 38 23 17 50 15 9 0
Deepseek-Coder-32B base 36 13 56 49 22 3 4
repair 28 8 59 36 10 5 2
QwQ-32B-Preview base 9 2 9 94 5 1 0
repair 13 2 9 92 3 2 0
Qwen-2.5-Coder base 7 0 32 76 1 0 1
repair 5 0 9 96 0 0 0
Adapted SWE-Agent 15 17 4 44 8 1 0

Table 5: Error breakdown for different models and configurations

Agent-Based Debugging. The last row of Table 4 also presents the results of the pipelined
SWE-agent described in the previous section. Compared to the pass@1 baseline (13% test
pass rate for Claude 3.7 Sonnet), the pipelined SWE-agent workflow improves performance
to 32%, demonstrating a substantial benefit compared the single-shot performance. How-
ever, this performance matches, rather than exceeds, that of the Claude 3.7 Sonnet + Test
repair strategy, which also reaches 32% after Test repair.

We analyze the behavior of pipelined SWE-agent in Appendix E. We see that pipelined
SWE-agent is able to successfully navigate files, edit files, invoke cargo build and cargo
test to build and test the project, and more. However, it does not successfully leverage
large numbers of steps to fix errors: many of its steps are simply navigating and reading
project files, and most fixed errors are fixed in a relatively small number of steps. This result
suggests that, while SWE-agent has broader capabilities — such as reasoning across files,
dynamically choosing when to build and test, and autonomously deciding when to submit
a solution— it does not leverage these components successfully in our current configuration
to outperform the simpler Test repair approach.

Error Analysis. To better understand the failure modes, we analyze the distribution
of compiler errors in Table 5. These errors were clustered together based on a manual
inspection of their description using the rustc --explain command. We note that a given
project typically exhibits many of these error types at the same time. Based on our manual
categorization, we determined that common errors include the following:

e Mismatch: These errors arise when the generated Rust code has a type mismatch when
calling a function from the tests, another file in the project, or incompatible return types.

¢ Borrowing: These errors arise due to violations of Rust’s ownership, borrowing, mutabil-
ity, and lifetime rules. As an example, such an error might arise if a value is borrowed
mutably while it is already borrowed immutably, or if a lifetime annotation is incorrect or
unspecified.

* Missing: These errors arise due to access to non-existent (or out of scope) variables.
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Unimpl: These errors occur due to unimplemented functions or incomplete code seg-
ments in the generated output. They often arise when the model exceeds its token budget,
leading to truncation before all necessary logic is emitted. In some cases, the model
may also omit implementations by stating that certain functions can be implemented
“similarly”, leaving placeholders or comments instead of actual code.

® Args: These errors are observed when a function invocation does not correctly supply the
expected number of arguments. (e.g., passes a single argument instead of the required
three).

¢ Trait-related errors: These occur due to a failure to implement the necessary traits for
custom data types. In Rust, user-defined types often need to implement certain traits to
function correctly in the language’s type system, and these errors arise if the expected
trait is not implemented.

¢ Unsafe: This type of problem occurs when the generated code uses the “unsafe” keyword
or a (so-called) unstable Rust feature. We note that these types of problems (e.g., use of
“unsafe” keyword) do not necessarily correspond to build failures.

As shown in Table 5, the occurrence of unsafe code is rare. This can be attributed to our
prompt design, which explicitly instructs models to avoid using unsafe Rust features.

In contrast, type-related errors (i.e., those in the mismatch and borrow categories) are quite
common. This is expected, given the Rust compiler’s strong static guarantees and strict
enforcement of type and ownership rules. These errors suggest that models often struggle
to reason precisely about lifetimes, mutability, and type compatibility. The prevalence of
such errors highlights the potential of incorporating static analysis signals into the fine-
tuning process, which could substantially improve LLMs” ability to generate compilable,
type-correct Rust code.

Finally, unimplemented errors are also widespread. These typically stem from models
exceeding their output token limits, leading to truncated or incomplete code. This issue
is especially pronounced for models with shorter maximum output token limits. In some
cases, the model may omit implementations entirely, inserting placeholder comments or
referring to similar functions without emitting code, or violate the interface definitions
further contributing to these errors.

