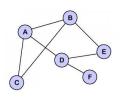
CS311H: Discrete Mathematics

Introduction to Graph Theory

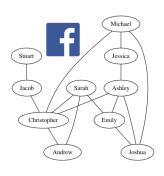
Instructor: Ișil Dillig

Motivation



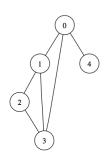
- Graph is a fundamental mathematical structure in computer science
- ▶ Graph G = (V, E) consists of a set of vertices (nodes) V and edges E between these nodes
- ► Lots of applications in many areas: web search, networking, databases, Al . . .

Example: Social Network as a Graph



- Nodes represent users (Michael, Jessica, Stuart ...)
- Edges represent friendship (e.g., Michael is friends with Jessica)
- ▶ Edge between nodes u and v is written as (u, v)
- e.g., (Sarah, Andrew) is an edge in this graph.

Terminology



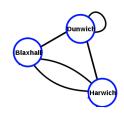
- ► Two nodes *u* and *v* are adjacent if there exists an edge between them (e.g., nodes 1 and 3)
- $lackbox{ An edge }(u,v)$ is incident with nodes u and v
- ▶ Degree of a vertex v, written deg(v), is the number of edges incident with it
- Neighborhood of a vertex is the set of vertices adjacent to it

Question

Consider a graph G with vertices v_1, v_2, v_3, v_4 and edges $(v_1, v_2), (v_2, v_3), (v_1, v_3), (v_2, v_4)$.

- 1. Draw this graph.
- 2. What is the degree of each vertex?

Simple Graphs



- Graph contains a loop if any node is adjacent to itself
- A simple graph does not contain loops and there exists at most one edge between any pair of vertices
- Graphs that have multiple edges connecting two vertices are called multi-graphs
- Most graphs we will look at are simple graphs

Question

Consider a simple graph G where two vertices A and B have the same neighborhood.

Which of the following statements must be true about G?

- A. The degree of each vertex must be even.
- B. Both A and B have a degree of 0.
- C. There cannot be an edge between A and B.

Handshaking Theorem

Let G = (V, E) be a graph with m edges. Then:

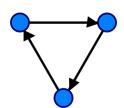
$$\sum_{v \in V} \deg(v) = 2m$$

- Intuition: Each edge contributes two to the sum of the degrees
- ► Proof:

Applications of Handshaking Theorem

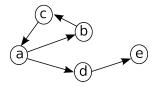
- ▶ Is it possible to construct a graph with 5 vertices where each vertex has degree 3?
- Prove that every graph has an even number of vertices of odd degree.
- ▶ If *n* people go to a party and everyone shakes everyone else's hand, how many handshakes occur?

Directed Graphs



- All graphs we considered so far are undirected
- $\,\blacktriangleright\,$ In undirected graphs, edge (u,v) same as (v,u)
- A directed edge (arc) is an ordered pair (u, v) (i.e., (u, v) not same as (v, u))
- ► A directed graph is a graph with directed edges

In-Degree and Out-Degree of Directed Graphs

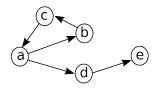


- ▶ The in-degree of a vertex v, written $deg^-(v)$, is the number of edges going into v
- $ightharpoonup ext{deg}^-(a) =$
- ► The out-degree of a vertex v, written $\deg^+(v)$, is the number of edges leaving v
- $ightharpoonup ext{deg}^+(a) =$

Handshaking Theorem for Directed Graphs

Let G = (V, E) be a directed graph. Then:

$$\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = |E|$$



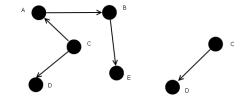
$$\sum_{v \in V} \deg^{-}(v) =$$

$$\sum_{v \in V} \deg^{+}(v) =$$

$$\sum_{v \in V} \deg^+(v) =$$

Subgraphs

- ▶ A graph G = (V, E) is a subgraph of another graph G' = (V', E') if $V \subseteq V'$ and $E \subseteq E'$
- Example:



▶ Graph G is a proper subgraph of G' if $G \neq G'$.

Question

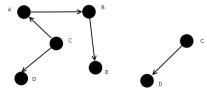
Consider a graph G with vertices $\{v_1,v_2,v_3,v_4\}$ and edges $(v_1,v_3),(v_1,v_4),(v_2,v_3).$

Which of the following are subgraphs of G?

