
CS243: Discrete Structures

More Number Theory and
Applications in Cryptography
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Announcements

I Fourth homework assignment handed out today

I Due October 18 (Thursday after fall break)

I Covers sequences, countability, number theory
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Review of Last Lecture

I Congruence Modulo: a ≡ b (mod m) iff m|(a − b)

I Alternatively, a ≡ b (mod m) iff a mod m = b mod m

I gcd(a, b) is the largest integer d such that d |a and d |b

I Theorem: Let a = bq + r . Then, gcd(a, b) = gcd(b, r)

I Euclid’s algorithm is used to efficiently compute gcd of two
numbers and is based on previous theorem.
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Euclidian GCD Algorithm

I Find gcd of 72 and 20

I 12 = 72%20

I 8 = 20%12

I 4 = 12%8

I 0 = 8%4

I gcd is 4!
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GCD as Linear Combination

I gcd(a, b) can be expressed as a linear combination of a and b

I Theorem: If a and b are positive integers, then there exist
integers s and t such that:

gcd(a, b) = s · a + t · b

I Furthermore, Euclidian algorithm gives us a way to compute
these integers s and t
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Example

I Express gcd(252, 198) as a linear combination of 252 and 198

I First apply Euclid’s algorithm (write a = bq + r at each step):

1. 252 = 1 · 198 + 54

2. 198 = 3 · 54 + 36

3. 54 = 1 · 36 + 18

4. 36 = 2 · 18 + 0 ⇒ gcd is 18

I Now, using (3), write 18 as 54− 1 · 36

I Using (2), write 18 as 54− 1 · (198− 3 · 54)

I Using (1), we have 54 = 252− 1 · 198, thus:

18 = (252− 1 · 198)− 1(198− 3 · (252− 1 · 198))

Işıl Dillig, CS243: Discrete Structures More Number Theory and Applications in Cryptography 6/44

1



Example, cont.

18 = (252− 1 · 198)− 1(198− 3 · (252− 1 · 198))
I Now, let’s simplify this:

18 = 252− 1 · 198− 1 · 198 + 3 · 252− 3 · 198

I Now, collect all 252 and 198 terms together:

18 = 4 · 252− 5 · 198

I Trace steps of Euclid’s algorithm backwards to derive s, t :

gcd(a, b) = s · a + t · b

I This is known as the extended Euclidian algorithm

Işıl Dillig, CS243: Discrete Structures More Number Theory and Applications in Cryptography 7/44

A Useful Result

I Lemma: If a, b are relatively prime and a|bc, then a|c.

I Proof: Since a, b are relatively prime gcd(a, b) = 1

I By previous theorem, there exists s, t such that 1 = s · a + t · b

I Multiply both sides by c: c = csa + ctb

I By earlier theorem, since a|bc, a|ctb

I Also, by earlier theorem, a|csa

I Therefore, a|csa + ctb, which implies a|c since c = csa + ctb
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Example

Lemma: If a, b are relatively prime and a|bc, then a|c.

I Suppose 15 | 16 · x

I Here 15 and 16 are relatively prime

I Thus, previous theorem implies: 15|x
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Question

I Suppose ca ≡ cb (mod m). Does this imply a ≡ b (mod m)?

I Counterexample: Consider 14 ≡ 8 (mod 6)

I Thus, 2 · 7 ≡ 2 · 4 (mod 6)

I But 7 6≡ 4 (mod 6)

I Therefore, this implication does not hold in the general case!

I However, if c and m are relatively prime, it does hold
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Another Useful Result

I Theorem: If ca ≡ cb (mod m) and gcd(c,m) = 1, then
a ≡ b (mod m)

I Proof: Since ca ≡ cb (mod m), we have m | ca − cb

I Rewriting, we get: m | c(a − b)

I Since m, c are relatively prime, previous thm implies m | a − b

I By definition of congruence, a ≡ b (mod m)
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Examples

I If 15x ≡ 15y (mod 4), is x ≡ y (mod 4)?

I If 8x ≡ 8y (mod 4), is x ≡ y (mod 4)?

