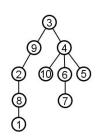
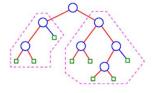

CS311H: Discrete Mathematics

Graph Theory III


Instructor: Işıl Dillig

Rooted Trees

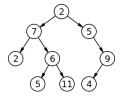
- ➤ A rooted tree has a designated root vertex and every edge is directed away from the root.
- Vertex v is a parent of vertex u if there is an edge from v to u; and u is called a child of v
- Vertices with the same parent are called siblings
- Vertex v is an ancestor of u if v is u's parent or an ancestor of u's parent.
- \blacktriangleright Vertex v is a descendant of u if u is v's ancestor

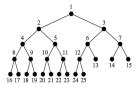

Questions about Rooted Trees

- ► Suppose that vertices *u* and *v* are siblings in a rooted tree.
- \blacktriangleright Which statements about u and v are true?
 - 1. They must have the same ancestors
 - 2. They can have a common descendant
 - 3. If u is a leaf, then v must also be a leaf

Subtrees

Given a rooted tree and a node v, the subtree rooted at v includes v and its descendants.


- **Level** of vertex v is the length of the path from the root to v.
- ▶ The height of a tree is the maximum level of its vertices.


True-False Questions

- 1. Two siblings u and v must be at the same level.
- 2. A leaf vertex does hot have a subtree.
- 3. The subtrees rooted at u and v can have the same height only if u and v are siblings.
- 4. The level of the root vertex is 1.

m-ary Trees

- ▶ A rooted tree is called an m-ary tree if every vertex has no more than m children.
- ▶ An m-ary tree where m = 2 is called a binary tree.
- ▶ A full *m*-ary tree is a tree where every internal node has exactly *m* children.
- Which are full binary trees?

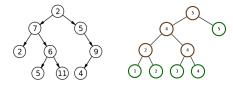
Useful Theorem

Theorem: An m-ary tree of height $h \ge 1$ contains at most m^h leaves.

- ▶ Proof is by strong induction on height *h*.

Corollary

Corollary: If m-ary tree has height h and n leaves, then $h \geq \lceil log_m n \rceil$


- \triangleright

Questions

- What is maximum number of leaves in binary tree of height 5?
- ▶ If binary tree has 100 leaves, what is a lower bound on its height?
- ▶ If binary tree has 2 leaves, what is an upper bound on its height?

Balanced Trees

lacktriangle An m-ary tree is balanced if all leaves are at levels h or h-1

- "Every full tree must be balanced." true or false?
- "Every balanced tree must be full." true or false?

Theorem about Full and Balanced Trees

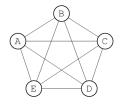
Theorem: For a full and balanced m-ary tree with height h and n leaves, we have $h = \lceil log_m n \rceil$

- \blacktriangleright
- •
- •

Planar Graphs

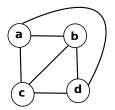
► A graph is called planar if it can be drawn in the plane without any edges crossing (called planar representation).

Is this graph planar?



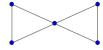
In this class, we will assume that every planar graph has at least 3 edges.

A Non-planar Graph


▶ The complete graph K_5 is not planar:

▶ Why can K_5 not be drawn without any edges crossing?

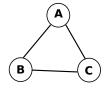
Regions of a Planar Graph

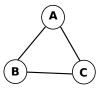

► The planar representation of a graph splits the plane into regions (sometimes also called faces):

- ▶ Degree of a region R, written deg(R), is the number of edges bordering R
- ▶ Here, all regions have degree 3.

Examples

How many regions does this graph have?




- What is the degree of its outer region?
- ▶ How many regions does a graph have if it has no cycles?
- ► Given a planar simple graph with at least 3 edges, what is the minimum degree a region can have?
- ▶ What is the relationship between $\sum \deg(R)$ and the number of edges?

Euler's Formula

Euler's Formula: Let G=(V,E) be a planar connected graph with regions R. Then, the following formula always holds:

$$|R| = |E| - |V| + 2$$

All planar representations of a graph split the plane into the same number of regions!

Proof of Euler's Formula

- ► Case 1: G does not have cycles (i.e., a tree)
- ▶ If G has |V| nodes, how many edges does it have?
- How many regions does it have?
- |R| = 1 = (|V| 1) |V| + 2

Proof, cont.

- ► Case 2: G has at least one cycle.
- ▶ The proof is by induction on the number of edges.
- ▶ Base case: *G* has 3 edges (i.e., a triangle)
- ▶ Induction: Suppose Euler's formula holds for planar connected graphs with *e* edges and at least one cycle.
- We need to show it also holds for planar connected graphs with e+1 edges and at least one cycle.

Proof, cont.

- ▶ Create G' by removing one edge from the cycle \Rightarrow has e edges
- ▶ If G' doesn't have cycles, we know |R| = e |V| + 2 (case 1)
- lacksquare If G' has cycles, we know from IH that |R|=e-|V|+2
- lacktriangle Now, add edge back in; G has e+1 edges and |V| vertices
- ▶ How many regions does G have? |R| + 1
- e+1-|V|+2=|R|+1 \checkmark

An Application of Euler's Formula

- ► Suppose a connected planar simple graph *G* has 6 vertices, each with degree 4.
- ▶ How many regions does a planar representation of *G* have?
- ► How many edges?
- How many regions?

A Corollary of Euler's Formula

Theorem: Let G be a connected planar simple graph with v vertices and e edges. Then $e \leq 3v - 6$

- ightharpoonup Proof: Suppose G has r regions.
- Recall: $2e = \sum \deg(R)$
- ► Hence, $2e \ge 3r$
- From Euler's formula, 3r = 3e 3v + 6; thus $2e \ge 3e 3v + 6$
- ▶ Implies $e \le 3v 6$ ✓

Why is this Theorem Useful?

Theorem: Let G be a connected planar simple graph with v vertices and e edges. Then $e \leq 3v - 6$

- ▶ Can be used to show graph is not planar.
- **Example**: Prove that K_5 is not planar.
- ▶ How many edges does K_5 have?
- ▶ $3 \cdot 5 6 = 9$, but $10 \not\leq 9$

Another Corollary

Theorem: If G is a connected, planar simple graph, then it has a vertex of degree not exceeding 5.

- ▶ Proof by contradiction: Suppose every vertex had degree at least 6
- What lower bound does this imply on number of edges?

 \triangleright