- 1. Graph G_1 with vertex v_1 and edge (v_1,v_3)
- 2. Graph G_2 with vertices $\{v_1, v_3\}$ and no edges
- 3. Graph G_3 with vertices $\{v_1, v_2\}$ and edge (v_1, v_2)

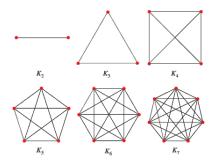
Induced Subgraph

- ▶ Consider a graph G = (V, E) and a set of vertices V' such that $V' \subseteq V$
- ▶ Graph G' is the induced subgraph of G with respect to V' if:
 - 1. G' contains exactly those vertices in V'
 - 2. For all $u,v\in V'$, edge $(u,v)\in G'$ iff $(u,v)\in G$
- ► Subgraph induced by vertices {*C*, *D*}:



Complete Graphs

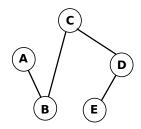
► A complete graph is a simple undirected graph in which every pair of vertices is connected by one edge.



ightharpoonup How many edges does a complete graph with n vertices have?

Bipartite graphs

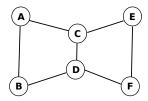
▶ A simple undirected graph G = (V, E) is called bipartite if V can be partitioned into two disjoint sets V_1 and V_2 such that every edge in E connects a V_1 vertex to a V_2 vertex



Examples Bipartite and Non-Bi-partite Graphs

Is this graph bipartite?

What about this graph?

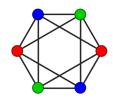


Questions about Bipartite Graphs

▶ Does there exist a complete graph that is also bipartite?

► Consider a graph *G* with 5 nodes and 7 edges. Can *G* be bipartite?

Graph Coloring



- A coloring of a graph is the assignment of a color to each vertex so that no two adjacent vertices are assigned the same color.
- ► A graph is *k*-colorable if it is possible to color it using *k* colors.
 - ▶ e.g., graph on left is 3-colorable
 - ▶ Is it also 2-colorable?
- The chromatic number of a graph is the least number of colors needed to color it.
 - ▶ What is the chromatic number of this graph?

Question

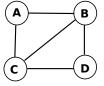
Consider a graph G with vertices $\{v_1,v_2,v_3,v_4\}$ and edges $(v_1,v_2),(v_1,v_3),(v_2,v_3),(v_2,v_4).$

Which of the following are valid colorings for G?

- 1. $v_1 = \text{red}$, $v_2 = \text{green}$, $v_3 = \text{blue}$
- 2. $v_1 = \text{red}$, $v_2 = \text{green}$, $v_3 = \text{blue}$, $v_4 = \text{red}$
- 3. $v_1 = \text{red}$, $v_2 = \text{green}$, $v_3 = \text{red}$, $v_4 = \text{blue}$

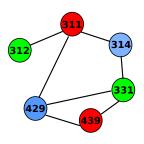
Examples

What are the chromatic numbers for these graphs?



Applications of Graph Coloring

- Graph coloring has lots of applications, particularly in scheduling.
- ► Example: What's the minimum number of time slots needed so that no student is enrolled in conflicting classes?



A Scheduling Problem

- ▶ The math department has 6 committees C_1, \ldots, C_n that meet once a month.
- ▶ The committee members are:

```
C_1 = \{Allen, Brooks, Marg\} C_2 = \{Brooks, Jones, Morton\}

C_3 = \{Allen, Marg, Morton\} C_4 = \{Jones, Marg, Morton\}

C_5 = \{Allen, Brooks\} C_6 = \{Brooks, Marg, Morton\}
```

► How many different meeting times must be used to guarantee that no one has conflicting meetings?

Bipartite Graphs and Colorability

Prove that a graph G=(V,E) is bipartite if and only if it is 2-colorable.

Complete graphs and Colorability

Prove that any complete graph K_n has chromatic number n.

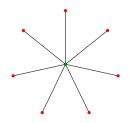
Degree and Colorability

Theorem: A a simple graph G is always $\max_{} \deg (G) + 1$ -colorable. Then, G is n+1-colorable.

Degree and Colorability, cont.

Degree and Colorability, cont.

Star Graphs and Colorability



- A star graph S_n is a graph with one vertex u at the center and the only edges are from u to each of v_1, \ldots, v_{n-1} .
- ▶ Draw S_2, S_3, S_4, S_5 .
- ▶ What is the chromatic number of S_n ?

Question About Star Graphs

Suppose we have two star graphs S_k and S_m . Now, pick a random vertex from each graph and connect them with an edge.

Which of the following statements must be true about the resulting graph G?

- 1. The chromatic number of G is 3
- 2. G is 2-colorable.
- 3. $\max_{\text{degree}}(G) = \max(k, m)$.