
CS243: Discrete Structures

Propositional Logic II

Işıl Dillig

Işıl Dillig, CS243: Discrete Structures Propositional Logic II 1/32

Announcements

I First homework assignment out today!

I Due in one week, i.e., before lecture next Tuesday 09/11

I Weilin’s Tuesday office hours are 9-10 AM, not 10-11 AM

Işıl Dillig, CS243: Discrete Structures Propositional Logic II 2/32

Review

I Propositional logic is simplest kind of logic

I Building blocks are propositions, i.e., statements that are true
or false

I Formulas in propositional logic are formed using propositional
variables and boolean connectives

I Connectives: negation ¬ , conjunction ∧, disjunction ∨,
conditional →, biconditional ↔

I Truth table shows truth value of formula under all possible
assignments to variables

Işıl Dillig, CS243: Discrete Structures Propositional Logic II 3/32

Operator Precedence

I Given a formula p ∧ q ∨ r , do we parse this as (p ∧ q) ∨ r or
p ∧ (q ∨ r)?

I Without settling on a convention, formulas without explicit
paranthesization are ambiguous.

I To avoid ambiguity, we will specify precedence for logical
connectives.

I Operator precedence is a convention that tells us how to parse
formulas if they are not explicitly paranthesized.

Işıl Dillig, CS243: Discrete Structures Propositional Logic II 4/32

Operator Precedence, cont.

I Negation (¬) has higher precedence than all other connectives.

I Question: Does ¬p ∧ q mean (i) ¬(p ∧ q) or (ii) (¬p) ∧ q?

I Conjunction (∧) has next highest predence.

I Question: Does p ∧ q ∨ r mean (i) (p ∧ q) ∨ r or (ii)
p ∧ (q ∨ r)?

I Disjunction (∨) has third highest precedence.

I Next highest is precedence is →, and lowest precdence is ↔

Işıl Dillig, CS243: Discrete Structures Propositional Logic II 5/32

Operator Precedence Example

I Which is the correct interpretation of the formula

p ∨ q ∧ r ↔ q → ¬r

(A) ((p ∨ (q ∧ r))↔ q)→ (¬r)

(B) ((p ∨ q) ∧ r)↔ q)→ (¬r)

(C) (p ∨ (q ∧ r))↔ (q → (¬r))

(D) (p ∨ ((q ∧ r)↔ q))→ (¬r)

Işıl Dillig, CS243: Discrete Structures Propositional Logic II 6/32

1

Validity, Unsatisfiability

I The truth value of a propositional formula depends on truth
assignments to variables

I Example: ¬p evaluates to true under under the assignment p = F
and to false under p = T

I Some formulas evaluate to true for every assignment, e.g., p ∨ ¬p

I Such formulas are called tautologies or valid formulas

I Some formulas evaluate to false for every assignment, e.g., p ∧ ¬p

I Such formulas are called unsatisfiable formulas or contradictions

Işıl Dillig, CS243: Discrete Structures Propositional Logic II 7/32

Interpretations

I Concepts of validity, satisfiability are very important in logic!

I To make them precise, we’ll define interpretation of formula

I An interpretation I for a formula F is a mapping from each
propositional variables in F to exactly one truth value

I : {p 7→ true, q 7→ false, · · · }

I In general, for formula with n propositional variables, there
are 2n interpretations

I Each interpretation corresponds to one row in the truth table

Işıl Dillig, CS243: Discrete Structures Propositional Logic II 8/32

Entailment

I Under an interpretation, every propositional formula evaluates
to T or F

Formula F + Interpretation I = Truth value

I We write I |= F if F evaluates to true under I

I Similarly, I 6|= F if F evaluates to false under I .

I Theorem: I |= F if and only if I 6|= ¬F

Işıl Dillig, CS243: Discrete Structures Propositional Logic II 9/32

Examples

I Consider the formula F : p ∧ q → ¬p ∨ ¬q

I Let I1 be the interpretation such that [p 7→ true, q 7→ false]

I What does F evaluate to under I1?

I Thus, I1 |= F

I Let I2 be the interpretation such that [p 7→ true, q 7→ true]

I What does F evaluate to under I2?

I Thus, I2 6|= F

Işıl Dillig, CS243: Discrete Structures Propositional Logic II 10/32

Another Example

I Let F1 and F2 be two propositional formulas

I Suppose F1 evaluates to true under interpretation I

I What does F2 ∧ ¬F1 evaluate to under I ?

