

Counting One-to-One Functions Sum Rule Addition of the problems can be hard ⇒ useful to the compose Two basic very useful decomposition rules: Product rule 4 Sum rule: Product rule 4 Suppose a task A can be done either in way B of in way C Suppose titler a CS faculty or CS student must be chosen as representative for a committee Suppose titler a CS faculty or CS student must be chosen as representative for a committee There are 14 faculty, and 50 majors Note, Just fiels the product rule, the sum rule can be estended to more than two tasks Suppose titler a CS faculty or CS student must be chosen as representative for a committee There are 14 faculty, and 50 majors Note, Just fiels the product rule, the sum rule can be estended to more than two tasks Suppose titler a field ways Note, Just fiels the product rule, the sum rule can be estended to more than two tasks What if some of the projects appeared on both fists? Generative for a connuities approace, success What if some of the projects appeared on both fists? Counter must be a letter. Problems so far required either only product or only sum rule as thing one or two charcestress. A character is either a letter [10], and first character must be a letter. How many possible variable names are there? How many possible variable names are there? How		
 How many one-board functions are there from a set with 3 elements? Counting problems can be hard = useful to decomposition rules: Two basic very useful decomposition rules: Product rule * Suppose there are n₁ ways to do <i>R</i>, and n₂ ways to do <i>R</i>. Suppose either a CS faculty or CS student must be chosen as representative for a committee. Suppose either a CS faculty or CS student must be chosen as representative for a committee. How many ways are there to choose the representative? By the sum rule, fight # = 64 ways. Note: Just life the product rule, the sum rule can be extended to more than two tasks. Problems so far required either only product or only sum rule. Bust more complex problems require a combination of bohol. Bust more complex problems require a combination of bohol. Bust more complex problems require a combination of bohol. Bust more complex problems require a combination of bohol. Bust more complex problems require a combination of bohol. Bust more complex problems require a combination of bohol. Bust more complex problems require a combination of bohol. Bust more complex problems require a combination of bohol. Bust more complex problems require a combination of bohol. Bust more complex problems require a combination of bohol. Bust more complex problems require a combination of bohol. Bust more complex problems require a combination of bohol. Bust more complex problems require a combination of bohol. Bust more complex problems require a combination of bohol. Bust more complex problems require a combination of bohol. Bust more complex problems require a combination of bohol. Bust m	Counting One-to-One Functions	Sum Rule
(a) (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	 How many one-to-one functions are there from a set with 3 elements to a set with 5 elements? 	 Counting problems can be hard ⇒ useful to decompose Two basic very useful decomposition rules: Product rule √ Sum rule Suppose a task A can be done either in way B or in way C Suppose there are n₁ ways to do B, and n₂ ways to do C Sum rule: There are n₁ + n₂ ways to do A.
Example 1 • Suppose either a CS faculty or CS student must be chosen as representative for a committee • There are 14 faculty, and 50 majors • How many ways are there to choose the representative? • By the sum rule, 50 + 14 = 64 ways • Note: Just like the product rule, the sum rule can be extended to more than two tasks • Note: Just like the product rule, the sum rule can be extended to more than two tasks • What if some of the projects appeared on both lists? • Caveet: For sum rule to apply, the possibilities must be mutually exclusive • What if some of the projects must be mutually exclusive • Problems so far required either only product or only sum rule • But more complex problems require a combination of both! • Example: In a programming language, a variable name is a string of one or two characters. • How many possible variable names are there? • How many possible variable names are there?	Instructor: Ipl Dillig. CS311H: Discrete Mathematics Combinatorics 7/25	Instructor: IpI Dillig. CS311H: Discrete Mathematics: Combinatorics 8/25
More Complex Counting Problems Problems so far required either only product or only sum rule But more complex problems require a combination of both! Example: In a programming language, a variable name is a string of one or two characters. A character is either a letter [a-z] or a digit [0,9], and first character must be a letter. How many possible variable names are there?	 Example 1 Suppose either a CS faculty or CS student must be chosen as representative for a committee There are 14 faculty, and 50 majors How many ways are there to choose the representative? By the sum rule, 50 + 14 = 64 ways Note: Just like the product rule, the sum rule can be extended to more than two tasks 	 Example 2 A student can choose a senior project from one of three lists First list contains 23 projects; second list has 15 projects, and third has 19 projects Also, no project appears on more than one list How many different projects can student choose? What if some of the projects appeared on both lists? Caveat: For sum rule to apply, the possibilities must be mutually exclusive
 Problems so far required either only product or only sum rule But more complex problems require a combination of both! Example: In a programming language, a variable name is a string of one or two characters. A character is either a letter [a-z] or a digit [0,9], and first character must be a letter. How many possible variable names are there? 	Instructor: fol Dilig. CS31114: Discrete Mathematics Combinatorics 9/25 More Complex Counting Problems	Instructor: lpl Dilig, CS111H: Discrete Mathematics Combinatories 10/25 Example, cont.
Instructor: Jul Dillig. CS3111H. Discrete Mathematics Combinatorics 11/25 Instructor: Jul Dillig. CS3111H. Discrete Mathematics Combinatorics 12/25	 Problems so far required either only product or only sum rule But more complex problems require a combination of both! Example: In a programming language, a variable name is a string of one or two characters. A character is either a letter [a-z] or a digit [0,9], and first character must be a letter. How many possible variable names are there? 	
	Instructor: Ișil Diilig, CS311H: Discrete Mathematics Combinatorics 11/25	Instructor: Ipil Dillig, CS311H: Discrete Mathematics Combinatorics 12/25

Another Example	Example, cont.
 A password must be six to seven characters long A character is upper case letter or digit Each password must contain at least one digit How many possible passwords? 	
tetractor: Id Dillar (S1114: Darrate Mathematics: Combinatories: 11/26	Instructor Ind Dillin CSUTH Decore Mathematics Combination 14/26
	IV/2
 Example 3 How many bitstrings are there of length 6 that do not have two consecutive 1's? Let F(n) denote the number of bitstrings of length n that do not have two consecutive 1's We'll first derive a recursive equation to characterize F(n) By the sum rule, F(n) is the sum of: # of n-bit strings starting with 1 not containing 11 # of n-bit strings starting with 0 not containing 11 	Example 3, cont.
Instructor: Ipl Dillig, CS311H: Discrete Mathematics Combinatorics 15/25	Instructor: (pl Dillig, CS311H: Discrete Mathematics: Combinatorics 16/25
 Recall: Sum Rule Recall: Sum rule only applies if a task is as disjunction of two mutually exclusive tasks What do we do if the tasks aren't mutually exclusive? Example: You can choose from set A or set B, but they have some elements in common Generalization of the sum rule: inclusion-exclusion principle 	The Inclusion-Exclusion Principle • Suppose a set A can be written as union of sets B and C • Inclusion-Exclusion Principle: $ A = B + C - B \cap C $ A

Examples

- ▶ If there are 30 students in a class, at least how many must be born in the same month? $\begin{bmatrix} 30\\12 \end{bmatrix} = 3$
- What is the minimum # of students required to ensure at least 6 students receive the same grade (A, B, C, D, F)?

Işıl Dil

What is the min # of cards that must be chosen to guarantee three have same suit?

S311H: Dis