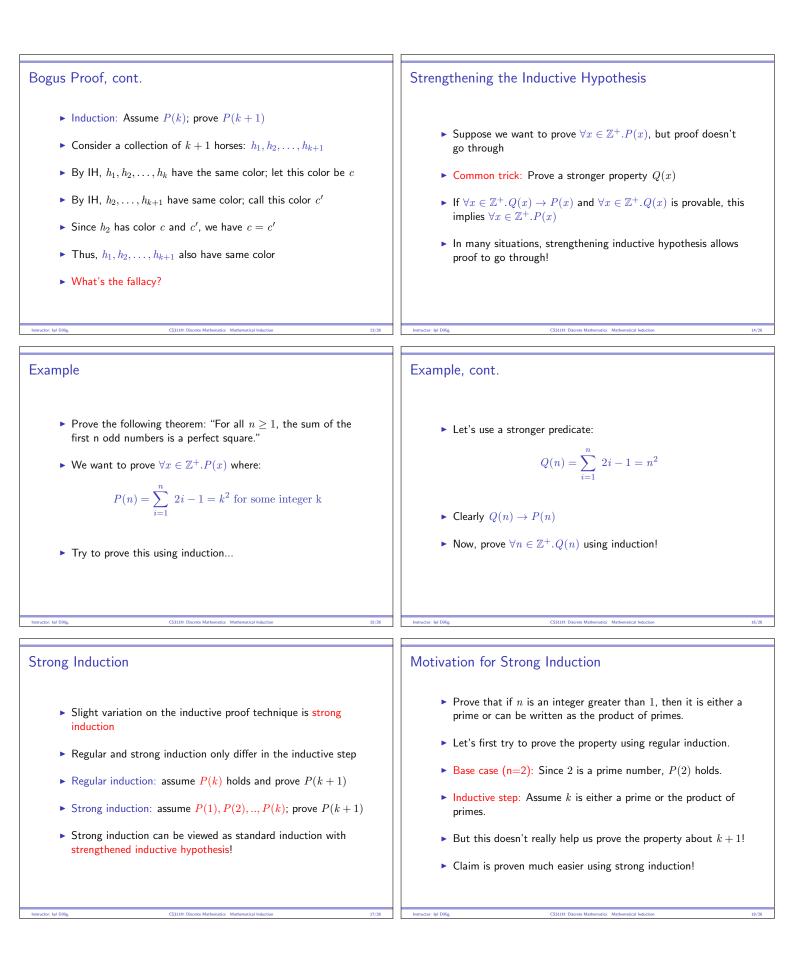


Example 1, cont.
• From cases
$$\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i - (i + 1)$$