Işıl Dillig, CS243: Discrete Structures Propositional Logic II 11/32

Satisfiability, Validity

I F is satisfiable iff there exists interpretation I s.t. I |= F

I F is valid iff for all interpretations I , I |= F

I F is unsatisfiable iff for all interpretations I , I 6|= F

I F is contingent if it is satisfiable, but not valid.

I Valid formulas also called tautologies

I Unsatisfiable formulas called contradictions

Işıl Dillig, CS243: Discrete Structures Propositional Logic II 12/32

2

True/False Questions

Are the following statements true or false?

I If a formula is valid, then it is also satisfiable.

I If a formula is satisfiable, then its negation is unsatisfiable.

I If F1 and F2 are satisfiable, then F1 ∧ F2 is also satisfiable.

I A formula can be both contingent and unsatisfiable

Işıl Dillig, CS243: Discrete Structures Propositional Logic II 13/32

Duality Between Validity and Unsatisfiability

F is valid if and only if ¬F is unsatisfiable

I Proof:

I By definition, F is valid iff for all interpretations I , I |= F

I By theorem, I |= F iff I 6|= ¬F

I Thus, F is valid iff for all interpretations I , I 6|= ¬F

I But if for all interpretations I , I 6|= ¬F , then ¬F is unsat

I Thus, F valid iff ¬F unsat

Işıl Dillig, CS243: Discrete Structures Propositional Logic II 14/32

Proving Validity

I Question: How can we prove that a propositional formula is a
tautology?

I Exercise: Which formulas are tautologies? Prove your answer.

1. (p → q)↔ (¬q → ¬p)

2. (p ∧ q) ∨ ¬p

Işıl Dillig, CS243: Discrete Structures Propositional Logic II 15/32

Proving Satisfiability, Unsatisfiability, Contingency

I Similarly, can prove satisfiability, unsatisfiability, contingency
using truth tables:

I Satisfiable: There exists a row where formula evaluates to true

I Unsatisfiable: In all rows, formula evaluates to false

I Contingent: Exists a row where formula evaluates to true, and
another row where it evaluates to false

Işıl Dillig, CS243: Discrete Structures Propositional Logic II 16/32

Exercises

1. Prove ¬(p ∧ q) ∧ ¬(¬p ∨ ¬q) is unsatisfiable

2. Prove (p → q)→ (q → p) is a contingency

Işıl Dillig, CS243: Discrete Structures Propositional Logic II 17/32

Implication

I Formula F1 implies F2 (written F1 ⇒ F2) iff for all
interpretations I , I |= F1 → F2

F1 ⇒ F2 iff F1 → F2 is valid

I Caveat: F1 ⇒ F2 is not a propositional logic formula; ⇒ is
not part of PL syntax!

I Instead, F1 ⇒ F2 is a semantic judgment, like satisfiability!

Işıl Dillig, CS243: Discrete Structures Propositional Logic II 18/32

3

Syntax vs. Semantics

I Syntax: What you are allowed to write

I ∧,→ are part of PL syntax, but ?,⇒ are not!

I p1 ∧ p2 is a syntactically valid PL formula, p1 ? p2 is not!

I Semantics: Concerns meaning of what is written

I Validity, satisfiability semantic notions b/c they concern
meaning of the formula

I Semantics gives meaning to syntax

I Difference between syntax vs. semantics crucial in CS

I Comes up in logic, programming languages, theory of
computation, . . .

Işıl Dillig, CS243: Discrete Structures Propositional Logic II 19/32

Checking Implication

I Question: How can we check if F1 ⇒ F2?

I Exercise: Does p ∨ q imply p? Prove your answer!

Işıl Dillig, CS243: Discrete Structures Propositional Logic II 20/32

Equivalence

I Consider two propositional formulas F1 and F2.

I Sometimes F1 and F2 always have same truth value for every
interpretation, e.g., p ∨ p and p ∧ p

I Such formulas F1 and F2 called equivalent, written F1 ≡ F2

or F1 ⇔ F2

I More precisely, formulas F1 and F2 are equivalent iff for all
interpretations I , I |= F1 ↔ F2

F1 ⇔ F2 iff F1 ↔ F2 is valid

I ≡,⇔ not part of PL syntax; they are semantic judgments!

Işıl Dillig, CS243: Discrete Structures Propositional Logic II 21/32

Checking Equivalence

I Question: How can we prove F1 ≡ F2?

