

]
Proof, Part II	One More Example
▶ Now, let's prove $A \cap (B \cup C) \supseteq (A \cap B) \cup (A \cap C)$	 Prove A and A are disjoint Need to prove A ∩ A = Ø i.e., need to show there is no element x such that x ∈ A ∩ A Proof by contradiction: Suppose there is such an x By ∩ def, x ∈ A ∧ x ∈ A By complement def, x ∈ A ∧ ¬(x ∈ A) But this a contradiction, thus A ∩ A = Ø. □
lyl Dilig. CS243: Discrete Structures Sets 11/39	lpi Dilig. CS43: Discrete Structures Sets 32/39
Naive Set Theory and Russell's Paradox	Russell's Paradox
 The intutive definition of sets we learned today goes back to German mathematician George Cantor (1800's) Cantor's set theory called naive because it can lead to paradoxes, which are logical inconsistencies In 1901, British mathematician Bertrand Russell showed that Cantor's set theory is called inconsistent This can be shown using so-called Russell's paradox 	 Let R be the set of sets that are not members of themselves: R = {S S ∉ S} Two possibilities: Either R ∈ R or R ∉ R Suppose R ∈ R. But by definition of R, R does not have itself as a member, i.e., R ∉ R But this contradicts R ∈ R Therefore, first possibility is infeasible
lpl Dilig. CS24). Discrete Structures Sets 31/20	lpi Dilig. C5243: Discrete Structures Sets 34/20
Russell's Paradox, cont.	Consequences of Russell's Paradox
 Now suppose R ∉ R (i.e., R not a member of itself) But since R is the set of sets that are not members of themselves, R must be a member of R But this implies R ∈ R, again yielding a contradiction Therefore, either possibility yields to a contradiction 	 Russell's paradox shows that Cantor's formulation of set theory is inconsistent b/c it can yield paradoxes Inconsistent because possible to define sets that do not exist! Much research on consistent versions of set theory ⇒ axiomatic set theories The version we learned in class is Cantor's original set theory because it is simple and intuitive, but realize that it can lead to logical inconsistencies
lyl Dilig, CSX42: Discrete Structures Sets 35/20	lyl Dilig. CS243: Discrete Structures Sets 36/39

Illustration of Russell's Paradox

- Russell's paradox and other similar paradoxes inspired artists at the turn of the century, esp. Escher and Magritte
- French painter Rene Magritte made a graphical illustration of Russel's paradox:

Paradoxes in Math, Logic, and CS

- Paradoxes are common in meta mathematics (study of math using mathematical methods):
 - Godel's incompleteness theorem: All consistent formulations of number theory include undecidable propositions
 - ► Turing's halting problem: Does there exist a program P' that can decide if any arbitrary program P terminates?
- More of these kinds of inconsistency results in this class and other CS classes

CS243: Dis

 If paradoxes interest you, read the book "Godel, Escher, Bach" by Douglas Hofstadter

Escher's Illustration of Paradoxes

> Dutch painter Escher also inspired by mathematical paradoxes:

