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Introduction to Mathematical Induction

I Many mathematical theorems assert that a property holds for
all natural numbers, odd positive integers, etc.

I Mathematical induction: very important proof technique for
proving such universally quantified statements

I Induction will come up over and over again in other classes:

I algorithms, programming languages, automata theory, . . .
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Analogy

I Suppose we have an infinite ladder, and we
know two things:

1. We can reach the first rung of the ladder

2. If we reach a particular rung, then we can
also reach the next rung

I From these two facts, can we conclude we
can reach every step of the infinite ladder?

I Answer is yes, and mathematical induction
allows us to make arguments like this
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Mathematical Induction

I Used to prove statements of the form ∀x ∈ Z+. P(x )

I An inductive proof has two steps:

1. Base case: Prove that P(1) is true

2. Inductive step: Prove ∀n ∈ Z+. P(n)→ P(n + 1)

I Induction says if you can prove (1) and (2), you can conclude:

∀x ∈ Z+. P(x )
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Inductive Hypothesis

I In the inductive step, need to show:

∀n ∈ Z+. P(n)→ P(n + 1)

I To prove this, we assume P(n) holds, and based on this
assumption, prove P(n + 1)

I The assumption that P(n) holds is called the inductive
hypothesis
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Example 1

I Prove the following statement by induction:

∀n ∈ Z+.

n∑
i=1

i =
(n)(n + 1)

2

I Base case: n = 1. In this case,
∑1

i=1 i = 1 and (1)(1+1)
2 = 1; thus,

the base case holds.

I Inductive step: By the inductive hypothesis, we assume P(k):

k∑
i=1

i =
(k)(k + 1)

2

I Now, we want to show P(k + 1):

k+1∑
i=1

i =
(k + 1)(k + 2)

2
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Example 1, cont.

I First, observe:
k+1∑
i=1

i =

k∑
i=1

i + (k + 1)

I By the inductive hypothesis,
∑k

i=1 i =
(k)(k+1)

2 ; thus:

k+1∑
i=1

i =
(k)(k + 1)

2
+ (k + 1)

I Rewrite left hand side as:

k+1∑
i=1

i =
k2 + 3k + 2

2
=

(k + 1)(k + 2)

2

I Since we proved both base case and inductive step, property holds.
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Example 2

I Prove the following statement for all non-negative integers n:

n∑
i=0

2i = 2n+1 − 1

I Left as “do-it-at-home exercise” with solution!

I Since need to show for all n ≥ 0 , base case is P(0), not P(1)!

I Base case (n = 0): 20 = 1 = 21 − 1

I Inductive step:
k+1∑
i=0

2i =

k∑
i=0

2i + 2k+1
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Example 2, cont.

k+1∑
i=0

2i =

k∑
i=0

2i + 2k+1

I By the inductive hypothesis, we have:

k∑
i=0

2i = 2k+1 − 1

I Therefore:
k+1∑
i=0

2i = 2k+1 − 1 + 2k+1

I Rewrite as:
k+1∑
i=0

2i = 2 · 2k+1 − 1+ = 2k+2 − 1
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Example 3

I Prove that 2n < n! for all integers n ≥ 4

I

I

I

I
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Example 4

I Prove that 3 | (n3 − n) for all positive integers n.

I

I

I

I

I
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The Horse Paradox

I Easy to make subtle errors when trying to prove things by
induction – pay attention to details!

I Consider the statement: All horses have the same color

I What is wrong with the following bogus proof of this
statement?

I P(n) : A collection of n horses have the same color

I Base case: P(1) X
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Bogus Proof, cont.

I Induction: Assume P(k); prove P(k + 1)

I Consider a collection of k + 1 horses: h1, h2, . . . , hk+1

I By IH, h1, h2, . . . , hk have the same color; let this color be c

I By IH, h2, . . . , hk+1 have same color; call this color c′

I Since h2 has color c and c′, we have c = c′

I Thus, h1, h2, . . . , hk+1 also have same color

I What’s the fallacy?
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Strengthening the Inductive Hypothesis

I Suppose we want to prove ∀x ∈ Z+.P(x ), but proof doesn’t
go through

I Common trick: Prove a stronger property Q(x )

I If ∀x ∈ Z+.Q(x )→ P(x ) and ∀x ∈ Z+.Q(x ) is provable, this
implies ∀x ∈ Z+.P(x )

I In many situations, strengthening inductive hypothesis allows
proof to go through!
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Example

I Prove the following theorem: “For all n ≥ 1, the sum of the
first n odd numbers is a perfect square.”