I Exercise: Prove p → q and ¬p ∨ q are equivalent

Işıl Dillig, CS243: Discrete Structures Propositional Logic II 22/32

Important Equivalences

I Some important equivalences are useful to know!

I Law of double negation: ¬¬p ≡ p

I Identity Laws: p ∧ T ≡ p p ∨ F ≡ p

I Domination Laws: p ∨ T ≡ T p ∧ F ≡ F

I Idempotent Laws: p ∨ p ≡ p p ∧ p ≡ p

I Negation Laws: p ∧ ¬p ≡ F p ∨ ¬p ≡ T

Işıl Dillig, CS243: Discrete Structures Propositional Logic II 23/32

Commutativity and Distibutivity Laws

I Commutative Laws: p ∨ q ≡ q ∨ p p ∧ q ≡ q ∧ p

I Distributivity Law #1: (p ∨ (q ∧ r)) ≡ (p ∨ q) ∧ (p ∨ r)

I Distributivity Law #2: (p ∧ (q ∨ r)) ≡ (p ∧ q) ∨ (p ∧ r)

I Associativity Laws: p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r
p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r

Işıl Dillig, CS243: Discrete Structures Propositional Logic II 24/32

4

De Morgan’s Laws

I Let cs243 be the proposition ”John took CS243” and cs303 be
the proposition ”John took CS303”

I In simple English what does ¬(cs243 ∧ cs303) mean?

I DeMorgan’s law expresses exactly this equivalence!

I De Morgan’s Law #1: ¬(p ∧ q) ≡ (¬p ∨ ¬q)

I De Morgan’s Law #2: ¬(p ∨ q) ≡ (¬p ∧ ¬q)

I When you ”push” negations in, ∧ becomes ∨ and vice versa

Işıl Dillig, CS243: Discrete Structures Propositional Logic II 25/32

Using Equivalences

I We saw one way to prove two formulas are equivalent: use
truth table

I Another way: use known equivalences to rewrite one formula
as the other

I Examples: Prove following formulas are equivalent using
known equivalences.

1. ¬(p ∨ (¬p ∧ q)) and ¬p ∧ ¬q

2. ¬(p → q) and p ∧ ¬q

Işıl Dillig, CS243: Discrete Structures Propositional Logic II 26/32

Formalizing English Arguments in Logic

I We can use logic to prove correctness of English arguments.

I For example, consider the argument:

I If Joe drives fast, he gets a speeding ticket.

I Joe did not get a ticket.

I Therefore, Joe did not drive fast.

I Let f be the proposition ”Joe drives fast”, and t be the
proposition ”Joe gets a ticket”

I How do we encode this argument as a logical formula?

Işıl Dillig, CS243: Discrete Structures Propositional Logic II 27/32

Example, cont

”If Joe drives fast, he gets a speeding ticket. Joe did not get a
ticket. Therefore, he did not drive fast.”: ((f → t) ∧ ¬t)→ ¬f

I How can we prove this argument is valid?

I Can do this in two ways:

1. Use truth table to show formula is tautology

2. Use known equivalences to rewrite formula to true

I Let’s use equivalences

Işıl Dillig, CS243: Discrete Structures Propositional Logic II 28/32

Another Example

I Can also use to logic to prove an argument is not valid.

I Suppose your friend George make the following argument:

I If Jill carries an umbrella, it is raining.

I Jill is not carrying an umbrella.

I Therefore it is not raining.

I Let’s use logic to prove George’s argument doesn’t hold water.

I Let u = ”Jill is carrying an umbrella”, and r = ”It is raining”

I How do we encode this argument in logic?

Işıl Dillig, CS243: Discrete Structures Propositional Logic II 29/32

Example, cont.

”If Jill carries an umbrella, it is raining. Jill is not carrying an
umbrella. Therefore it is not raining.”: ((u → r) ∧ ¬u)→ ¬r

I How can we prove George’s argument is invalid?

Işıl Dillig, CS243: Discrete Structures Propositional Logic II 30/32

5

Summary

I A formula is valid if it is true for all interpretations.

I A formula is satisfiable if it is true for at least one
interpretation.

I A formula is unsatisfiable if it is false for all interpretations.

I A formula is contingent if it is true in at least one
interpretation, and false in at least one interpretation.

I Two formulas F1 and F2 are equivalent, written F1 ≡ F2, if
F1 ↔ F2 is valid

Işıl Dillig, CS243: Discrete Structures Propositional Logic II 31/32

6