6 Related Work

Code Generation Benchmarks. Prior work has introduced a range of benchmarks for
evaluating code generation. Many focus on generating Python code from natural language
prompts (Chen et al., 2021; Austin et al., 2021; Jain et al., 2025; Hendrycks et al., 2021),
typically framed as short, competition-style problems with test cases. HumanEval (Chen
et al., 2021) has been extended to support additional programming languages (Cassano
et al., 2023; Athiwaratkun et al., 2023; Orlanski et al., 2023). Other efforts have explored
more realistic settings: incorporating external APIs (Yu et al., 2024), class-level code genera-
tion (Du et al., 2023), repository-level tasks with inter-file dependencies (Li et al., 2024b),
and rigorous testing of HumanEval (Liu et al., 2023a). In contrast, CRUST-Bench evaluates
code generation over multi-file C projects with complex dependencies, using code as input
rather than natural language, and targets the generation of safe, idiomatic Rust.

Repository-Level Benchmarks. Several benchmarks have explored code generation at
the repository level. SWE-bench (Jimenez et al., 2024) evaluates a model’s ability to resolve
GitHub issues using real-world repositories. RepoBench (Liu et al., 2023b) focuses on
code completion across entire codebases, while Li et al. (2024a) examine generation across
different stages of the software development lifecycle. In contrast, CRUST-Bench shifts the
focus from editing or completing code to performing cross-language translation.

C-to-Rust Transpilation. Recent work on C-to-Rust transpilation spans both syntactic
and learning-based approaches. Tools like C2RUST (Immutant Inc.) focus on syntactic
translation, often relying on external libraries like 1ibc and layout-preserving annotations
such as #[repr(C)] to maintain compatibility. However, these approaches do not guarantee
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memory safety and frequently produce Rust code with unsafe blocks. Other approaches
incorporate Rust’s ownership model to improve safety (Zhang et al., 2023), though they
often still rely on unsafe code. More recent techniques combine syntactic translation with
LLM-based post-processing to improve code quality (Nitin et al., 2025; Yang et al., 2024a).
While C2SAFERRUST leverages LLMs to clean up C2RUST output, it falls back to unsafe
code when constraints cannot be satisfied. In contrast, VERT (Yang et al., 2024a) uses
both LLMs and property-based testing to verify semantic equivalence between the source
and generated code. Eniser et al. (2024) also adopt LLMs for direct C-to-Rust generation,
validating correctness through equivalence checking.

7 Conclusion

In this work, we presented CRUST-Bench, a benchmark of 100 C projects with target
Rust interfaces and Rust test cases. This benchmark allows us to verify LLM-powered
transpilation systems according to three criteria: (1) Do they successfully follow the given
interface during transpilation? (2) Does the Rust code compile? (3) Does the code pass the
provided Rust test cases? Our results show that even the best approach with state-of-the-art
LLMs, OpenAl 03 with iterative repair from both compiler errors and test failures, only
succeeds on 48% tasks in the benchmark, leaving significant room for future systems to
improve.
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Appendix
A Code Coverage Analysis

We provide additional details on the code coverage analysis conducted over the C reposito-
ries in CRUST-Bench. Coverage was measured using gcov (GNU Project) on a subset of 25
benchmarks, selected from projects that successfully built using either make or cmake. For
cmake-based builds, some projects linked external files that caused gcov to fail; we did not
attempt to resolve these issues across the full benchmark.

Our manual inspection of benchmarks with low coverage revealed common patterns: (1)
driver files that invoked core functionality but were themselves untested, and (2) files
included for illustrative purposes—such as usage examples or demonstration scripts—that
contain calls to library functions but are not executed as part of the test suite, and therefore
appear as uncovered in coverage analysis.

In the context of transpilation, we found that models rarely introduced localized errors.
For example, when a benchmark included several related functions relying on the same
abstract data type, the model typically succeeded or failed on all of them collectively. This
suggests that the available test suites, while not exhaustive, are sufficiently representative
for evaluating the correctness of transpiled Rust code.

Achieving significantly higher coverage would require writing targeted tests for each
function in every benchmark—an effort that entails deep understanding of program intent
and edge cases, and is therefore outside the scope of this work.

B Greedy self-repair vs sample-and-repair

We describe in more detail our comparison between greedy self-repair vs. sampling multiple
outputs from a model and repairing each (balancing the total number of repairs). These are
also compared in Olausson et al. (2024), but in a different setting. Both techniques receive
feedback in terms of compiler messages.

