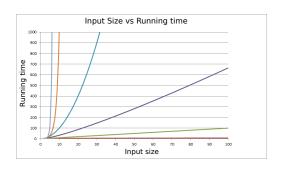
CS311H: Discrete Mathematics

Asymptotic Analysis

Instructor: Ișil Dillig

Complexity Theory Intro

- ► Algorithmic complexity theory: How fast does the running time of an algorithm grow with respect to input size?
- Some algorithms scale better as input size grows



Complexity Theory

- Complexity theory is concerned with expressing the running time of an algorithm with respect to input size
- Idea 1: Express running time in terms of the number of operations – abstract away choice of hardware and PL
- ▶ Idea 2: Not interested in exact number of operations, just an asymptotic estimate
 - Number of operations proportional to some function f(n) s.t. they become equal as $n \to \infty$
 - e.g., instead of $2 \cdot n^3 + \frac{1}{2}n^2 + \frac{11}{9}n + 4log(n)$, we just say running time is cubic

Big-O Notation

- Useful tool for asymptotic analysis is Big-O notation
- Intuition: If algorithm is O(f(n)), then running time is bounded by a function proportional to f(n) for sufficiently large n
- **Example:** If algorithm is O(1), this means it's constant-time, i.e., running time of algorithm does not depend on input size
- **Example:** If algorithm is O(n), running time of algorithm grows linearly in input size

Formal Definition of Big-O

A function f(n) is O(g(n)) if there exist positive constants C, k such that:

$$\forall n > k. |f(n)| \le C|g(n)|$$

ightharpoonup i.e., for sufficiently large $n,\,f(n)$ is bounded from above by a function proportional to g(n)

An Assumption in this Course

A function f(n) is O(g(n)) if there exist positive constants C, k such that:

$$\forall n > k. |f(n)| \le C|g(n)|$$

- In the context of algorithmic complexity, f(n) represents the number of operations performed
- ▶ Hence, both f(n) and g(n) will always be positive you can assume this for this class, so we'll omit the absolute value

Example I

Prove that 4n + 2 is O(n)

- \triangleright

Example II

Prove that $\frac{1}{2}n^2$ is not O(n)

▶ Proof by contradiction – suppose there was some C, k s.t.:

$$\forall n > k. \ \frac{1}{2}n^2 \le Cn$$

- ▶ Implies $\forall n > k$. $n \leq 2C$
- ightharpoonup But this is not true because $k,\,C$ are constants and we can make n arbitrarily large

Example III

Prove that $\log_2(3n^2+1)$ is $O(\log_2 n)$

- \blacktriangleright

Useful Theorem

Let f(n) be a polynomial of degree d. Then f(n) is $O(n^d)$.

- ▶ f(n) must be $a_d n^d + a_{d-1} n^{d-1} + \ldots + a_0$
- ▶ Observe: $f(n) = n^d (a_d + \frac{a_{d-1}}{n} + \dots \frac{a_0}{n^d})$
- ► Since n > 1, $f(n) \le n^d (a_d + a_{d-1} + \ldots + a_0)$
- Now, pick $C = a_d + a_{d-1} + \ldots + a_0$, and k = 1
- ▶ Hence, $\forall n > 1$. $f(n) \leq C \cdot n^d$

Growth of Combination of Functions

- We are often interested in understanding the combined growth of multiple functions
- ► Consider a procedure P(n) = foo(n); bar(n);
- ▶ If we know foo is O(f(n)) and bar is O(g(n)), what can we say about P?

Growth of Sum of Two Functions

```
Suppose f_1(x) is O(g_1(x)) and f_2(x) is O(g_2(x)). Then, (f_1 + f_2)(x) is O(\max(g_1(x), g_2(x)))
```

- •

Example

- ▶ Find a Big-O estimate for $f(n) = log(3n^2 + 1) + \frac{11}{6}n^2$
- •

Another Example

- ► Consider a procedure P(n) = foo(n); bar(n);
- ▶ If complexity of foo is O(n) and that of bar is $O(n \log n)$, what can we say about complexity of P?

