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Işıl Dillig

Işıl Dillig, CS243: Discrete Structures Sets 1/39

Announcements

I Third homework is out

I Second homework is due now

I First homework is graded ⇒ handed back at end of lecture

I Scores posted on Blackboard – check your score!

I Have one week to report any inconsistencies between
Blackboard and your actual score

I Don’t tell this to us at end of semester
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Introduction

I Sets are the most basic, fundamental data structures in math
and computer science

I Many of you should be familiar with sets from high school

I Partly review to refresh your memory

I Partly application of proof techniques to sets
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Sets and Set Membership

I A set is unordered collection of objects

I Example: Vowels in the English language: { a, e, i, o, u }

I Example: Positive even numbers less than 10: {2, 4, 6, 8}

I Objects in set S are called members (or elements) of that set

I If x is a member of S , we write x ∈ S
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Cardinality

I Number of elements in a set is called its cardinality

I What is cardinality of {a, e, i , o, u}?

I Cardinality of a set S is written as |S |

I Sets we looked at so far only contain finitely many elements,
i.e., have finite cardinality

I But in general sets can have infinite cardinality

I Example: Sets of all natural numbers: N : = {0, 1, 2, 3, ...}
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Important Sets in Mathematics

I Many sets that play fundamental role in mathematics have
infinite cardinality

I Set of integers Z = {. . . ,−2,−1, 0, 1, 2, . . .}

I Set of positive integers: Z+ = {1, 2, . . .}

I Set of real numbers:
R = {π, . . . ,−1.999, . . . , 0, . . . , 0.000001, . . .}

I Infinite sets are easier to write in set builder notation
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Set Builder Notation

I Set builder notation describes a set S by stating a property all
elements of S must have, written:

S = {x | x has property p}

I This means S consists of all elements that have property p

I Alternatively, an object x is member of S iff x has property p

I Example: S = {x | x ∈ Z ∧ x%2 = 0}

I Example: Q = {p/q | p ∈ Z ∧ q ∈ Z ∧ q 6= 0}

I Q is the set of rational numbers
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Set Equality

I Two sets A and B are equal iff they have the same elements

I If A and B are equal, we write A = B

I Are the sets {a, b, c} and {b, a, c} equal?

I Are the sets N and Z+ equal?

I Are the sets {1, 2, 3} and {1, 2, 2, 3} equal?
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Special Sets

I The universal set, written U , includes all objects under
consideration

I The empty set, written ∅ or {}, contains no objects

I A set containing exacly one element is called a singleton set
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Questions about Special Sets

I What special set is S = {x | p(x ) ∧ ¬p(x )} equal to?

I What is the cardinality of a singleton set?

I What is the cardinality of R?

I What is the cardinality of the set ∅?

I What is the cardinality of {∅}?
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Venn Diagrams

I Sometimes convenient to visualize sets using Venn diagrams

I Example: Venn diagram for vowels in English alphabet

U
V

a
e i

o u
t

p

b

k

c
m

I Since objects under consideration are letters in English
alphabet, U contains all 26 letters
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Subsets

I A set A is a subset of set B , written A ⊆ B , iff every element
in A is also an element of B (∀x . x ∈ A⇒ x ∈ B)

U

B
A

I For any set A, we have A ⊆ A.

I For any set A, ∅ ⊆ A.
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Supersets and Proper Subsets

I If A ⊆ B , then B is called a superset of A, written B ⊇ A

I Example: For every set A, U ⊇ A

I Another important concept: proper subset

I A set A is a proper subset of set B , written A ⊂ B , iff:

(∀x . x ∈ A⇒ x ∈ B) ∧ (∃x . x ∈ B ∧ x 6∈ A)
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Questions about Subsets and Supersets

I Is there some set for which A ⊂ A?

I How are A and B related if A ⊆ B and B ⊆ A?

I How are A and C related if A ⊂ B and B ⊂ C ?

I Prove that if A ⊆ B and B ⊆ C , then A ⊆ C .
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Power Set

I The power set of a set S , written P(S ), is the set of all
subsets of S .