• By the inductive hypothesis, $\sum_{i=1}^{n} i = \frac{(i + 1)(i + 1)}{2}$
• Rewrite the hard and as:
 $\sum_{i=1}^{n+1} i = \frac{i + 2i + 1}{2} = (i + 1)(i + 2)$
• Rewrite the hard and as:
 $\sum_{i=1}^{n+1} i = \frac{i + 2i + 2i + 1}{2}$
• Since need to show for all $n > 0$, base case is $P(0)$, and $P(1)!$
• Base case $(n = 0)$; $2^n = 1 = 2^n - 1$
• Inductive step:
 $\sum_{i=0}^{n+1} 2^i = \frac{i}{2} + 2^{i+1}$
• By the inductive hypothesis, we have:
 $\sum_{i=0}^{n} 2^i = 2^{n+1} - 1$
• Therefor:
 $\sum_{i=0}^{n} 2^i = 2^{n+1} - 1 + 2^{n+1}$
• Rewrite as:
 $\sum_{i=0}^{n+1} 2^i - 2^{n+1} - 1 + 2^{n+1}$
• Rewrite as:
 $\sum_{i=0}^{n} 2^i - 2^{n+1} - 1 + 2^{n+1}$
• Rewrite as:
 $\sum_{i=0}^{n} 2^i - 2^{n+1} - 1 + 2^{n+2} - 1$
• Therefor:
 $\sum_{i=0}^{n} 2^i - 2^{n+1} - 1 + 2^{n+2} - 1$
• Therefor:
 $\sum_{i=0}^{n} 2^i - 2^{n+1} - 1 + 2^{n+2} - 1$
• Rewrite as:
 $\sum_{i=0}^{n} 2^i - 2^{n+1} - 1 + 2^{n+2} - 1$
• Rewrite as:
 $\sum_{i=0}^{n} 2^i - 2^{n+2} - 1 + 2^{n+2} - 1$
• Therefor:
 $\sum_{i=0}^{n} 2^i - 2^{n+2} + 2^{n+1} - 1 + 2^{n+2} - 1$
• Rewrite as:
 $\sum_{i=0}^{n} 2^i - 2^{n+2} + 2^{n+1} - 1 + 2^{n+2} - 1$
• Rewrite as:
 $\sum_{i=0}^{n} 2^i - 2^{n+2} + 2^{n+1} - 1 + 2^{n+2} - 1$
• Rewrite as:
 $\sum_{i=0}^{n} 2^i - 2^{n+2} + 2^{n+1} - 1 + 2^{n+2} - 1$
• Rewrite as:
 $\sum_{i=0}^{n} 2^i - 2^{n+2} + 2^{n+1} - 1 + 2^{n+2} - 1$
• Rewrite as:
 $\sum_{i=0}^{n} 2^i - 2^{n+2} + 2^{n+2} - 1 + 2^{n+2} - 1$
• Rewrite as:
 $\sum_{i=0}^{n} 2^i - 2^{n+2} + 2^{n+2} - 1 + 2^{n+2} - 1$
• Rewrite as:
 $\sum_{i=0}^{n} 2^i - 2^{n+2} + 2^{n+2} - 1 + 2^{n+2} - 1$
• Rewrite as:
 $\sum_{i=0}^{n} 2^i - 2^{n+2} + 2^{n+2} - 1 + 2^{n+2} - 1$
• Rewrite as:
 $\sum_{i=0}^{n} 2^i - 2^{n+2} + 2^{n+2} - 1 + 2^{n+2} - 1 + 2^{n+2} + 2^{n+2$



	٦
Proof Using Strong Induction	Proof, cont.
 Prove that if n is an integer greater than 1, then it is either a prime or can be written as the product of primes. Base case: same as before. Inductive step: Assume each of 2, 3,, k is either prime or product of primes. Now, we want to prove the same thing about k + 1 Two cases: k is either (i) prime or (ii) composite If it is prime, property holds. 	 If composite, k + 1 can be written as pq where 2 ≥ p, q ≥ k By the IH, p, q are either primes or product of primes. Thus, k + 1 can also be written as product of primes Observe: Much easier to prove this property using strong induction!
Instructor: Iyl Dilig, CS311H: Discrete Mathematics Mathematical Induction 10/26	Instructor: Igil Dillig, CS311H: Discrete Mathematical Induction 20/26
A Word about Base Cases	Example
 In all examples so far, we had only one base case i.e., only proved the base case for one integer In some inductive proofs, there may be multiple base cases i.e., prove base case for the first k numbers In the latter case, inductive step only needs to consider numbers greater than k 	 Prove that every integer n ≥ 12 can be written as n = 4a + 5b for some non-negative integers a, b. Proof by strong induction on n and consider 4 base cases Base case 1 (n=12): 12 = 3 ⋅ 4 + 0 ⋅ 5 Base case 2 (n=13): 13 = 2 ⋅ 4 + 1 ⋅ 5 Base case 3 (n=14): 14 = 1 ⋅ 4 + 2 ⋅ 5 Base case 4 (n=15): 15 = 0 ⋅ 4 + 3 ⋅ 5
Instructor: Ipl Dillig. CS311H: Discrete Mathematics Mathematical Induction 21/26	Instructor: Iyl Dillig, CS311H: Disorte Mathematics Mathematical Induction 22/26
 Example, cont. Prove that every integer n ≥ 12 can be written as n = 4a + 5b for some non-negative integers a, b. Inductive hypothesis: Suppose every 12 ≤ i ≤ k can be written as i = 4a + 5b. Inductive step: We want to show k + 1 can also be written this way for k + 1 ≥ 16 Observe: k + 1 = (k - 3) + 4 By the inductive hypothesis, k - 3 = 4a + 5b for some a, b because k - 3 ≥ 12 But then, k + 1 can be written as 4(a + 1) + 5b 	 Matchstick Example The Matchstick game: There are two piles with same number of matches initially Two players take turns removing any positive number of matches from one of the two piles Player who removes the last match wins the game Prove: Second player always has a winning strategy.