We conducted a pilot study with 10 tasks in CRUST-Bench, consisting of both single and
multiple file projects with a model calling budget of 6 per task. The budget was selected to
provide a fair comparison between the two techniques. For the sample-and-repair technique,
we sample 3 candidates at a temperature of 0.8, used in Olausson et al. (2024), and repair
each once. For greedy self-repair, we greedily sampled a single candidate and repaired it up
to 5 times with a temperature of 0. We tested this with Claude-3.5 and GPT-40. For both
LLMs, we found that greedy self-repair outperformed sample-and-repair. We attribute this
to two factors: (1) The compiler may not surface all errors at once and multiple iterations of
self-repair are required to address all errors, and (2) addressing errors might introduce new
errors, which may require fixing in subsequent iterations.

For our full experiments, we found that 3 rounds of greedy self-repair were sufficient.
Beyond three rounds we did not see substantial improvements.
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C Prompts

Prompt for Transpilation

You are an expert at converting C To Rust.
You will be provided with C source files in the format:

{{filename.c / filename.h}}
Tt
// Input C code
I need you to transpile the provided code files from C to Rust, with the
following instructions that you MUST follow:
- Each C file I provide MUST have the corresponding transpiled Rust file.
- You will also be given the Interface files with function signatures
and return types. You MUST conform to the specification given in the
interface definitions.
- Each transpiled Rust file MUST compile.
- The transpiled Rust code MUST be observationally equivalent to the C code.
- The transpiled Rust code MUST compile successfully.
- The transpiled Rust code MUST NOT contain Foreign Function Interface calls,
such as the libc library.
- The transpiled Rust code MUST NOT contain unsafe blocks.
- All imports in the rust project (except main.rs) MUST be in the
following format -
T Trust

use crate::file_name: :module;

- Imports in main.rs should be done in the following format:
T 7rust

use project_name::file_name::module;
- You MUST ensure that you include the required files that are referenced in
each rust file.
Please think step-by-step and return your final solution for each
transpiled file in the following format:

{{filename.rs}}
T Trust
// Generated Rust Code
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Prompt for Compiler Repair

You are an expert at repairing Rust Code.
You will be provided with Rust code in the format:
{{filename.rs}}
T 7rust
// Input Rust code
After the Rust code, you will be given the errors obtained from the compiler
corresponding to the Rust code.

I need you to repair the provided Rust files,
with the following instructions that you MUST follow:
- You MUST produce the entire file when repairing it and
not just the intended change.
- You MUST NOT change the function signatures.
- You MUST address each error by reasoning about it.
- Each error MUST be solved using safe Rust code.
- The transpiled Rust code MUST compile successfully.
- The transpiled Rust code MUST NOT contain Foreign Function Interface calls,
such as the libc library.
- All imports in the Rust project must be in the following format -
T Trust
use crate::file_name: :module;
- You MUST ensure that you include the required files that are referenced
in each Rust file.
- You MUST ensure not to change the function signatures and return types of
the functions when you are performing repairs.

Please think step-by-step and return your final solution for each
transpiled file in the following format:

{{filename.rs}}
T Trust
// Generated Rust Code
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Prompt for Test Repair

You are an expert at Rust.
You will be provided with Rust code in the format:

{{filename.rs}}

T rust

// Input Rust code
After the Rust code, you will be given the test files that were executed on
the Rust source code in the format

{{filename.rs}}

T rust

// Input Rust code
After that, you will be provided with the test failures obtained from the
compiler corresponding to the Rust code.
I need you to repair the provided Rust files, with the following instructions
that you MUST follow:

- You MUST produce the entire file when repairing it and not just

the intended change.

- You MUST not change the test code at all. You must only make fixes to the

Rust source files.

- You MUST NOT change the function signatures.

- You MUST address each failure by reasoning about it.

- Each test failure MUST be addressed using safe Rust code.

- The corrected Rust code MUST compile successfully.

- The corrected Rust code MUST NOT contain Foreign Function Interface calls,

such as the libc library.

- All imports in the Rust project must be in the following format -

T Trust
use crate::file_name: :module;

- You MUST ensure that you include the required files that are referenced in

each Rust file.

- You MUST ensure not to change the

function signatures and return types of the functions when you are performing

repairs.

Please think step-by-step and return your final solution for each transpiled

file in the following format:

{{filename.rs}}
" Trust
// Generated Rust Code
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System instruction for SWE Agent

SETTING: You are an autonomous programmer, and you're working directly in
the command line with a special interface. Your task pertains to solving
errors in a repository with Rust code.

You must solve the problem by adding Rust code to the repository. You can
use the special interface to navigate and edit files. You can also use
any bash commands to help you solve the problem.