I Example: What is the powerset of {a, b, c}?

I Fact: If cardinality of S is n, then |P(S )| = 2n

I What is the power set of ∅?

I What is the power set of {∅}?
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Ordered Tuples

I An important operation on sets is called Cartesian product

I But to define Cartesian produce, we first need to learn about
discrete structure called ordered tuples

I Sets represent unordered collection of objects

I Ordered tuples represent ordered collections of objects

I An ordered n-tuple (a1, a2, . . . , an) is the ordered collection
with a1 as its first element, a2 as its second element, . . . , and
an as its last element.
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Sets vs. Ordered Tuples

I Consider sets A = {1, 2} and B = {2, 1}. Is A = B?

I Consider ordered tuples A = (1, 2) and B = (2, 1). Is A = B?

I If a tuple has two elements, it’s called a pair

I If tuple has three elements, it’s called a triple

I When people say ”tuple”, this really means ”ordered tuple”
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Cartesian Product

I The Cartesian product of two sets A and B , written A×B , is
the set of all ordered pairs (a, b) where a ∈ A and b ∈ B

A× B = {(a, b) | a ∈ A ∧ b ∈ B}

I Example: Let A = {1, 2} and B = {a, b, c}. What is A× B?

I Example: What is B ×A?

I Observe: A× B 6= B ×A in general!
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More on Cartesian Products

I If |A| = n and |B | = m, what is |A× B |?

I Cartesian product generalizes to more than two sets

I Cartesian product of A1 ×A2 . . .×An is the set of all ordered
n-tuples (a1, a2, . . . , an) where ai ∈ Ai

I Example: If A = {1, 2},B = {a, b},C = {?, ◦}, what is
A× B × C ?
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Set Operations

Four kinds of set operations:

I Union: Analogous to ∨ in boolean logic

I Intersection: Analogous to ∧ in boolean logic

I Complement: Analogous to ¬ in boolean logic

I Difference: ”Subtraction” of one set from another
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Set Union

I The union of A and B , written A ∪B , is the set that contains
those elements that are either in A or in B :

A ∪ B = {x | x ∈ A ∨ x ∈ B}

U
A B
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Set Intersection

I The intersection of A and B , written A ∩ B , is the set that
contains those elements that are both in A and in B :

A ∩ B = {x | x ∈ A ∧ x ∈ B}

U
A B
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Set Union

I The difference of A and B , written A− B , is the set that
contains those elements that are in A but not in B :

A− B = {x | x ∈ A ∧ x 6∈ B}

U
A B
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Set Complement

I The complement of a set A, written A, is the set that
contains only those elements that are not in A

A = {x | x 6∈ A}

U
A

I A is same as U −A
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Disjoint Sets

I Two set A and B are called disjoint if A ∩ B = ∅

U

A B
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Exercise

Prove A ∪ B = A ∩ B

I To prove equality between sets X and Y , we need to prove
X ⊆ Y and Y ⊆ X

I Similar to proving P ⇔ Q

I We’ll first prove A ∪ B ⊆ A ∩ B

I Then prove A ∩ B ⊆ A ∪ B

I These two proofs establish the proof of A ∪ B = A ∩ B
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Proof, Part I

I Let’s first prove A ∪ B ⊆ A ∩ B

I We need to show if x ∈ A ∪ B , then x ∈ A ∩ B

I If x ∈ A ∪ B , then by definition of complement, ¬(x ∈ A∪B)

I Using definition of ∪, this implies ¬(x ∈ A ∨ x ∈ B)

I Using DeMorgan’s law, this is equivalent to x 6∈ A ∧ x 6∈ B

I Using definition of complement, x ∈ A ∧ x ∈ B

I Using definition of ∩, we have x ∈ A ∩ B

I Thus, we’ve shown A ∪ B ⊆ A ∩ B
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Proof, Part II