I Counterexample: 8 · 2 ≡ 8 · 3 (mod 4), but 2 6≡ 3 (mod 4)
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Linear Congruences

I A congruence of the form ax ≡ b (mod m) where a, b,m are
integers and x a variable is called a linear congruence.

I Given such a linear congruence, often need to answer:

1. Are there any solutions?

2. What are the solutions?

I Observe: Determining if this congruence has a solution is the
same as determining if the equality

ax −mk = b

has integer solutions.
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Determining Existence of Solutions

I Theorem: The linear congruence ax ≡ b (mod m) has
solutions iff gcd(a,m)|b.

I Proof involves two steps:

1. If ax ≡ b (mod m) has solutions, then gcd(a,m)|b.

2. If gcd(a,m)|b, then ax ≡ b (mod m) has solutions.

I First prove (1), then (2).
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Proof, Part I

If ax ≡ b (mod m) has solutions, then gcd(a,m)|b.

I Suppose c is a solution, i.e., ac ≡ b (mod m)

I Then, m|(ac − b)

I Means there is a k such that ac − b = mk

I Rewrite as b = ac −mk

I gcd(a,m)|a and gcd(a,m)|m; hence, gcd(a,m) | (ac −mk)

I Since b = ac −mk , we have gcd(a,m)|b
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Proof, Part II

If gcd(a,m)|b, then ax ≡ b (mod m) has solutions.

I Let d = gcd(a,m) and suppose d |b

I Then, there is a k such that b = dk

I By earlier theorem, there exist s, t such that d = s · a + t ·m

I Multiply both sides by k : dk = a · (sk) +m · (tk)

I Since b = dk , we have b − a · (sk) = m · tk

I Thus, b ≡ a · (sk) (mod m)

I Hence, sk is a solution.
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Examples

I Does 5x ≡ 7 (mod 15) have any solutions?

I Does 3x ≡ 4 (mod 7) have any solutions?

I Note: This result generalizes to linear Diophantine equations

I Equality a1x1 + a2x2 + . . .+ anxn = b has integer solutions iff

gcd(a1, a2, . . . , an)|b

I Previous result just an instance of this because
ax ≡ b (mod m) can be written as ax −mk = b

Işıl Dillig, CS243: Discrete Structures More Number Theory and Applications in Cryptography 17/44

Examples

I Does 77x + 42y = 35 have integer solutions?

I Does 6x + 9y + 12z = 7 have integer solutions?
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Finding Solutions

I Can determine existence of solutions, but how to find them?

I Theorem: Let d = gcd(a,m) = sa + tm. If d |b, then the
solutions to ax ≡ b (mod m) are given by:

x =
sb

d
+

m

d
u where u ∈ Z
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Example

Let d = gcd(a,m) = sa + tm. If d |b, then the solutions to
ax ≡ b (mod m) are given by:

x =
sb

d
+

m

d
u where u ∈ Z

I What are the solutions to the linear congruence 3x ≡ 4 (mod 7)?

I First, need to find s, t such that 3s + 7t = gcd(3, 7)

I Apply Euclidian algorithm: 7 = 2 · 3 + 1 and 3 = 3 · 1 + 0

I Hence gcd(3, 7) = 1 = −2 · 3 + 1 · 7. Thus, s = −2 and t = 1

I Solutions: x = −2 · 4 + 7u = −8 + 7u (e.g., −8,−1, 6, 13, . . .)
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Another Example

Let d = gcd(a,m) = sa + tm. If d |b, then the solutions to
ax ≡ b (mod m) are given by:

x =
sb

d
+

m

d
u where u ∈ Z

I What are the solutions to the linear congruence 3x ≡ 1 (mod 7)?

I Already found s as −2 in previous example

I Solutions: x = −2 + 7u (e.g, −2, 5, 12, . . .)
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Inverse Modulo m

I The inverse of a modulo m, written a has the property:

aa ≡ 1 (mod m)

I Theorem: Inverse of a modulo m exists if and only if a and m
are relatively prime.

I Proof: Inverse must satisfy ax ≡ 1 (mod m)

I By previous thm, this equation has a solution iff gcd(a,m)|1

I Thus, gcd(a,m) must be 1

I Does 3 have an inverse modulo 7?

