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Functions

v

A function f from a set A to a set B assigns each element of
A to exactly one element of B.

v

A is called domain of f, and B is called codomain of f.

v

If f maps element a € A to element b € B, we write f(a) = b

v

If f(a) =0, bis called image of a; a is in preimage of b.

v

Range of f is the set of all images of elements in A.
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Functions Examples and Non-Examples

Is this mapping a function?

A
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Functions Examples and Non-Examples

Is this mapping a function?

A B

Instructor: Isil Dillig, CS311H: Discrete Mathematics Functions 6/46



Function Terminology Examples

» What is the range of this function?
» What is the image of ¢?

» What is the preimage of e?
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Image of a Set

» We can extend the definition of image to a set
» Suppose f is a function from A to B and S is a subset of A

» The image of S under f includes exactly those elements of B
that are images of elements of S:

f(S)={t]|3IseS. t=f(s)}

» What is the image of {b, c}?
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One-to-One Functions

» A function f is called one-to-one if and only if f(z) = f(y)
implies z = y for every z,y in the domain of f:

Vo,y. (f(z) = f(y) = 2 =y)

» One-to-one functions never assign different elements in the
domain to the same element in the codomain:

Vi, y. (z#y — f(z) # [(y))
» A one-to-one function also called injection or injective function
» |s this function one-to-one?
GRS
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More Injective Function Examples

> Is this function injective?

A B

» Consider the function f(z) = 22 from set of integers to set of
integers. Is this injective?

» What about if the domain of f is the set of non-negative
integers?
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Proving Injectivity Example

v

Consider the function f from Z to Z defined as:

f(x):{ 3z+1 ifz>0

—3rxr+2 ifz<0

v

Prove that f is injective.

v

We need to show that if = # y, then f(z) # f(y)

v

What proof technique do we need to use?
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Proving Injectivity Example, cont.
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Proving Injectivity Example, cont.
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Onto Functions

» A function f from A to B is called onto iff for every element
y € B, there is an element = € A such that f(z) = y:

Vye Bz e A. f(z) =y

v

Note: Jz € A. ¢ is shorthand for 3z.(z € A A ¢), and
Vx € A. ¢ is shorthand for Vz.(z € A — ¢)

v

Onto functions also called surjective functions or surjections

v

For onto functions, range and codomain are the same

Is this function onto?
A

v
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Examples of Onto Functions

» |s this function onto?

» Consider the function f(z) = 2 from the set of integers to
the set of integers. Is f surjective?
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Bijective Functions

» Function that is both onto and one-to-one called bijection

» Bijection also called one-to-one correspondence or invertible
function

» Example of bijection:

A B
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Bijection Example

» The identity function I on a set A is the function that assigns
every element of A to itself, i.e., Vz € A. I(z) ==z

» Prove that the identity function is a bijection.

» Need to prove I is both one-to-one and onto.

» One-to-one: We need to show Vz,y. (v #y — I(z) # I(y))
> Suppose ¥ # y.

» Since I(z) =z and I(y) =y, and x #£ y, I(z) # 1(y)
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Bijection Example, cont.

» Now, prove [ is onto, i.e., for every b, there exists some a
such that f(a) = b

> For contradiction, suppose there is some b such that
Vae A. I(a) #b

» Since I(a) = a, this means Va € A. a # b

» But since b is itself in A, this would imply b # b, yielding a
contradiction.

» Since [ is both onto and one-to-one, it is a bijection. O
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Inverse

Instructor: Isil Dillig,

Functions

Every bijection from set A to set B also has an inverse
function

The inverse of bijection f, written f~!, is the function that
assigns to b € B a unique element a € A such that f(a) = b

Observe: Inverse functions are only defined for bijections, not
arbitrary functions!

This is why bijections are also called invertible functions

CS311H: Discrete Mathematics Functions
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Why are Inverse Functions Only Defined on Bijections?

» Suppose f is not injective, i.e., assigns distinct elements to
the same element.

» Then, the inverse is not a function because it assigns the
same element to distinct elements
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Why are Inverse Functions Only Defined on Bijections?

» Suppose f is not surjective, i.e., range and codomain are not
the same

» Then, the inverse is not a function because it does not assign
some element in B to any element in A

» Hence, inverse functions only defined for bijections!
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Inverse Function Examples

» Let f be the function from Z to Z such that f(z) = 22. Is f
invertible?

» Let g be the function from Z to Z such that g(z) =z + 1. Is
g invertible?
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Function Composition

» Let g be a function from A to B, and f from B to C.

» The composition of f and g, written f o g, is defined by:

(fog)(z) = fg())

fog
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Composition Example

» Let f and g be function from Z to Z such that f(z) = 2z + 3
and g(z) =3z +2

» What is f o g7
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Another Composition Example

» Prove that f~! o f = I where I is the identity function.

v

Since I(z) = x, need to show (f~tof)(z) ==

\4

First, (f ' o f)(z) = f~1(f(2))

Let f(x) be y

v

v

Then, f7(f(z)) = ()

v

By definition of inverse, f~1(y) = z iff f(z) =y

v

Thus, fH(f(2)) =f"'(y) == =
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Example

» Prove that if f and g are injective, then f o ¢ is also injective.
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Floor and Ceiling Functions

» Two important functions in discrete math are floor and ceiling
functions, both from R to Z

» The floor of a real number z, written |z], is the largest
integer less than or equal to z.