I Now, we need to prove A ∩ B ⊆ A ∪ B

I We need to show if x ∈ A ∩ B , then x ∈ A ∪ B

I If x ∈ A ∩ B , then by definition of ∩, x ∈ A ∧ x ∈ B

I By definition of complement, ¬(x ∈ A) ∧ ¬(x ∈ B)

I Using DeMorgan’s law, this is equivalent to ¬(x ∈ A∨ x ∈ B)

I Using definition of ∪, ¬(x ∈ A ∪ B)

I Using definition of complement, we have x ∈ A ∪ B

I Thus, we’ve shown A ∩ B ⊆ A ∪ B
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Set Equivalences as Logical Equivalences

I We’ve just shown A ∪ B = A ∩ B

I Recall: ∪ behaves like ∨, ∩ behaves like ∧, and complement
behaves like ¬

I Interpreted this way, above formula corresponds to what
logical equivalence?

I But this is exactly DeMorgan’s law!

I The above equivalence also called DeMorgan’s law for sets

I In general, logical equivalences translate to set equivalences

I See Rosen book for a comprehensive list of set equivalences
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Proving Distributivity of ∩

I Prove A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C )

I As before, we need to prove both ⊆ and ⊇

I Proof of ⊆: Need to show x ∈ A ∩ (B ∪ C ) implies
x ∈ (A ∩ B) ∪ (A ∩ C )
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Proof, Part II

I Now, let’s prove A ∩ (B ∪ C ) ⊇ (A ∩ B) ∪ (A ∩ C )
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One More Example

I Prove A and A are disjoint

I Need to prove A ∩A = ∅

I i.e., need to show there is no element x such that x ∈ A ∩A

I Proof by contradiction: Suppose there is such an x

I By ∩ def, x ∈ A ∧ x ∈ A

I By complement def, x ∈ A ∧ ¬(x ∈ A)

I But this a contradiction, thus A ∩A = ∅
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Naive Set Theory and Russell’s Paradox

I The intutive definition of sets we learned today goes back to
German mathematician George Cantor (1800’s)

I Cantor’s set theory called naive because it can lead to
paradoxes, which are logical inconsistencies

I In 1901, British mathematician Bertrand Russell showed that
Cantor’s set theory is called inconsistent

I This can be shown using so-called Russell’s paradox
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Russell’s Paradox

I Let R be the set of sets that are not members of themselves:

R = {S | S 6∈ S}

I Two possibilities: Either R ∈ R or R 6∈ R

I Suppose R ∈ R.

I But by definition of R, R does not have itself as a member,
i.e., R 6∈ R

I But this contradicts R ∈ R

I Therefore, first possibility is infeasible
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Russell’s Paradox, cont.

I Now suppose R 6∈ R (i.e., R not a member of itself)

I But since R is the set of sets that are not members of
themselves, R must be a member of R

I But this implies R ∈ R, again yielding a contradiction

I Therefore, either possibility yields to a contradiction
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Consequences of Russell’s Paradox

I Russell’s paradox shows that Cantor’s formulation of set
theory is inconsistent b/c it can yield paradoxes

I Inconsistent because possible to define sets that do not exist!

I Much research on consistent versions of set theory ⇒
axiomatic set theories

I The version we learned in class is Cantor’s original set theory
because it is simple and intuitive, but realize that it can lead
to logical inconsistencies...
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Illustration of Russell’s Paradox

I Russell’s paradox and other similar paradoxes inspired artists
at the turn of the century, esp. Escher and Magritte

I French painter Rene Magritte made a graphical illustration of
Russel’s paradox:
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Escher’s Illustration of Paradoxes

I Dutch painter Escher also inspired by mathematical paradoxes:
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Paradoxes in Math, Logic, and CS

I Paradoxes are common in meta mathematics (study of math
using mathematical methods):

I Godel’s incompleteness theorem: All consistent formulations of
number theory include undecidable propositions

I Turing’s halting problem: Does there exist a program P ′ that
can decide if any arbitrary program P terminates?

I More of these kinds of inconsistency results in this class and
other CS classes

I If paradoxes interest you, read
the book ”Godel, Escher, Bach”
by Douglas Hofstadter
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