
CS311H: Discrete Mathematics

Asymptotic Analysis

Instructor: Işıl Dillig

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Asymptotic Analysis 1/34

Complexity Theory Intro

I Algorithmic complexity theory: How fast does the running
time of an algorithm grow with respect to input size?

I Some algorithms scale better as input size grows

Input Size vs Running time

Input size

R
u
n
n
in

g
 t

im
e

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Asymptotic Analysis 2/34

Complexity Theory

I Complexity theory is concerned with expressing the running
time of an algorithm with respect to input size

I Idea 1: Express running time in terms of the number of
operations – abstract away choice of hardware and PL

I Idea 2: Not interested in exact number of operations, just an
asymptotic estimate

I Number of operations proportional to some function f (n) s.t.
they become equal as n →∞

I e.g., instead of 2 · n3 + 1
2n

2 + 11
9 n + 4log(n), we just say

running time is cubic

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Asymptotic Analysis 3/34

Big-O Notation

I Useful tool for asymptotic analysis is Big-O notation

I Intuition: If algorithm is O(f (n)), then running time is
bounded by a function proportional to f (n) for sufficiently
large n

I Example: If algorithm is O(1), this means it’s constant-time,
i.e., running time of algorithm does not depend on input size

I Example: If algorithm is O(n), running time of algorithm
grows linearly in input size

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Asymptotic Analysis 4/34

Formal Definition of Big-O

A function f (n) is O(g(n)) if there exist positive constants C , k
such that:

∀n > k . |f (n)| ≤ C |g(n)|

I i.e., for sufficiently large n, f (n) is bounded from above by a
function proportional to g(n)

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Asymptotic Analysis 5/34

An Assumption in this Course

A function f (n) is O(g(n)) if there exist positive constants C , k
such that:

∀n > k . |f (n)| ≤ C |g(n)|

I In the context of algorithmic complexity, f (n) represents the
number of operations performed

I Hence, both f (n) and g(n) will always be positive – you can
assume this for this class, so we’ll omit the absolute value

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Asymptotic Analysis 6/34

Example I

Prove that 4n + 2 is O(n)

I

I

I

I

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Asymptotic Analysis 7/34

Example II

Prove that 1
2n

2 is not O(n)

I Proof by contradiction – suppose there was some C , k s.t.:

∀n > k .
1

2
n2 ≤ Cn

I Implies ∀n > k . n ≤ 2C

I But this is not true because k ,C are constants and we can
make n arbitrarily large

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Asymptotic Analysis 8/34

Example III

Prove that log2(3n
2 + 1) is O(log2n)

I

I

I

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Asymptotic Analysis 9/34

Useful Theorem

Let f (n) be a polynomial of degree d . Then f (n) is O(nd).

I f (n) must be adn
d + ad−1n

d−1 + . . . + a0

I Observe: f (n) = nd (ad +
ad−1

n + . . . a0
nd)

I Since n > 1, f (n) ≤ nd (ad + ad−1 + . . . + a0)

I Now, pick C = ad + ad−1 + . . . + a0, and k = 1

I Hence, ∀n > 1. f (n) ≤ C · nd

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Asymptotic Analysis 10/34

Growth of Combination of Functions

I We are often interested in understanding the combined growth
of multiple functions

I Consider a procedure P(n) = foo(n); bar(n);

I If we know foo is O(f (n)) and bar is O(g(n)), what can we
say about P?

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Asymptotic Analysis 11/34

Growth of Sum of Two Functions

Suppose f1(x) is O(g1(x)) and f2(x) is O(g2(x)). Then,
(f1 + f2)(x) is O(max(g1(x), g2(x)))

I

I

I

I

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Asymptotic Analysis 12/34

Example

I Find a Big-O estimate for f (n) = log(3n2 + 1) + 11
6 n

2

I

I

I

I

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Asymptotic Analysis 13/34

Another Example

I Consider a procedure P(n) = foo(n); bar(n);

I If complexity of foo is O(n) and that of bar is O(n log n),
what can we say about complexity of P?