1 o O B
2 - o O -
3 - e—O -1
| | | | | |
3 2 1 0 1 2 3
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Ceiling Function

» The ceiling of a real number z, written [z], is the smallest
integer greater than or equal to z.
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Useful Properties of Floor and Ceiling Functions

LR L
x-.1 '.\ )'( r'n x.+1

(m-1) (n+1)

1. For integer n and real number z, [z| =niffn <z <n+1
2. For integer n and real number z, [z]| =m iff m —1 <z <m

3. Foranyrealz, 2 — 1< |[z| <z <[z]|<z+1

:
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Proofs about Floor/Ceiling Functions

(m-1) (n+1)

Prove that |~z | = — [ 7]
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Another Example

i i } } }
x-1 n X m x4]

(m-1) (n+1)

Prove that |z + k| = |z] + k where k is an integer
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More Examples

Prove that |2z = 2] + Lff + %J

» Observe: Any real number z can be written as n + € where
n=|z]and 0<e<1

v

To prove desired property, do proof by cases

v

Case1:0§6<%

» Case 2: %§e<1

v

First prove property for first case, then second case
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Revisiting Sets

Earlier we talked about sets and cardinality of sets

v

Recall: Cardinality of a set is number of elements in that set

v

This definition makes sense for sets with finitely many
element, but more involved for infinite sets

v

v

Agenda: Revisit the notion of cardinality for infinite sets
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Cardinality of Infinite Sets

v

Sets with infinite cardinality are classified into two classes:

1. Countably infinite sets (e.g., natural numbers)

2. Uncountably infinite sets (e.g., real numbers)

v

A set A is called countably infinite if there is a bijection
between A and the set of positive integers.

v

A set A is called countable if it is either finite or countably
infinite

v

Otherwise, the set is called uncountable or uncountably infinite
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Example

Prove: The set of odd positive integers is countably infinite.

» Need to find a function f from Z™ to the set of odd positive
integers, and prove that f is bijective

» Consider f(n) = 2n — 1 from Z™ to odd positive integers
» We need to show f is bijective (i.e., one-to-one and onto)

> Let's first prove injectivity, then surjectivity
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Example, cont.
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Another Way to Prove Countable-ness

» One way to show a set A is countably infinite is to give
bijection between Z™* and A

» Another way is by showing members of A can be written as a
sequence (aq, ag, as, . . .)

» Since such a sequence is a bijective function from Z™ to A4,
writing A as a sequence ay, ag, as, . . . establishes one-to-one
correspondence
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Another Example

Prove that the set of all integers is countable

» We can list all integers in a sequence, alternating positive and
negative integers:

an=0,1,-1,2,-2,3,-3,...
» Observe that this sequence defines the bijective function:

[ n/2 if n even
fn) = { “(n—1)/2 if nodd
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Rational Numbers are Countable

v

Not too surprising Z and odd Z™ are countably infinite

» More surprising: Set of rationals is also countably infinite!

v

We'll prove that the set of positive rational numbers is
countable by showing how to enumerate them in a sequence

v

Recall: Every positive rational number can be written as the
quotient p/q of two positive integers p, ¢
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Rationals in a Table
» Now imagine placing rationals in a table such that:

1. Rationals with p =1 go in first row, p = 2 in second row, etc.

2. Rationals with ¢ = 1 in 1st column, ¢ = 2 in 2nd column, ...
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Enumerating the Rationals

3 10
P Y

4 ik 1 1
/1 2 3 4
"KLK
N2” 2% 27 2
1 2 3 4
PR A
3 3 3 3
I 2 3 4
6| 13 18
7"/,% /
e 4 4V 4
1 2 3 4
“7171 "yzy'
5 5 5 5
1 2 3 4

1
5

e
5

il

s

3 .
5

» How to enumerate entries in this table without missing any?
» Trick: First list those with p + ¢ =2, thenp+ ¢ =3, ...

> Traverse table diagonally from left-to-right, in the order shown
by arrows
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Enumerating the Rationals, cont.

3 10
/'_“1 /'_“1

;2/'//'/

//'//'g
;/'///
%‘/g/'g’/g/

2
5

[LIFN

5
5

» This allows us to list all rationals in a sequence:

12112343

171273721717 27° 7

» Hence, set of rationals is countable
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Uncountability of Real Numbers

» Prime example of uncountably infinite sets is real numbers

» The fact that R is uncountably infinite was proven by George
Cantor using the famous Cantor’s diagonalization argument

» Reminiscient of Russell's paradox
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Cantor’s Diagonalization Argument

» For contradiction, assume the set of reals was countable

» Since any subset of a countable set is also countable, this
would imply the set of reals between 0 and 1 is also countable

» Now, if reals between 0 and 1 are countable, we can list them
in the following way:

B= 0 [a3] ap ap - o
= 0 ay [ap] ap - 8y
Ry= 0 ay ap [am] - o3

Rfl = 0 g'ﬁl a’ﬂQ anS e [a”ﬂﬂ] e
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Diagonalization Argument, cont

By = 0 Jfay] ep ez - o
Ry= 0. ay [en] am - 6y
Reg= 0. a3 am [oz;] - aa

R, = 0. ay ] Gz o [afm]

» Now, we'll create a new real number R and show that it is not
equal to any of the R;’s in this sequence:

» Let R = 0.a;a2a3 ... such that:

{4 di#4
Y5 di=4

» Clearly, this new number R differs from each number R; in
the table in at least one digit (its ¢'th digit)
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Diagonalization Argument, concluded

» Since R is not in the table, this is not a complete enumeration
of all reals between 0 and 1

» Hence, the set of real between 0 and 1 is not countable
> Since the superset of any uncountable set is also uncountable,

set of reals is uncountably infinite
O
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