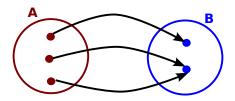
CS311H: Discrete Mathematics

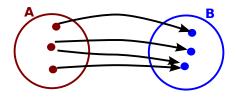
Functions

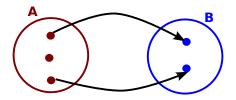
Instructor: Işıl Dillig

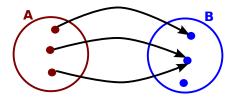
Functions

- ▶ A function f from a set A to a set B assigns each element of A to exactly one element of B.
- ightharpoonup A is called domain of f, and B is called codomain of f.
- ▶ If f maps element $a \in A$ to element $b \in B$, we write f(a) = b
- ▶ If f(a) = b, b is called image of a; a is in preimage of b.
- ightharpoonup Range of f is the set of all images of elements in A.

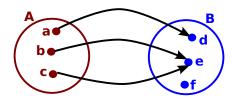








Function Terminology Examples



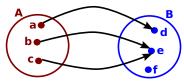
- What is the range of this function?
- ▶ What is the image of *c*?
- ▶ What is the preimage of e?

Image of a Set

- We can extend the definition of image to a set
- ▶ Suppose f is a function from A to B and S is a subset of A
- ► The image of S under f includes exactly those elements of B that are images of elements of S:

$$f(S) = \{t \mid \exists s \in S. \ t = f(s)\}\$$

▶ What is the image of $\{b, c\}$?



One-to-One Functions

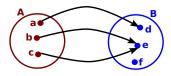
A function f is called one-to-one if and only if f(x) = f(y) implies x = y for every x, y in the domain of f:

$$\forall x, y. \ (f(x) = f(y) \to x = y)$$

One-to-one functions never assign different elements in the domain to the same element in the codomain:

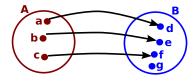
$$\forall x, y. \ (x \neq y \rightarrow f(x) \neq f(y))$$

- ► A one-to-one function also called injection or injective function
- Is this function one-to-one?



More Injective Function Examples

Is this function injective?



- ▶ Consider the function $f(x) = x^2$ from set of integers to set of integers. Is this injective?
- ▶ What about if the domain of *f* is the set of non-negative integers?

Proving Injectivity Example

▶ Consider the function f from \mathbb{Z} to \mathbb{Z} defined as:

$$f(x) = \begin{cases} 3x + 1 & \text{if } x \ge 0\\ -3x + 2 & \text{if } x < 0 \end{cases}$$

- Prove that f is injective.
- ▶ We need to show that if $x \neq y$, then $f(x) \neq f(y)$
- What proof technique do we need to use?

Proving Injectivity Example, cont.

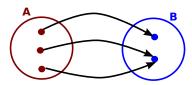
Proving Injectivity Example, cont.

Onto Functions

▶ A function f from A to B is called onto iff for every element $y \in B$, there is an element $x \in A$ such that f(x) = y:

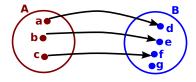
$$\forall y \in B. \exists x \in A. \ f(x) = y$$

- Note: $\exists x \in A$. ϕ is shorthand for $\exists x.(x \in A \land \phi)$, and $\forall x \in A$. ϕ is shorthand for $\forall x.(x \in A \rightarrow \phi)$
- Onto functions also called surjective functions or surjections
- ▶ For onto functions, range and codomain are the same
- Is this function onto?



Examples of Onto Functions

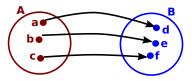
Is this function onto?



Consider the function $f(x) = x^2$ from the set of integers to the set of integers. Is f surjective?

Bijective Functions

- Function that is both onto and one-to-one called bijection
- Bijection also called one-to-one correspondence or invertible function
- Example of bijection:



Bijection Example

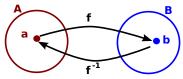
- ▶ The identity function I on a set A is the function that assigns every element of A to itself, i.e., $\forall x \in A$. I(x) = x
- Prove that the identity function is a bijection.
- ▶ Need to prove *I* is both one-to-one and onto.
- ▶ One-to-one: We need to show $\forall x, y. \ (x \neq y \rightarrow I(x) \neq I(y))$
- ▶ Suppose $x \neq y$.
- ▶ Since I(x) = x and I(y) = y, and $x \neq y$, $I(x) \neq I(y)$

Bijection Example, cont.

