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Announcements

I Homeworkdue now!

I Next HW out, due next Tuesday

I Midterm 2 next Thursday!!
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Directed Graphs

I All graphs we considered so far are undirected

I In undirected graphs, edge (u, v) same as (v , u)

I A directed edge (arc) is an ordered pair (u, v)
(i.e., (u, v) not same as (v , u))

I A directed graph is a graph with directed edges
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In-Degree and Out-Degree of Directed Graphs

I The in-degree of a vertex v , written deg−(v), is the number
of edges going into v

I deg−(a) =

I The out-degree of a vertex v , written deg+(v), is the number
of edges leaving v

I deg+(a) =
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Handshaking Theorem for Directed Graphs

Let G = (V ,E ) be a directed graph. Then:

∑

v∈V
deg−(v) =

∑

v∈V
deg+(v) = |E |

I
∑

v∈V deg−(v) =

I
∑

v∈V deg+(v) =
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Subgraphs

I A graph G = (V ,E ) is a subgraph of another graph
G ′ = (V ′,E ′) if V ⊆ V ′ and E ⊆ E ′

I Example:

I Graph G is a proper subgraph of G ′ if G 6= G ′.
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Question

Consider a graph G with vertices {v1, v2, v3, v4} and edges
(v1, v3), (v1, v4), (v2, v3).

Which of the following are subgraphs of G?

1. Graph G1 with vertex v1 and edge (v1, v3)

2. Graph G2 with vertices {v1, v3} and no edges

3. Graph G3 with vertices {v1, v2} and edge (v1, v2)
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Induced Subgraph

I Consider a graph G = (V ,E ) and a set of vertices V ′ such
that V ′ ⊆ V

I Graph G ′ is the induced subgraph of G with respect to V ′ if:

1. G ′ contains exactly those vertices in V ′

2. For all u, v ∈ V ′, edge (u, v) ∈ G ′ iff (u, v) ∈ G

I Subgraph induced by vertices {C ,D}:

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Introduction to Graph Theory 8/34

Complete Graphs

I A complete graph is a simple undirected graph in which every
pair of vertices is connected by one edge.

I How many edges does a complete graph with n vertices have?
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Bipartite graphs

I A simple undirected graph G = (V ,E ) is called bipartite if V
can be partitioned into two disjoint sets V1 and V2 such that
every edge in E connects a V1 vertex to a V2 vertex

A

C

D

EB
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Examples Bipartite and Non-Bi-partite Graphs

I Is this graph bipartite?

A

B C

I What about this graph?

A

B

C

D

E

F
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Questions about Bipartite Graphs

I Does there exist a complete graph that is also bipartite?

I Consider a graph G with 5 nodes and 7 edges. Can G be
bipartite?
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Graph Coloring

I A coloring of a graph is the assignment of a
color to each vertex so that no two adjacent
vertices are assigned the same color.

I A graph is k -colorable if it is possible to color it
using k colors.

I e.g., graph on left is 3-colorable

I Is it also 2-colorable?

I The chromatic number of a graph is the least number of
colors needed to color it.

I What is the chromatic number of this graph?
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Question

Consider a graph G with vertices {v1, v2, v3, v4} and edges
(v1, v2), (v1, v3), (v2, v3), (v2, v4).

Which of the following are valid colorings for G?

1. v1 = red, v2 = green, v3 = blue

2. v1 = red, v2= green, v3 = blue, v4 = red

3. v1 = red, v2= green, v3 = red, v4 = blue
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Examples

What are the chromatic numbers for these graphs?

A B

C D

A B

C D

A B

C D
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Applications of Graph Coloring

I Graph coloring has lots of applications, particularly in
scheduling.

I Example: What’s the minimum number of time slots needed
so that no student is enrolled in conflicting classes?

311

312
314

331

439
429
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Bipartite Graphs and Colorability

Prove that a graph G = (V ,E ) is bipartite if and only if it is
2-colorable.
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Complete graphs and Colorability

Prove that any complete graph Kn has chromatic number n.
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Degree and Colorability

Theorem: Every simple graph G is always max degree(G) + 1
colorable.

I Proof is by induction on the number of vertices n.

I Let P(n) be the predicate “A simple graph G with n vertices
is max-degree(G)-colorable”

I Base case: n = 1. If graph has only one node, then it cannot
have any edges. Hence, it is 1-colorable.

I Induction: Consider a graph G = (V ,E ) with k + 1 vertices.

I Now consider arbitrary v ∈ V with neighnors v1, . . . , vn
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Degree and Colorability, cont.

I Remove v and all its incident edges from G ; call this G ′.

