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Announcements

I Homework 2 due next lecture

I Little harder and longer than previous homework – don’t wait
until night before
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Introduction

I In previous lectures, we learned how to construct proofs using
logical inference rules

I Such proofs are extremely formal and rigorous, but, for more
complicated proofs, they can be very long and tedious

I In practice, mathematical proofs tend to be slightly less formal
(e.g., can omit labeling names of inference rules)

I Today: Learn about proof-related mathematical concepts and
proof strategies
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Mathematical Theorems

I Important mathematical statements that can be shown to be
true are theorems

I Many famous mathematical theorems, e.g., Pythagorean
theorem, Fermat’s last theorem

I Pythagorean theorem: Let a, b the length of the two sides of
a right triangle, and let c be the hypotenuse. Then,
a2 + b2 = c2

I Fermat’s Last Theorem: For any integer n greater than 2, the
equation an + bn = cn has no solutions for non-zero a, b, c.
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Theorems, Lemmas, and Propositions

I There are many correct mathematical statements, but not all
of them called theorems

I Less important statements that can be proven to be correct
are propositions

I Another variation is a lemma: minor auxiliary result which
aids in the proof of a theorem/proposition

I Corollary is a result whose proof follows immediately from a
theorem or proposition
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Conjectures vs. Theorems

I Conjecture is a statement that is suspected to be true by
experts but not yet proven

I Goldbach’s conjecture: Every even integer greater than 2 can
be expressed as the sum of two prime numbers.

I This conjecture is one of the oldest unsolved problems in
number theory

I Once proven, conjectures become theorems
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Story Behind Fermat’s Last Theorem

I Fermat’s last theorem was a conjecture for 360 years until it
was finally proven by Andrew Wiles in 1995!

I Fermat scribbled this ”theorem” in the margin of his copy of
Arithmetica

I And also remarked: ”I have discovered a truly marvelous proof
of this, which this margin is too narrow to contain”

I Unknown if Fermat had a valid proof or what his proof was

I Finally proven by Wiles in 1995 using advanced results about
elliptic curves
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General Strategies for Proving Theorems

Many different strategies for proving theorems:

I Direct proof: p → q proved by directly showing that if p is
true, then q must follow

I Proof by contraposition: Prove p → q by proving ¬q → ¬p

I Proof by contradiction: Prove that the negation of the
theorem yields a contradiction

I Proof by cases: Exhaustively enumerate different possibilities,
and prove the theorem for each case

In many proofs, one needs to combine several different strategies!
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Direct Proof

I To prove p → q in a direct proof, first assume p is true.

I Then use rules of inference, axioms, previously shown
theorems/lemmas to show that q is also true

I Example: If n is an odd integer, than n2 is also odd.

I Proof: Assume n is odd. By definition of oddness, there must
exist some integer k such that n = 2k + 1. Then,
n2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1, which is odd. Thus, if
n is odd, n2 is also odd.

I Observe: This proof implicitly uses universal generalization
and existential instantiation (where?)
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More Direct Proof Examples

I An integer a is called a perfect square if there exists an
integer b such that a = b2.

I Example: Prove that if m and n are perfect squares, then mn
is also a perfect square.
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Another Example

I Example: Prove that every odd number is the difference of
two perfect squares.
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Proof by Contraposition

I Recall: The contrapositive of p → q is ¬q → ¬p

I Recall: A formula and its contrapositive are logically
equivalent

I Hence, if you can prove ¬q → ¬p, have shown p → q

I This makes no difference from a logical point of view, but
sometimes the contrapositive is easier to show by direct proof
than the original

I Thus, in proof by contraposition, assume ¬q and then use
axioms, inference rules etc. to show that ¬p must follow
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Examples of Proof by Contraposition

I Prove: If n2 is odd, then n is odd.

I What is the contrapositive of this statement?

I Proof: Suppose n is even. Then, there exists integer k such
that n = 2k .

I Then, n2 = (2k)2 = 4k2 = 2(2k2)

I Thus, n2 is also even.
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Another Example

I Prove: If n = ab, then a ≤ √n or b ≤ √n

I No obvious direct proof, therefore try proof by contraposition.

