CS311H: Discrete Mathematics

Mathematical Induction

Instructor: Ișil Dillig

Introduction to Mathematical Induction

- ▶ Many mathematical theorems assert that a property holds for all natural numbers, odd positive integers, etc.
- Mathematical induction: very important proof technique for proving such universally quantified statements
- ▶ Induction will come up over and over again in other classes:
 - algorithms, programming languages, automata theory, . . .

Analogy

- Suppose we have an infinite ladder, and we know two things:
 - 1. We can reach the first rung of the ladder
 - 2. If we reach a particular rung, then we can also reach the next rung
- From these two facts, can we conclude we can reach every step of the infinite ladder?
- ► Answer is yes, and mathematical induction allows us to make arguments like this

Mathematical Induction

- ▶ Used to prove statements of the form $\forall x \in \mathbb{Z}^+$. P(x)
- An inductive proof has two steps:
 - 1. Base case: Prove that P(1) is true
 - 2. Inductive step: Prove $\forall n \in \mathbb{Z}^+$. $P(n) \to P(n+1)$
- ▶ Induction says if you can prove (1) and (2), you can conclude:

$$\forall x \in \mathbb{Z}^+. P(x)$$

Inductive Hypothesis

In the inductive step, need to show:

$$\forall n \in \mathbb{Z}^+. \ P(n) \to P(n+1)$$

- ▶ To prove this, we assume P(n) holds, and based on this assumption, prove P(n+1)
- ▶ The assumption that P(n) holds is called the inductive hypothesis

Prove the following statement by induction:

$$\forall n \in \mathbb{Z}^+. \sum_{i=1}^n i = \frac{(n)(n+1)}{2}$$

- ▶ Base case: n = 1. In this case, $\sum_{i=1}^{1} i = 1$ and $\frac{(1)(1+1)}{2} = 1$; thus, the base case holds.
- ▶ Inductive step: By the inductive hypothesis, we assume P(k):

$$\sum_{i=1}^{k} i = \frac{(k)(k+1)}{2}$$

Now, we want to show P(k+1):

$$\sum_{i=1}^{k+1} i = \frac{(k+1)(k+2)}{2}$$

Example 1, cont.

First, observe:

$$\sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + (k+1)$$

▶ By the inductive hypothesis, $\sum_{i=1}^{k} i = \frac{(k)(k+1)}{2}$; thus:

$$\sum_{i=1}^{k+1} i = \frac{(k)(k+1)}{2} + (k+1)$$

Rewrite left hand side as:

$$\sum_{i=1}^{k+1} i = \frac{k^2 + 3k + 2}{2} = \frac{(k+1)(k+2)}{2}$$

Since we proved both base case and inductive step, property holds.

▶ Prove the following statement for all non-negative integers *n*:

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

- ▶ Left as "do-it-at-home exercise" with solution!
- ▶ Since need to show for all $n \ge 0$, base case is P(0), not P(1)!
- ▶ Base case (n = 0): $2^0 = 1 = 2^1 1$
- ► Inductive step:

$$\sum_{i=0}^{k+1} 2^i = \sum_{i=0}^{k} 2^i + 2^{k+1}$$

Example 2, cont.

$$\sum_{i=0}^{k+1} 2^i = \sum_{i=0}^{k} 2^i + 2^{k+1}$$

By the inductive hypothesis, we have:

$$\sum_{i=0}^{k} 2^i = 2^{k+1} - 1$$

► Therefore:

$$\sum_{i=0}^{k+1} 2^i = 2^{k+1} - 1 + 2^{k+1}$$

Rewrite as:

$$\sum_{i=0}^{k+1} 2^i = 2 \cdot 2^{k+1} - 1 + = 2^{k+2} - 1$$

- ▶ Prove that $2^n < n!$ for all integers $n \ge 4$

- ▶ Prove that $3 \mid (n^3 n)$ for all positive integers n.
- •
- \blacktriangleright

The Horse Paradox

- Easy to make subtle errors when trying to prove things by induction – pay attention to details!
- ► Consider the statement: All horses have the same color
- ► What is wrong with the following bogus proof of this statement?
- ightharpoonup P(n): A collection of n horses have the same color
- ▶ Base case: P(1) ✓

Bogus Proof, cont.

- ▶ Induction: Assume P(k); prove P(k+1)
- ▶ Consider a collection of k + 1 horses: $h_1, h_2, \ldots, h_{k+1}$
- **>** By IH, h_1, h_2, \ldots, h_k have the same color; let this color be c
- ▶ By IH, h_2, \ldots, h_{k+1} have same color; call this color c'
- ▶ Since h_2 has color c and c', we have c = c'
- ▶ Thus, $h_1, h_2, \ldots, h_{k+1}$ also have same color
- ▶ What's the fallacy?

Strengthening the Inductive Hypothesis

- ▶ Suppose we want to prove $\forall x \in \mathbb{Z}^+.P(x)$, but proof doesn't go through
- ▶ Common trick: Prove a stronger property Q(x)
- ▶ If $\forall x \in \mathbb{Z}^+$. $Q(x) \to P(x)$ and $\forall x \in \mathbb{Z}^+$. Q(x) is provable, this implies $\forall x \in \mathbb{Z}^+$. P(x)
- ▶ In many situations, strengthening inductive hypothesis allows proof to go through!