Işıl Dillig, CS243: Discrete Structures More Number Theory and Applications in Cryptography 22/44

Example

I Find an inverse of 3 modulo 7.

I An inverse is any solution to 3x ≡ 1 (mod 7)

I Earlier, we already computed solutions for this equation as:

x = −2 + 7u

I Thus, −2 is an inverse of 3 modulo 7

I 5, 12,−9, . . . are also inverses
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Example 2

I Find inverse of 2 modulo 5.

I Need to solve the congruence 2x ≡ 1 (mod 5)

I What are s, t such that 2s + 5t = 1?

I One solution: 1·3
1 = 3

I Other solutions: 8, 13, 18, . . .
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Solving Systems of Linear Congruences

I So far, learned how to solve single linear congruence

I In some cases, need to solve a system of linear congruences

I A famous theorem, called Chinese remainder theorem, tells us
how to solve a system of linear congruences

I Chinese Remainder Theorem: Let m and n be relatively prime
integers. Then, the system:

x ≡ a (mod m)
x ≡ b (mod n)

has a solution. Furthermore, all solutions are congruent to
ant + bms modulo mn where ms + nt = 1.
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Example

I Find all solutions to the following system:

x ≡ 2 (mod 3)
x ≡ 3 (mod 5)
x ≡ 2 (mod 7)

I Find all solutions to first two, then combine with third

I Need to find s, t such that s · 3 + t · 5 = 1

I Using Euclid’s algorithm: 5 = 1 · 3 + 2, 3 = 1 · 2 + 1, 2 = 2 · 1 + 0

I Applying backward substitution, we get: 1 = 2 · 3− 1 · 5

I Hence, s = 2, t = −1 and ant + bms = −10 + 18 = 8

I Thus, solution to first two congruences: x ≡ 8 (mod15)
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Example, cont.

I Now, combine this with last congruence:

x ≡ 8 (mod 15)
x ≡ 2 (mod 7)

I Now, again find s, t such that 15s + 7t = 1

I Applying Euclid, we have: 15 = 2 · 7 + 1, 7 = 7 · 1 + 0

I Hence, 1 = 1 · 15− 2 · 7, i.e. s = 1, t = −2

I ant + bms = −112 + 30 = −82

I Solution: x ≡ −82 (mod 105)
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Cryptography

I Cryptography is the study of techniques for secure
transmission of information in the presence of adversaries

I How can Alice send secrete messages to Bob without Eve
being able to read them?
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Private vs. Public Crypto Systems

I Two different kinds of cryptography systems:

1. Private (secret) key cryptography

2. Public key cryptography

I In private key cryptography, sender and receiver agree on
secret key that both use to encrypt/decrypt the message

I In public key crytography, a public key is used to encrypt the
message, and private key is used to decrypt the message
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Private Key Cryptography

I Private key crypto is classical method, used since antiquity

I Caesar’s cipher is an example of private key cryptography

I Caesar’s cipher is shift cipher where f (p) = (p + k) (mod 26)

I Both receiver and sender need to know k to encrypt/decrypt

I Analogy: Alice wants to send Bob briefcase with secret
message; they have a common key to lock/unlock briefcase

I Alice locks briefcase with shared key and Bob unlocks brief
case with shared key

I Only works well when number of parties involved in
communicated is small
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Public Key Cryptography

I Public key cryptography is the modern method, proposed by
Diffie and Hellman in 70’s

I Different keys are used to encrypt vs. decrypt message

I How can parties exchange information using different keys?

I Analogy: Alice puts message in briefcase, locks with her own
key A, sends to Bob

I Bob gets locked briefcase, adds his lock B , sends back to Alice

I Alice gets double locked box, removes A, sends back to Bob

I Bob opens briefcase using his own key
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Public Key Cryptography Overview

I This double lock example illustrates how parties can securely
transmit information without exchanging secret keys

I Many modern crypo-systems work roughly this way

I Most commonly used public key system is RSA

I Great application of number theory and things we’ve learned
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RSA History

I Named after its inventors Rivest, Shamir, and Adlemann, all
researchers at MIT (1978)

I Actually, similar system invented earlier by British researcher
Clifford Cocks, but classified – unknown until 90’s
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RSA Overview