- Now, prove I is onto, i.e., for every b, there exists some a such that f(a) = b
- ▶ For contradiction, suppose there is some b such that $\forall a \in A. \ I(a) \neq b$
- ▶ Since I(a) = a, this means $\forall a \in A$. $a \neq b$
- ▶ But since b is itself in A, this would imply $b \neq b$, yielding a contradiction.
- ▶ Since *I* is both onto and one-to-one, it is a bijection.

Inverse Functions

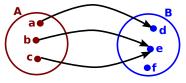
- ► Every bijection from set *A* to set *B* also has an inverse function
- ▶ The inverse of bijection f, written f^{-1} , is the function that assigns to $b \in B$ a unique element $a \in A$ such that f(a) = b



- ► Observe: Inverse functions are only defined for bijections, not arbitrary functions!
- ► This is why bijections are also called invertible functions

Why are Inverse Functions Only Defined on Bijections?

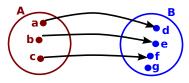
► Suppose *f* is not injective, i.e., assigns distinct elements to the same element.



► Then, the inverse is not a function because it assigns the same element to distinct elements

Why are Inverse Functions Only Defined on Bijections?

► Suppose *f* is not surjective, i.e., range and codomain are not the same



- \blacktriangleright Then, the inverse is not a function because it does not assign some element in B to any element in A
- Hence, inverse functions only defined for bijections!

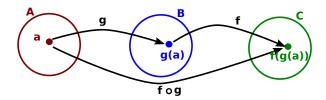
Inverse Function Examples

- Let f be the function from \mathbb{Z} to \mathbb{Z} such that $f(x) = x^2$. Is f invertible?
- Let g be the function from $\mathbb Z$ to $\mathbb Z$ such that g(x)=x+1. Is g invertible?

Function Composition

- ▶ Let g be a function from A to B, and f from B to C.
- ▶ The composition of f and g, written $f \circ g$, is defined by:

$$(f \circ g)(x) = f(g(x))$$



Composition Example

- Let f and g be function from $\mathbb Z$ to $\mathbb Z$ such that f(x)=2x+3 and g(x)=3x+2
- ▶ What is $f \circ g$?

Another Composition Example

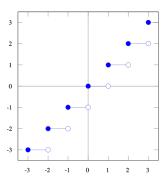
- ▶ Prove that $f^{-1} \circ f = I$ where I is the identity function.
- ▶ Since I(x) = x, need to show $(f^{-1} \circ f)(x) = x$
- ▶ First, $(f^{-1} \circ f)(x) = f^{-1}(f(x))$
- ▶ Let f(x) be y
- ▶ Then, $f^{-1}(f(x)) = f^{-1}(y)$
- ▶ By definition of inverse, $f^{-1}(y) = x$ iff f(x) = y
- ► Thus, $f^{-1}(f(x)) = f^{-1}(y) = x$

Example

▶ Prove that if f and g are injective, then $f \circ g$ is also injective.

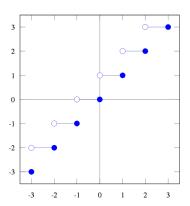
Floor and Ceiling Functions

- ▶ Two important functions in discrete math are floor and ceiling functions, both from $\mathbb R$ to $\mathbb Z$
- ▶ The floor of a real number x, written $\lfloor x \rfloor$, is the largest integer less than or equal to x.

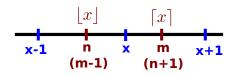


Ceiling Function

▶ The ceiling of a real number x, written $\lceil x \rceil$, is the smallest integer greater than or equal to x.

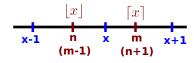


Useful Properties of Floor and Ceiling Functions



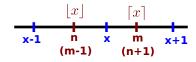
- 1. For integer n and real number x, |x| = n iff $n \le x < n+1$
- 2. For integer n and real number x, $\lceil x \rceil = m$ iff $m-1 < x \le m$
- 3. For any real x, $x-1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x+1$

Proofs about Floor/Ceiling Functions



Prove that $\lfloor -x \rfloor = -\lceil x \rceil$

Another Example



Prove that $\lfloor x + k \rfloor = \lfloor x \rfloor + k$ where k is an integer

More Examples

Prove that
$$\lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{2} \rfloor$$

- ▶ Observe: Any real number x can be written as $n+\epsilon$ where $n=\lfloor x \rfloor$ and $0 \leq \epsilon < 1$
- To prove desired property, do proof by cases
- ▶ Case 1: $0 \le \epsilon < \frac{1}{2}$
- ▶ Case 2: $\frac{1}{2} \le \epsilon < 1$
- First prove property for first case, then second case

Revisiting Sets

- Earlier we talked about sets and cardinality of sets
- Recall: Cardinality of a set is number of elements in that set
- ► This definition makes sense for sets with finitely many element, but more involved for infinite sets
- Agenda: Revisit the notion of cardinality for infinite sets

Cardinality of Infinite Sets

- Sets with infinite cardinality are classified into two classes:
 - 1. Countably infinite sets (e.g., natural numbers)
 - 2. Uncountably infinite sets (e.g., real numbers)
- ▶ A set *A* is called countably infinite if there is a bijection between *A* and the set of positive integers.
- ▶ A set A is called countable if it is either finite or countably infinite
- Otherwise, the set is called uncountable or uncountably infinite

Example

Prove: The set of odd positive integers is countably infinite.