You are provided with the Rust files and the associated Rust test files.
Your implementations should go in the src directory. You can use the
“cargo build® command for building the project and “cargo test”

for running the tests.

The special interface consists of a file editor that shows you {{WINDOW}}
lines of a file at a time.
In addition to typical bash commands, you can also
Use the following commands to help you navigate and edit files.

COMMANDS :
{{command_docs}?}

RESPONSE FORMAT :
Your shell prompt is formatted as follows:
(Open file: <path>) <cwd> $

You need to format your output using two fields: discussion and command.
Your output should always include _one_ discussion and _one_ command field
EXACTLY as in the following example:
DISCUSSION
First, I'll start by using 1s to see what files are in the current directory.
Then maybe we can look at some relevant files to see what they look like.

1s -a

You should only include a *SINGLE* command in the command section and
then wait for a response from the shell before continuing with more
discussion and commands. Everything you include in the DISCUSSION section
will be saved for future reference.
If you'd like to issue two commands at once, PLEASE DO NOT DO THAT!
Please, instead first submit just the first command, and then after receiving
a response, you'll be able to issue the second command.
You're free to use any other bash commands you want (e.g., find, grep, cat,
ls, cd) in addition to the special commands listed above.

However, the environment does NOT support interactive session commands
(e.g., python, vim), so, please do not invoke them.
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Problem statement provided to SWE Agent

You are provided with a Rust project that must pass all the tests. In case the
code contains errors, you must repair the provided Rust files such that all
test cases pass.
You first run ~cargo build™ to determine what errors exist in the project.
In case you don't find any errors, you try running tests defined in the
project using “cargo test™. In case you find any errors when executing
“cargo build® and “cargo test™, you must address them by changing the Rust code
in the src/ folder of the project. Incase you don't find any errors, you submit
the project.
You must ensure that you follow the following instructions:

- You must not change the function signatures and return types of the

functions when you are performing repair on a file.

- You must address each error by carefully reasoning about it.

- Each error must be solved using safe Rust code.

- The transpiled Rust code must not contain Foreign Function Interface calls,

such as the libc library.

- All imports in the Rust project must be in the following format -

T Trust
use crate::file_name: :module;

- You must ensure that you include the required files and constants that are

referenced in each Rust file.

- You must ensure that you do not change the test code in the src/bin folder.
Please think step-by-step and resolve the issue.

D Analysis of the Self-Repair Pipeline

We observe that self-repair is effective at mitigating a range of errors encountered during the
initial transpilation pass. For Claude 3.7 Sonnet in particular, we note the following trends:

e Unimplemented functions and imports: The model generally fails to recover from
unresolved function and import errors during self-repair. This limitation arises from the
fact that the LLM is more adept at editing existing code than synthesizing entirely new
logic during repair rounds. In 2% of benchmarks, the self-repair process increased the
number of unimplemented functions, further exacerbating these errors.

¢ Borrow-checker errors: Borrowing-related errors are reduced by 75% after applying
compiler-guided repair, suggesting that these errors are relatively tractable when explicit
compiler feedback is available.

¢ Trait-related errors: Errors related to missing trait implementations are reduced by 90%,
indicating that trait errors are particularly amenable to iterative correction.

¢ Type mismatches: Type errors are cut by 50% in the first round of repair but plateau in
subsequent rounds, suggesting diminishing returns on further iterations for this category.

¢ Mutability issues: We observe that attempts to fix type and borrow errors sometimes
introduce new mutability-related issues, which may or may not be corrected in later
repair passes.

While self-repair improves many error types, we also identify cases where it fails to yield
performance gains or introduces new issues. In particular, we observe that attempts to
address specific errors often cascade into other categories of failure.

For example, in the multi-file project impcheck, the model initially omits the hash.rs file
containing the core HashTable implementation. In the first repair round, it adds hash-related
functions but omits a required Clone trait implementation. The second round corrects this
omission, but introduces a new error: the compiler reports that the capacity method is
missing. In the third round, the LLM adds this method, but the implementation mishandles
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ownership, leading to borrow-checker violations. This case illustrates how self-repair can
make steady progress, yet ultimately fail due to deeper semantic issues related to Rust’s
ownership model.

A similar pattern appears in the graph-recogniser project. The initial translation includes
borrowing errors tied to a custom Graph type defined in the library. Despite multiple repair
attempts, the model is unable to satisfy the ownership constraints required for the correct use
of this type. Additionally, the model fails to incorporate a custom macro used for hashing
graph nodes—highlighting its difficulty in reasoning about domain-specific constructs that
are not easily inferred from compiler error messages alone.