I Bob has two keys: public and private

I Everyone knows Bob’s public key, but
only he knows his private key

I Alice encrypts message using Bob’s
public key

I Bob decrypts message using private key

I Public key can encrypt, but not decrypt

I Therefore, noone can read message
accept Bob
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High Level Math Behind RSA

I In the RSA system, private key consists of two very large
prime numbers p, q

I Public key consists of a number n, which is the product of
p, q and another number e

I e is a number relatively prime with (p − 1)(q − 1) (φ(N ),
Euler’s totient function)

I Encrypt messages using n, e, but to decrypt, must know p, q

I In theory, can extract p, q from n using prime factorization,
but this is intractable for very large numbers

I Security of RSA relies on inherent computational
difficulty of prime factorization
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Encryption in RSA

I To send message to Bob, Alice first represents message as a
sequence of numbers

I Call this number representing message M

I Alice then uses Bob’s public key n, e to perform encryption as:

C = M e (mod n)

I C is called the ciphertext
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Encryption Example

I Encrypt message ”STOP” using RSA with n = 2537, e = 13

I First convert each letter to a number in [0, 25]:
S = 18,T = 19,O = 14,P = 15

I Group sequence into blocks of 4 digits:

M = 1819 1415

I Now encrypt each block as C = M 13 (mod 2537)

I For first block, 181913 (mod 2537) = 2081; for second block
141513 (mod 2537) = 2182

I Ciphertext: 2081 2182
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RSA Decryption

I How do we decrypt cipher text using provate keys p, q?

I Decryption key d is the inverse of e modulo (p − 1)(q − 1):

d · e ≡ 1 (mod(p − 1)(q − 1))

I As we saw earlier, d can be computed reasonably efficiently if
we know (p − 1)(q − 1)

I However, since adversaries do not know p, q , they cannot
compute d with reasonable computational effort!
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RSA Decryption, cont.

I Using the Chinese remainder theorem and another theorem
called Fermat’s Little Theorem, it can be shown that:

(M e)d ≡ M (mod n)

I Since the ciphertext C is just M e , C d (mod n) allows
decrypting the message

I Since Bob can compute d using p, q , Bob can easily decrypt
message, but no one else can!
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Decryption Example

I Decrypt the cipher text 0981 0461 for the RSA cipher with
p = 43, q = 59, and e = 13.

I First we need to compute d , the inverse of e modulo
(p − 1)(q − 1)

I Here, (p − 1)(q − 1) = 2436; thus solve:

13x ≡ 1 (mod 2436)

I To solve this, first compute s, t such that:

13s + 2436t = 1

I Apply extended Euclidian algorithm: s = 937, t = −5
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Example, cont.

Decrypt 0981 0461 using p = 43, q = 59,n = 2537, and e = 13.

I To solve 13x ≡ 1 (mod 2436), computed s = 937, t = −5

I Recall: Solution to this sytem is given by:

x =
sb

d
+

m

d
u where u ∈ Z

I Here, s = 937, b, d = 1,m = 2436, thus solution: e = 937

I 0981937(mod 2537) = 0704; 0461937(mod 2537) = 1115

I Thus, decrypted message is 0704 1115, or in English, ”HELP”
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Security of RSA

I The encryption function used in RSA is a trapdoor function

I Trapdoor function is easy to compute in one direction, but
very difficult in reverse direction without additional knowledge

I Encryption direction is easy because just requires
exponentiation and mod

I Decryption without private key is very hard because requires
prime factorization

I Therefore, security of RSA depends on difficulty of prime
factorization
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Security of RSA, cont.

I However, as computers get more powerful and factorization
algorithms better, possible to factor larger and larger integers

I Therefore, over time, necessary to use larger and larger prime
numbers to ensure secure communication

I For quantum computing, there are very efficient algorithms for
computing prime factors (Shor’s algorithm)

I If we could build quantum computers with sufficient ”qubits”,
RSA would no longer be secure!

I However, today, RSA is considered secure if you use
sufficiently large prime numbers (> 200 digits)
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Book Recommendation

If you are interested in (history of)
cryptography, read ”The Code Book”by
Simon Singh!
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