I Note: It may not always be immediately obvious whether to
use direct proof or proof by contraposition. If you try one and
it fails, try the other strategy!

I Over time, you will gain intuition about which proof strategies
work well in which situations
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Proof by Contradiction

I Suppose we want to show that p → q is true

I The only way p → q can be false if p is true and q is false

I Proof by contradiction: Show that p ∧ ¬q is not possible

I i.e., assume both p and ¬q and show that this yields a
contradiction

I Proof by contradiction is a very widely used proof strategy
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Example

I Prove by contradiction that ”If 3n + 2 is odd, then n is odd.”
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Another Example

I Recall: Any rational number can be written in the form p
q

where p and q are integers and have no common factors.

I Example: Prove by contradiction that
√
2 is irrational.

I Proof: Suppose
√
2 was rational. Then,

√
2 = p

q where p, q
are integers with no common factors.

I By squaring both sides, we have: 2 = p2

q2
, i.e., 2q2 = p2

I Since p2 is even, p must also be even (proved earlier)

I Hence, p = 2k for some k , and p2 = 4k2 = 2q2.
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Example, cont

I This implies q2 = 2k2; thus, q2 is also even

I Again, if q2 is even, this means q is even.

I But since both p and q are even, this means they have a
common factor, i.e., 2

I But this contradicts our assumption!
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Proof by Cases

I In some cases, it is very difficult to prove a theorem by
applying the same argument in all cases

I For example, we might need to consider different arguments
for negative and non-negative integers

I Proof by cases allows us to apply different arguments in
different cases and combine the results

I Specifically, suppose we want to prove statement p, and we
know that we have either q or r

I If we can show q → p and r → p, then we can conclude p
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Proof by Cases, cont.

I In general, there may be more than two cases to consider

I Proof by cases says that to show

(p1 ∨ p2 . . . ∨ pk )→ q

it suffices to show:
p1 → q
p2 → q
. . .

pk → q
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Example

I Prove that |xy | = |x ||y |

I Here, proof by cases is useful because definition of absolute
value depends on whether number is negative or not.

I There are four possibilities:

1. x , y are both non-negative

2. x non-negative, but y negative

3. x negative, y non-negative

4. x , y are both negative

I We’ll prove the property by proving these four cases separately
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Proof

I Case 1: x , y ≥ 0. In this case, |xy | = xy = |x ||y |

I Case 2: x ≥ 0, y < 0. Here, |xy | = −xy = x · (−y) = |x ||y |

I Case 3: x < 0, y ≥ 0. Here, |xy | = −xy = (−x ) · y = |x ||y |

I Case 4: x , y < 0. Here, |xy | = xy = (−x ) · (−y) = |x ||y |

I Since we proved it for all cases, the theorem is valid.

I Caveat: Your cases must cover all possibilites; otherwise, the
proof is not valid!

I Observe: The truth table method is essentially an (exhaustive)
proof by cases...
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Another Example

I Prove that max (x , y) +min(x , y) = x + y
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Combining Proof Techniques

I So far, our proofs used a single strategy, but often it’s
necessary to combine multiple strategies in one proof

I Example: Prove that every rational number can be expressed
as a product of two irrational numbers.

I Proof: Let’s first employ direct proof.

I Observe that any rational number r can be written as
√
2 r√

2

I We already proved
√
2 is irrational.

I If we can show that r√
2

is also irrational, we have a direct

proof.
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Combining Proofs, cont.

I Now, employ proof by contradiction to show r√
2

is irrational.

I Suppose r√
2

was rational.

I Then, for some integers p, q : r√
2
= p

q

I This can be rewritten as
√
2 = rq

p

I Since r is rational, it can be written as quotient of integers:

√
2 =

a

b
· p
q
=

ap

bq

I But this would mean
√
2 is rational, a contradiction.
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Lesson from Example

I In this proof, we combined direct and proof-by-contradiction
strategies

I In more complex proofs, it might be necessary to combine two
or even more strategies and prove helper lemmas

I It is often a good idea to think about how to decompose your
proof, what strategies to use in different subgoals, and what
helper lemmas could be useful
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If and Only if Proofs

I Some theorems are of the form ”P if and only if Q” (P ↔ Q)

I The easiest way to prove such statements is to show P → Q
and Q → P

I Therefore, such proofs correspond to two subproofs

I One shows P → Q (typically labeled ⇒)

I Another subproof shows Q → P (typically labeled ⇐)
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Example

I Prove ”A positive integer n is odd if and only if n2 is odd.”