I We want to prove ∀x ∈ Z+.P(x ) where:

P(n) =

n∑
i=1

2i − 1 = k2 for some integer k

I Try to prove this using induction...
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Example, cont.

I Let’s use a stronger predicate:

Q(n) =

n∑
i=1

2i − 1 = n2

I Clearly Q(n)→ P(n)

I Now, prove ∀n ∈ Z+.Q(n) using induction!
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Strong Induction

I Slight variation on the inductive proof technique is strong
induction

I Regular and strong induction only differ in the inductive step

I Regular induction: assume P(k) holds and prove P(k + 1)

I Strong induction: assume P(1),P(2), ..,P(k); prove P(k + 1)

I Strong induction can be viewed as standard induction with
strengthened inductive hypothesis!
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Motivation for Strong Induction

I Prove that if n is an integer greater than 1, then it is either a
prime or can be written as the product of primes.

I Let’s first try to prove the property using regular induction.

I Base case (n=2): Since 2 is a prime number, P(2) holds.

I Inductive step: Assume k is either a prime or the product of
primes.

I But this doesn’t really help us prove the property about k + 1!

I Claim is proven much easier using strong induction!
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Proof Using Strong Induction

Prove that if n is an integer greater than 1, then it is either a
prime or can be written as the product of primes.

I Base case: same as before.

I Inductive step: Assume each of 2, 3, . . . , k is either prime or
product of primes.

I Now, we want to prove the same thing about k + 1

I Two cases: k is either (i) prime or (ii) composite

I If it is prime, property holds.
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Proof, cont.

I If composite, k + 1 can be written as pq where 2 ≥ p, q ≥ k

I By the IH, p, q are either primes or product of primes.

I Thus, k + 1 can also be written as product of primes

I Observe: Much easier to prove this property using strong
induction!
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A Word about Base Cases

I In all examples so far, we had only one base case

I i.e., only proved the base case for one integer

I In some inductive proofs, there may be multiple base cases

I i.e., prove base case for the first k numbers

I In the latter case, inductive step only needs to consider
numbers greater than k
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Example

I Prove that every integer n ≥ 12 can be written as
n = 4a + 5b for some non-negative integers a, b.

I Proof by strong induction on n and consider 4 base cases

I Base case 1 (n=12): 12 = 3 · 4 + 0 · 5

I Base case 2 (n=13): 13 = 2 · 4 + 1 · 5

I Base case 3 (n=14): 14 = 1 · 4 + 2 · 5

I Base case 4 (n=15): 15 = 0 · 4 + 3 · 5
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Example, cont.

Prove that every integer n ≥ 12 can be written as n = 4a + 5b for
some non-negative integers a, b.

I Inductive hypothesis: Suppose every 12 ≤ i ≤ k can be
written as i = 4a + 5b.

I Inductive step: We want to show k + 1 can also be written
this way for k + 1 ≥ 16

I Observe: k + 1 = (k − 3) + 4

I By the inductive hypothesis, k − 3 = 4a + 5b for some a, b
because k − 3 ≥ 12

I But then, k + 1 can be written as 4(a + 1) + 5b
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Another Example
I For n ≥ 1, prove there exist natural numbers a, b such that:

5n = a2 + b2

I Insight: 5k+1 = 52 · 5k−1
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Matchstick Example

I The Matchstick game: There are two piles with same number
of matches initially

I Two players take turns removing any positive number of
matches from one of the two piles

I Player who removes the last match wins the game

I Prove: Second player always has a winning strategy.
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Matchstick Proof

I P(n): Player 2 has winning strategy if initially n matches in
each pile

I Base case:

I Induction: Assume ∀j .1 ≤ j ≤ k → P(j ); show P(k + 1)

I Inductive hypothesis:

I Prove Player 2 wins if each pile contains k + 1 matches
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Matchstick Proof, cont.

I Case 1: Player 1 takes k + 1 matches from one of the piles.

I What is winning strategy for player 2

I Case 2: Player 1 takes r matches from one pile, where
1 ≤ r ≤ k

I Now, player 2 takes r matches from other pile

I Now, the inductive hypothesis applies ⇒ player 2 has winning
strategy for rest of the game
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