Another Useful Theorem

Suppose $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$. Then, $(f_1 \cdot f_2)(x)$ is $O((g_1(x) \cdot g_2(x)))$

▶ We know $\exists C_1, C_2, k_1, k_2$ such that:

$$\forall n > k_1. \ f_1(x) \le C_1 \cdot g_1(x)$$

$$\forall n > k_2. \ f_2(x) \le C_2 \cdot g_2(x)$$

- Let $k = \max(k_1, k_2)$ and $C = C_1 C_2$
- ▶ Hence, $\forall n > k$. $(f_1 \cdot f_2)(x) \leq C \cdot g_1(x) \cdot g_2(x)$
- ▶ Thus, $(f_1 \cdot f_2)(x)$ is $O(g_1(x) \cdot g_2(x))$

Example

- ▶ Find a Big-O estimate for $f(n) = (\frac{1}{2}n^2 + 5)(\log(3n^2 + 1))$
- •
- •

Another example

Assuming complexity of g is $O(\log n)$, find a Big-O estimate for the following procedure f:

```
f(n) = \{ for(i = 0; i < n; i+=2) \{ g(i, n) \} \}
```

- ▶ Total # of operations = # of times loop executes * # of operations performed by g
- What is big-O estimate for the loop?
- ▶ Big-O estimate for *f*:

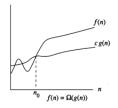
Big-Omega Notation

- ▶ Big-O notation is useful for giving an upper bound for f(n) for large values of n
- But sometimes we are also interested in a lower bound!
- \blacktriangleright For this purpose, we use the Big-Omega Ω notation, which represents asymptotic lower bounds

Formal Definition of Big-Omega

A function f(n) is $\Omega(g(n))$ if there exist positive constants C, k such that:

$$\forall n > k. |f(n)| \ge C|g(n)|$$



- i.e., for sufficiently large n, f(n) is bounded from below by a function proportional to g(n)
- ▶ As before, we will assume f(n) and g(n) are positive

Example

- 1. Prove that $2n^2 + n$ is $\Omega(n)$
 - ightharpoonup Find a C and k:

- 2. Prove that 5n + 1 is not $\Omega(n^2)$
 - Suppose there exists constants such that:

$$\forall n > k. \ 5n + 1 \ge C \cdot n^2$$

- ▶ Implies $\forall n > k$. $C \cdot n^2 5n 1 \le 0$
- ▶ But since C>0, $C\cdot n^2-5n-1$ is an upward-looking looking parabola \Rightarrow for n large enough, $C\cdot n^2-5n-1$ is positive

Big Theta

- So far: Big-O gives asymptotic upper bounds, and Big-Omega gives asymptotic lower bounds
- But sometimes we are interested in a function that serves both as an asymptotic lower and upper bound



This is expressed using Big-Theta notation

Formal Definition of Big-Theta

- ▶ A function f(x) is said to be $\Theta(g(x))$ if f(x) is both $\Omega(g(x))$ and O(g(x))
- Another way of saying this:

$$\exists C_1, C_2, k > 0. \ \forall n > k. \ C_1|g(x)| \le |f(x)| \le C_2|g(x)|$$

Example I

Prove that $10n + 4^{\log_2 n}$ is $\Theta(n^2)$

- •

Example II

Prove that $\log n! = \Theta(n \log n)$

▶ First show $\log n!$ is $O(n \log n)$:

Example II, cont.

▶ Now show that $\log n!$ is $\Omega(n \log n)$:

A Useful Theorem

1. f(x) is O(g(x)) if:

$$\lim_{x \to \infty} \left| \frac{f(x)}{g(x)} \right| < \infty$$

2. f(x) is $\Omega(g(x))$ if:

$$\lim_{x \to \infty} \left| \frac{f(x)}{g(x)} \right| > 0$$

3. f(x) is $\Theta(g(x))$ if:

$$0 < \lim_{x \to \infty} \left| \frac{f(x)}{g(x)} \right| < \infty$$

Example I

- ▶ Show that $\frac{x^2+1}{x+1}$ is $\Theta(x)$
- ▶ Use previous theorem:

$$\lim_{x\to\infty}\frac{x^2+1}{x+1}\cdot\frac{1}{x}=1$$

▶ Hence, it's case (3) $\Rightarrow \Theta(x)$