- ▶ Prove the following theorem: "For all $n \ge 1$, the sum of the first n odd numbers is a perfect square."
- ▶ We want to prove $\forall x \in \mathbb{Z}^+.P(x)$ where:

$$P(n) = \sum_{i=1}^{n} 2i - 1 = k^2$$
 for some integer k

► Try to prove this using induction...

Example, cont.

▶ Let's use a stronger predicate:

$$Q(n) = \sum_{i=1}^{n} 2i - 1 = n^2$$

- ▶ Clearly $Q(n) \rightarrow P(n)$
- ▶ Now, prove $\forall n \in \mathbb{Z}^+.Q(n)$ using induction!

Strong Induction

- Slight variation on the inductive proof technique is strong induction
- Regular and strong induction only differ in the inductive step
- ▶ Regular induction: assume P(k) holds and prove P(k+1)
- ► Strong induction: assume P(1), P(2), ..., P(k); prove P(k+1)
- Strong induction can be viewed as standard induction with strengthened inductive hypothesis!

Motivation for Strong Induction

- ▶ Prove that if *n* is an integer greater than 1, then it is either a prime or can be written as the product of primes.
- ▶ Let's first try to prove the property using regular induction.
- ▶ Base case (n=2): Since 2 is a prime number, P(2) holds.
- Inductive step: Assume k is either a prime or the product of primes.
- ▶ But this doesn't really help us prove the property about k + 1!
- Claim is proven much easier using strong induction!

Proof Using Strong Induction

Prove that if n is an integer greater than 1, then it is either a prime or can be written as the product of primes.

- ▶ Base case: same as before.
- ▶ Inductive step: Assume each of 2, 3, ..., k is either prime or product of primes.
- ▶ Now, we want to prove the same thing about k+1
- ▶ Two cases: k is either (i) prime or (ii) composite
- ▶ If it is prime, property holds.

Proof, cont.

- ▶ If composite, k+1 can be written as pq where $2 \ge p, q \ge k$
- ▶ By the IH, p, q are either primes or product of primes.
- lacktriangle Thus, k+1 can also be written as product of primes
- Observe: Much easier to prove this property using strong induction!

A Word about Base Cases

- ▶ In all examples so far, we had only one base case
 - i.e., only proved the base case for one integer
- ▶ In some inductive proofs, there may be multiple base cases
 - ▶ i.e., prove base case for the first *k* numbers
- \blacktriangleright In the latter case, inductive step only needs to consider numbers greater than k

- ▶ Prove that every integer $n \ge 12$ can be written as n = 4a + 5b for some non-negative integers a, b.
- ightharpoonup Proof by strong induction on n and consider 4 base cases
- ▶ Base case 1 (n=12): $12 = 3 \cdot 4 + 0 \cdot 5$
- ▶ Base case 2 (n=13): $13 = 2 \cdot 4 + 1 \cdot 5$
- ▶ Base case 3 (n=14): $14 = 1 \cdot 4 + 2 \cdot 5$
- ▶ Base case 4 (n=15): $15 = 0 \cdot 4 + 3 \cdot 5$

Example, cont.

Prove that every integer $n \ge 12$ can be written as n = 4a + 5b for some non-negative integers a, b.

- ▶ Inductive hypothesis: Suppose every $12 \le i \le k$ can be written as i = 4a + 5b.
- ▶ Inductive step: We want to show k+1 can also be written this way for $k+1 \geq 16$
- ▶ Observe: k + 1 = (k 3) + 4
- ▶ By the inductive hypothesis, k-3=4a+5b for some a,b because k-3>12
- ▶ But then, k+1 can be written as 4(a+1)+5b

Another Example

▶ For $n \ge 1$, prove there exist natural numbers a, b such that:

$$5^n = a^2 + b^2$$

▶ Insight: $5^{k+1} = 5^2 \cdot 5^{k-1}$

Matchstick Example

- ► The Matchstick game: There are two piles with same number of matches initially
- Two players take turns removing any positive number of matches from one of the two piles
- Player who removes the last match wins the game
- Prove: Second player always has a winning strategy.

Matchstick Proof

- ▶ P(n): Player 2 has winning strategy if initially n matches in each pile
- ► Base case:
- ▶ Induction: Assume $\forall j.1 \leq j \leq k \rightarrow P(j)$; show P(k+1)
- ► Inductive hypothesis:
- ▶ Prove Player 2 wins if each pile contains k + 1 matches

Matchstick Proof, cont.

- ▶ Case 1: Player 1 takes k + 1 matches from one of the piles.
- ▶ What is winning strategy for player 2
- ▶ Case 2: Player 1 takes r matches from one pile, where $1 \le r \le k$
- ▶ Now, player 2 takes r matches from other pile
- Now, the inductive hypothesis applies ⇒ player 2 has winning strategy for rest of the game