I By the IH, G ′ is max degree(G ′) + 1 colorable.

I Let C ′ be the coloring of G ′: Suppose C ′ assigns colors
c1, . . . , cp to v ’s n neighbors. Clearly, p ≤ n.

I Now, create coloring C for G :

I C (v ′) = C ′(v ′) for any v 6= v ′

I C (v) = cp+1
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Degree and Colorability, cont.

I Two possibilities: (i) cp+1 was used in C ′, or (ii) new color

I Case 1: Then, G is max degree(G ′) + 1 colorable, and
therefore max degree(G) + 1 colorable.

I Case 2: Coloring C uses p + 1 colors.

I We know p ≤ n, where n is num neighbors

I What can we say about max degree(G)?

I Thus, p + 1 ≤ max degree(G) + 1
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Star Graphs and Colorability

I A star graph Sn is a graph with one
vertex u at the center and the only edges
are from u to each of v1, . . . , vn−1.

I Draw S4.

I What is the chromatic number of Sn?
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Question About Star Graphs

Suppose we have two star graphs Sk and Sm . Now, pick a random
vertex from each graph and connect them with an edge.

Which of the following statements must be true about the
resulting graph G?

1. The chromatic number of G is 3

2. G is 2-colorable.

3. max degree(G) = max(k ,m).
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Connectivity in Graphs

a

b

x

u
y

w

v

c

d

I Typical question: Is it possible to get from
some node u to another node v?

I Example: Train network – if there is path
from u to v , possible to take train from u to
v and vice versa.

I If it’s possible to get from u to v , we say u
and v are connected and there is a path
between u and v
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Paths

a

b

x

u
y

w

v

c

d

I A path between u and v is a sequence of
edges that starts at vertex u, moves along
adjacent edges, and ends in v .

I Example: u, x , y ,w is a path, but u, y , v and
u, a, x are not

I Length of a path is the number of edges
traversed, e.g., length of u, x , y ,w is 3

I A simple path is a path that does not repeat
any edges

I u, x , y ,w is a simple path but u, x , u is not
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Example

I Consider a graph with vertices {x , y , z ,w} and edges
(x , y), (x ,w), (x , z ), (y , z )

I What are all the simple paths from z to w?

I What are all the simple paths from x to y?

I How many paths (can be non-simple) are there from x to y?
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Connectedness

a

b

x

u
y

w

v

c

d

I A graph is connected if there is a path
between every pair of vertices in the graph

I Example: This graph not connected; e.g., no
path from x to d

I A connected component of a graph G is a
maximal connected subgraph of G
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Example

I Prove: Suppose graph G has exactly two vertices of odd
degree, say u and v . Then G contains a path from u to v .

I

I

I

I
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Circuits

a

b

x

u
y

w

v

c

d

I A circuit is a path that begins and ends in
the same vertex.

I u, x , y , x , u and u, x , y , u are both circuits

I A simple circuit does not contain the same
edge more than once

I u, x , y , u is a simple circuit, but u, x , y , x , u
is not

I Length of a circuit is the number of edges it
contains, e.g., length of u, x , y , u is 3

I In this class, we only consider circuits of
length 3 or more
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Cycles

a

b

x

u
y

w

v

c

d

I A cycle is a simple circuit with no repeated
vertices other than the first and last ones.

I For instance, u, x , a, b, x , y , u is a circuit but
not a cycle

I However, u, x , y , u is a cycle
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Example

I Prove: If a graph has an odd length circuit, then it also has an
odd length cycle.

I Huh? Recall that not every circuit is a a cycle.

I According to this theorem, if we can find an odd length
circuit, we can also find odd length cycle.

I Example: d , c, a, b, c, d is an odd length circuit, but graph
also contains odd length cycle

a

b

c d
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Proof

Prove: If a graph has an odd length circuit, then it also has an odd
length cycle.

I Proof by strong induction on the length of the circuit.

I Base case: Length of circuit = 3.

I Only circuit of length 3 is a triangle, which is also a cycle

a

b

c
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Proof, cont.

Prove: If a graph has an odd length circuit, then it also has an odd
length cycle.

I Let P(n) be the predicate “If a graph has odd length circuit of
length n, it also has an odd length cycle”

I Inductive step: Assume P(3),P(5), . . . ,P(n) and show claim
holds for P(n + 2)

I Now, consider a circuit of length n + 2. There are two cases:

I Case 1: Circuit is already a cycle: done!
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Proof, cont.

Prove: If a graph has an odd length circuit, then it also has an odd
length cycle.

I

I

I

I
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