CS311H: Discrete Mathematics

Divide-and-Conquer Algorithms and
The Master Theorem

Instructor: Isil Dillig

Divide-and-Conquer Algorithms

split/ merge

split/ mergé*\

Compute
Subproblem

» Divide-and-conquer algorithms are recursive algorithms that:

// split / merge\

Compute
Subproblem

1. Divide problem into k& smaller subproblems of the same form
2. Solve the subproblems

3. Conquer the original problem by combining solutions of
subproblems
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Example I: Binary Search
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» Problem: Given sorted array of integers, is i in the array?

» Binary search algorithm:

1. Compare i with middle element m of array
2. If i > m, then recursively search right half

3. Otherwise, recursively search left half

» Classic divide-and-conquer algorithm

Binary Search, cont.

v

Question: What is the worst-case complexity of binary search?

> Let T'(n) denote # of steps taken on input array of size n

v

Write recurrence relation for T'(n):
Initial condition:

v

» How do we get a Big-O estimate from this recurrence?

v

Idea: Solve the recurrence and then find Big-O estimate for it
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Solving Recurrence for Binary Search

T(n) = T(g) +1 T =1

v

Not in a form we can immediately solve, but can massage it!

v

Let n = 2F: T(2F) = (2" 1) 41

v

Now, let ap = T(2%): ap = ap_1 +1 ap=1

What's the solution for this recurrence?

v

v

Since n = 2%, this implies T(n) = logyn + 1

» Hence, complexity of binary search: O(log n)

Example II: Merge Sort

» Problem: Sort elements in array

» Merge sort solution:

1. Recursively sort left half of array

2. Recursively sort right half of array

3. Merge the two sorted arrays
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How to Merge Two Sorted Arrays?

Recurrence Relation for Merge Sort

» What is worst-case complexity of Merge Sort?

> Let T'(n) be # operations performed to sort array of length n

> Input: Two sorted arrays A;, As
» What is a recurrence relation for T'(n)?
» Output: New sorted array that includes all elements in Ay, Ay
> As before, let n = 2F:
> ldea: Pointers to current elements in Aj, Ay (initially first)
>
» Copy smaller element to output array and advance pointer
> If combined size of A, Ay is n, merging takes 4n steps
(compare, advance two pointers, copy)
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Solving Recurrence Relation Summary

=2 a1 +4-2% ao=1

Particular solution form:

v

Particular solution:

v

v

Solution for homogeneous recurrence:

Solve fora: a-2°+0-22=1=a=1

v

Solution:

v

v

Plug in k = logy n:

v

Hence, algorithm is ©(n - log n)

» Recurrence relations for divide-conquer algorithms look like:
n
T(n)=a- T(3)+f(n)
> These are called divide-and-conquer recurrence relations

» To determine complexity of a divide-and conquer algorithm:

1. Write corresponding recurrence relation
2. Solve it exactly
3. Obtain © estimate

» Can we obtain a © estimate without solving recurrence
exactly?
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The Master Theorem

Consider the recurrence T'(n) = a- T(}) + c- n® where a, ¢ > 1,
d>0,and b > 1. Then:

1. T(n)is O(n?) if a < b?
2. T(n)is ©(n? logn) if a = b?

3. T(n)is O(n'°81%) if ¢ > b

Revisiting Examples

> Example 1: Recurrence for binary search: T(n) = T(5)+1
» Here, a =1,b=2,d =0, Hence a=b?

» By Case 2 of Master Thm, T(n) = ©(n°log n) = O(log n)

» Example 2: Recurrence for merge sort: T'(n) =2- T'(3) +4n
> Here, a =2,b=2,d =1, Hence a = b¢

» By Case 2 of Master Thm, T'(n) = O(n - log n)
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More Examples

> Example 3: Consider recurrence T'(n) =2- T(%) +3

Why is the Master Theorem True?

Consider the recurrence T'(n) = a- T(%) + c-n
> At every level of recursion, # subproblems multiplied by a

» But size of subproblem divided by b

>
. > Let f(n) be c-n?
Total Cost
» Example 4: Consider recurrence T'(n) = T'(%) + n? £
af (n/b)
»
a2 (n/b?)
>
atf(n/ph)
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Proof of Master Theorem

Total Cost

£(n)
n/b@  a children af (n/b)
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» What is the height h of this tree?

> Since problem size is 1 in base case, ;r =1 = h =log,n

» At the i'th level, we have a’ subproblems, hence a8 |eaves

Proof of Master Theorem, cont.

Total Cost

£(n)

af (n/b)

a2£ (n/b?)

alf(n/ph)

» Total amount of work:

log,n—1 n
T(n)=O(n'®%) + > a' e (5)"
=0

» Can be rewritten as:

log,n—1
T(n) = O(n'°5r) + E c- (i)Z -n?
1 be
> Equal to n'°®+® — verify by taking log; of both sides i=0
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Proof of Master Theorem, cont.

log,n—1
T(n) = ©(n'*®?) + ¢ (

a

d)i_nd

=

i=0
» Case 1: 37 < 1. In this case, T'(n) is of the form:
log,n—1
T(n)=0(n'") +c-n® > ¢ for|r]<1
i=0

» Hence: T'(n) = O(n'8:1%) + O(n?)

» Since 77 < 1, we have logya — d < 1. Thus T'(n) = O(n?)

Proof of Master Theorem, cont.

log,n—1 “
T(m) =6 =) + 3 e (37)" n
=0

» Case 2: a = b%. In this case, T(n) is of the form:

log,n—1

O(n'osre) 4 Z ¢-n?

=0

T(n)=

» Hence: T'(n) = O(n'&:%) + O(n? - log,n)

» Since n'°8:% = nd, thisis O(n? - log,n)
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Proof of Master Theorem, cont.

log,n—1
T(n) = O(nl%7) + e (
i=0

a

d)i’nd

<

» Case 3: a > b%. In this case, nlo&% > pd.

> Use closed formula for geometric series to expand summation:

IR e
b 1- &

» This can be rewritten to ¢; a!®%"™ + ¢on for some constants
C1, C2

> Since , 81" = pl°818, T(n) is O(n'o517)
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