- Need to find a function f from \mathbb{Z}^+ to the set of odd positive integers, and prove that f is bijective
- ▶ Consider f(n) = 2n 1 from \mathbb{Z}^+ to odd positive integers
- \blacktriangleright We need to show f is bijective (i.e., one-to-one and onto)
- Let's first prove injectivity, then surjectivity

Example, cont.

Another Way to Prove Countable-ness

- \blacktriangleright One way to show a set A is countably infinite is to give bijection between \mathbb{Z}^+ and A
- ▶ Another way is by showing members of A can be written as a sequence $(a_1, a_2, a_3, ...)$
- ▶ Since such a sequence is a bijective function from \mathbb{Z}^+ to A, writing A as a sequence a_1, a_2, a_3, \ldots establishes one-to-one correspondence

Another Example

Prove that the set of all integers is countable

► We can list all integers in a sequence, alternating positive and negative integers:

$$a_n = 0, 1, -1, 2, -2, 3, -3, \dots$$

▶ Observe that this sequence defines the bijective function:

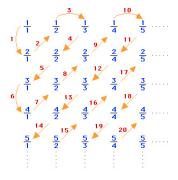
$$f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n-1)/2 & \text{if } n \text{ odd} \end{cases}$$

Rational Numbers are Countable

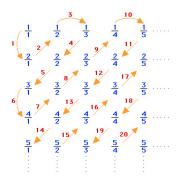
- ▶ Not too surprising \mathbb{Z} and odd \mathbb{Z}^+ are countably infinite
- More surprising: Set of rationals is also countably infinite!
- We'll prove that the set of positive rational numbers is countable by showing how to enumerate them in a sequence
- ightharpoonup Recall: Every positive rational number can be written as the quotient p/q of two positive integers p,q

Rationals in a Table

- ▶ Now imagine placing rationals in a table such that:
 - 1. Rationals with p=1 go in first row, p=2 in second row, etc.
 - 2. Rationals with q=1 in 1st column, q=2 in 2nd column, \dots

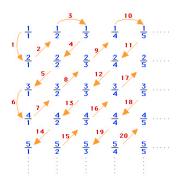


Enumerating the Rationals



- ▶ How to enumerate entries in this table without missing any?
- ▶ Trick: First list those with p + q = 2, then p + q = 3, . . .
- Traverse table diagonally from left-to-right, in the order shown by arrows

Enumerating the Rationals, cont.



▶ This allows us to list all rationals in a sequence:

$$\frac{1}{1}, \frac{2}{1}, \frac{1}{2}, \frac{1}{3}, \frac{2}{2}, \frac{3}{1}, \frac{4}{1}, \frac{3}{2}, \dots$$

Hence, set of rationals is countable

Uncountability of Real Numbers

- ▶ Prime example of uncountably infinite sets is real numbers
- ▶ The fact that \mathbb{R} is uncountably infinite was proven by George Cantor using the famous Cantor's diagonalization argument
- ▶ Reminiscient of Russell's paradox

Cantor's Diagonalization Argument

- ▶ For contradiction, assume the set of reals was countable
- ▶ Since any subset of a countable set is also countable, this would imply the set of reals between 0 and 1 is also countable
- ▶ Now, if reals between 0 and 1 are countable, we can list them in the following way:

Diagonalization Argument, cont

- Now, we'll create a new real number R and show that it is not equal to any of the R_i 's in this sequence:
- ▶ Let $R = 0.a_1a_2a_3...$ such that:

$$a_i = \begin{cases} 4 & d_{ii} \neq 4 \\ 5 & d_{ii} = 4 \end{cases}$$

▶ Clearly, this new number R differs from each number R_i in the table in at least one digit (its i'th digit)

Diagonalization Argument, concluded

- ightharpoonup Since R is not in the table, this is not a complete enumeration of all reals between 0 and 1
- ▶ Hence, the set of real between 0 and 1 is not countable
- Since the superset of any uncountable set is also uncountable, set of reals is uncountably infinite

Instructor: Ișil Dillig,