I ⇒ We have already shown this using a direct proof earlier.

I ⇐ We have already shown this by a proof by contraposition.

I Since we have proved both directions, the proof is complete.
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Counterexamples

I So far, we have learned about how to prove statements are
true using various strategies

I But how do we prove that a statement is false?

I To show a statement is false, we provide counterexamples

I A counterexample is a concrete value for which the statement
is false

I What is a counterexample for the claim ”The product of two
irrational numbers is irrational”?
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Prove or Disprove

Which of the statements below are true, which are false? Prove
your answer.

I For all integers n, if n2 is positive, n is also positive.

I For all integers n, if n3 is positive, n is also positive.

I For all integers n such that n ≥ 0, n2 ≥ 2n
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Existence and Uniqueness

I Common math proofs involve showing existence and
uniqueness of certain objects

I Existence proofs require showing that an object with the
desired property exists

I Uniqueness proofs require showing that there is a unique
object with the desired property
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Existence Proofs

I One simple way to prove existence is to provide an object that
has the desired property

I This sort of proof is called constructive proof

I Example: Prove there exists an integer that is the sum of two
perfect squares

I But not all existence proofs have to be contructive – possible
to prove existence through other methods such as proof by
contradiction or proof by cases

I Such indirect existence proofs called nonconstructive proofs
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Non-Constructive Proof Example

I Prove: ”There exist irrational numbers x , y s.t. x y is rational”

I We’ll prove this using a non-constructive proof (by cases),
without providing irrational x , y

I Consider
√
2
√
2
. Either (i) it is rational or (ii) it is irrational

I Case 1: We have x = y =
√
2 s.t. x y is rational

I Case 2: Let x =
√
2
√
2

and y =
√
2, so both are irrational.

Then,
√
2
√
2
√

2

=
√
2
2
= 2. Thus, x y is rational
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Non-Constructive Proofs

I This proof is non-constructive because it does not give
concrete irrational numbers x , y for which x y is rational

I In classical mathematics/logic, such non-constructive proofs
are completely acceptable

I However, there is a school of mathematicians/logicians who
only accept constructive proofs

I Such people are called intuitionists or constructivists

I The branch of logic dealing with only constructive arguments
is called intuitionistic logic
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Proving Uniqueness

I Some statements in mathematics assert uniqueness of an
object satisfying a certain property

I To prove uniqueness, must first prove existence of an object x
that has the property

I Second, we must show that for any other y s.t. y 6= x , then y
does not have the property

I Alternatively, can show that if y has the desired property that
x = y
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Example of Uniqueness Proof

I Prove: ”If a and b are real numbers with a 6= 0, then there
exists a unique real number r such that ar + b = 0”

I Existence: Using a constructive proof, we can see r = −b/a
satisfies ar + b = 0

I Uniqueness: Suppose there is another number s such that
s 6= r and as + b = 0. But since ar + b = as + b, we have
ar = as, which implies r = s.
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Summary of Proof Strategies

I Direct proof: p → q proved by directly showing that if p is
true, then q must follow

I Proof by contraposition: Prove p → q by proving ¬q → ¬p

I Proof by contradiction: Prove that the negation of the
theorem yields a contradiction

I Proof by cases: Exhaustively enumerate different possibilities,
and prove the theorem for each case
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Invalid Proof Strategies

I Proof by obviousness: ”The proof is so clear it need not be
mentioned!”

I Proof by intimidation: ”Don’t be stupid – of course it’s true!”

I Proof by mumbo-jumbo: ∀α ∈ θ∃β ∈ α � β ≈ γ

I Proof by intuition: ”I have this gut feeling..”

I Proof by resource limits: ”Due to lack of space, we omit this
part of the proof...”

I Proof by illegibility: ”sdjikfhiugyhjlaks??fskl; QED.”

Don’t use anything like these in CS243!!
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