E Results using SWE-Agent

Characterization of SWE-Agent Behavior. The SWE-Agent framework consists of an
orchestrating LLM that executes a sequence of structured actions to iteratively generate
patches for a target repository. A key question in our analysis is: what types of actions does
SWE-Agent take in attempting to fix transpilation errors?

According to Table 4 in the SWE-Agent paper (Yang et al., 2024c), the system can invoke
standard Bash commands in addition to eleven custom actions: seven related to file viewing
and search, three dedicated to editing, and one final action to submit the current patch
for evaluation. In our case, evaluation involves compiling the project and running the
associated test suite.

From qualitative analysis, we observe a consistent pattern in SWE-Agent’s behavior:

¢ It begins by exploring the repository, viewing both source and test files using a combina-
tion of Bash navigation and custom file-view actions.

* Once sufficient context is gathered—typically after observing all relevant files—it issues
the first cargo build command. On average, this occurs at the 12" step.
¢ If compilation errors are encountered, SWE-Agent identifies the problematic files and

applies targeted edits. When changes span multiple files, it navigates across them
accordingly.

¢ After each set of edits, it re-runs cargo build, repeating this process until the project
builds or the execution budget is exhausted.

¢ Upon a successful build, SWE-Agent executes cargo test. If tests fail, it inspects the
output and attempts further edits to address the test failures.

® Once all test cases pass, the agent submits the final patch for the repository.

Figure 6 presents a quantitative breakdown of SWE-Agent’s behavior under a $2 execution
budget. The agent performs a nontrivial number of navigation actions, as indicated by
frequent directory listings. However, it rarely uses the scroll operation, suggesting that it
often avoids reading beyond the first 100 lines of any file.

We also observe that SWE-Agent typically edits a moderate number of lines and invokes
cargo build and cargo test multiple times per project—regardless of success—highlighting
its reliance on interactive feedback from the build and test system.
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Figure 3: Statistics of pipelined SWE-agent with a cost budget of $2. Left: Distribution of
steps taken until submission/exit. We see that a majority of resolved test failures (~80%) are
addressed within the first 50 steps of SWE-agent, showcasing early converge when failures
are recoverable. Right: Distribution of cost required to fix test failures successfully.

Cost Budget Test(Pass@1)

Comparison Across Cost Budgets.

Table 6 compares SWE-Agent perfor- g;gg :1;21
mance under varying cost budgets. $4'00 21

Even with a $1 budget, SWE-Agent out-
performs the baseline pass@1 setting,
demonstrating that modest interaction
can yield meaningful improvements. €OSt budgets.

However, performance plateaus at the $2 mark, with no observable gains between $2
and $4. This suggests diminishing returns with additional budget, likely due to the agent
exhausting meaningful actions within the first few iterations.

Table 6: Test pass rates of SWE-agent at different

Figures 3 and 4 help explain this plateau in performance. When SWE-Agent is successful,
it typically requires only a small number of steps, often completing the task early in the
interaction sequence. This observation is consistent with the findings reported in Section 5.2
of the original SWE-Agent paper (Yang et al., 2024c).

Figure 5 further illustrates this behavior by analyzing the frequency of cargo build and
cargo test commands at different budget levels. Between the $1 and $2 budgets, we
observe a substantial increase in build and test invocations. However, increasing the budget
from $2 to $4 does not lead to additional successful builds, indicating that the agent often
exhausts its effective repair strategies within the lower budget range.
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Figure 4: Statistics of pipelined SWE-agent with a cost budget of $4. Left: Distribution of
steps taken until submission/exit. We see that a majority of tasks are addressed within
the first 40 steps of SWE-agent, again showcasing early convergence, even with a higher
cost, in cases where errors are recoverable. Right: Distribution of cost required to fix tests
successfully. Only 1 task takes over $3.5 to be addressed.
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(a) SWE-agent with $1 budget

# 'cargo build' invoked by project # 'cargo test' invoked by project

~~ Mean: 3.08 ' ~ = Mean: 2.00

~~ Median: 3.00 304 ~ = Median: 2.00

# Projects
# Projects

3 4 5 6 7 8
build invoked tests invoked
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(c) SWE-agent with $4 budget

Figure 5: Analysis of SWE-agent build and test command invocations across different
budget levels. We note that the model invokes the build command more as the cost budget
is increased. The average number of test invocations remains the same.
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Figure 6: Analysis of commands and their frequency across projects.
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