I

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Asymptotic Analysis 14/34

Another Useful Theorem

Suppose f1(x) is O(g1(x)) and f2(x) is O(g2(x)). Then,
(f1 · f2)(x) is O((g1(x) · g2(x)))

I We know ∃C1,C2, k1, k2 such that:

∀n > k1. f1(x) ≤ C1 · g1(x)
∀n > k2. f2(x) ≤ C2 · g2(x)

I Let k = max(k1, k2) and C = C1C2

I Hence, ∀n > k . (f1 · f2)(x) ≤ C · g1(x) · g2(x)

I Thus, (f1 · f2)(x) is O(g1(x) · g2(x))

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Asymptotic Analysis 15/34

Example

I Find a Big-O estimate for f (n) = (12n
2 + 5)(log(3n2 + 1))

I

I

I

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Asymptotic Analysis 16/34

Another example

I Assuming complexity of g is O(log n), find a Big-O estimate
for the following procedure f:

f(n) = { for(i = 0; i < n; i+=2) { g(i, n) } }

I Total # of operations = # of times loop executes * # of
operations performed by g

I What is big-O estimate for the loop?

I Big-O estimate for f :

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Asymptotic Analysis 17/34

Big-Omega Notation

I Big-O notation is useful for giving an upper bound for f (n)
for large values of n

I But sometimes we are also interested in a lower bound!

I For this purpose, we use the Big-Omega Ω notation, which
represents asymptotic lower bounds

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Asymptotic Analysis 18/34

Formal Definition of Big-Omega

A function f (n) is Ω(g(n)) if there exist positive constants C , k
such that:

∀n > k . |f (n)| ≥ C |g(n)|

I i.e., for sufficiently large n, f (n) is bounded from below by a
function proportional to g(n)

I As before, we will assume f (n) and g(n) are positive

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Asymptotic Analysis 19/34

Example

1. Prove that 2n2 + n is Ω(n)

I Find a C and k :

I

2. Prove that 5n + 1 is not Ω(n2)

I Suppose there exists constants such that:

∀n > k . 5n + 1 ≥ C · n2

I Implies ∀n > k . C · n2 − 5n − 1 ≤ 0

I But since C > 0, C · n2 − 5n − 1 is an upward-looking looking
parabola ⇒ for n large enough, C · n2 − 5n − 1 is positive

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Asymptotic Analysis 20/34

Big Theta

I So far: Big-O gives asymptotic upper bounds, and Big-Omega
gives asymptotic lower bounds

I But sometimes we are intereted in a function that serves both
as an asymptotic lower and upper bound

I This is expressed using Big-Theta notation

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Asymptotic Analysis 21/34

Formal Definition of Big-Theta

I A function f (x) is said to be Θ(g(x)) if f (x) is both Ω(g(x))
and O(g(x))

I Another way of saying this:

∃C1,C2, k > 0. ∀n > k . C1|g(x)| ≤ |f (x)| ≤ C2|g(x)|

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Asymptotic Analysis 22/34

Example I

Prove that 10n + 4log2n is Θ(n2)

I

I

I

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Asymptotic Analysis 23/34

Example II

Prove that logn! = Θ(n logn)

I First show logn! is O(n logn):

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Asymptotic Analysis 24/34

Example II, cont.

I Now show that log n! is Ω(n logn):

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Asymptotic Analysis 25/34

A Useful Theorem

1. f (x) is O(g(x)) if:

lim
x→∞

| f (x)

g(x)
| <∞

2. f (x) is Ω(g(x)) if:

lim
x→∞

| f (x)

g(x)
| > 0

3. f (x) is Θ(g(x)) if:

0 < lim
x→∞

| f (x)

g(x)
| <∞

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Asymptotic Analysis 26/34

Example I

I Show that x2+1
x+1 is Θ(x)

I Use previous theorem:

lim
x→∞

x 2 + 1

x + 1
· 1

x
= 1

I Hence, it’s case (3) ⇒ Θ(x)

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Asymptotic Analysis 27/34

