

Properties of LengthProve the following property about the length function:	Structural vs. Strong Induction
$\forall y, x \in \Sigma^*. \ len(xy) = len(x) + len(y)$	 Structural induction may look different from other forms of induction, but it is an implicit form of strong induction
	Intuition: We can define an integer k that represents how many times we need to use the recursive step in the definition
	For base case, $k = 0$; if we use recursive step once, $k = 1$ etc.
	\blacktriangleright In inductive step, assume $P(i)$ for $0 \leq i \leq k$ and prove $P(k+1)$
	Hence, structural induction is just strong induction, but you don't have to make this argument in every proof!
Instructor: IpI Dilig. CS311H: Disorte Mathematics Structural Induction 13/23	Instructor: Iși Dillig. CS311H: Dicrete Mathematics: Structural Induction 14/23
General Induction and Well-Ordered Sets	Generalized Induction
Inductive proofs can be used for any well-ordered set	
• A set S is well-ordered iff:	Can use induction to prove properties of any well-ordered set:
1. Can define a total order \preceq between elements of S ($a \preceq b$ or $b \preceq a$, and \preceq is reflexive, symmetric, and transitive)	 Base case: Prove property about least element in set
2. Every subset of ${\cal S}$ has a least element according to this total order	▶ Inductive step: To prove $P(e)$, assume $P(e')$ for all $e' \prec e$
• Example: (\mathbb{Z}^+, \leq) is well-ordered set with least element 1	Mathematical induction is just a special case of this
What is a total order ≤ such that (Z ⁻ , ≤) is a well-ordered set with least element −1?	
Instructor: Jul Dilig. CS31114: Discrete Mathematics: Structural Induction 15/23	Instructor: Iul Dillig, CS311H: Discrete Mathematics Structural Induction 16/23
Ordered Pairs of Natural Numbers	Generalized Induction Example
\blacktriangleright Consider the set $\mathbb{N}\times\mathbb{N},$ pairs of non-negative integers	Suppose that $a_{m,n}$ is defined recursively for $(m,n) \in \mathbb{N} \times \mathbb{N}$:
• Let's define the following order \preceq on this set:	$a_{0,0} = 0$ $a_{m,n} = \begin{cases} a_{m-1,n} + 1 & \text{if } n = 0 \text{ and } m > 0 \\ a_{m,n-1} + n & \text{if } n > 0 \end{cases}$
$(x_1, y_1) \preceq (x_2, y_2) \;\; ext{if} \;\; \left\{ egin{array}{c} x_1 < x_2 \ ext{or} \;\; x_1 = x_2 \wedge y_1 \leq y_2 \end{array} ight.$	• Show that $a_{m,n} = m + n(n+1)/2$
This is an example of lexicographic order, which is a kind of total order	\blacktriangleright Proof is by induction on (m,n) where $(m,n)\in (\mathbb{N}\times\mathbb{N},\preceq)$
\blacktriangleright Therefore, $(\mathbb{N}\times\mathbb{N},\preceq)$ is a well-ordered set	► Base case:
Question: What is the least element of this set?	By recursive definition, $a_{0,0} = 0$
	• $0 + 0 \cdot 1/2 = 0$; thus, base case holds.
Instructor: Ipi Dillig, CS311H: Discrete Mathematics Structural Induction 17/23	Instructor: Ipi Dillig, C\$311H: Discrete Mathematics Structural Induction 18/23

Inductive Step
Inductive Step
Show
$$a_{m,n} = m + n(n+1)/2$$
 for:
 $a_{0,0} = 0$
 $a_{m,n} = \begin{cases} a_{m-1,n} + 1 & \text{if } n = 0 \text{ and } m > 0$
 $a_{m,n} = \begin{cases} a_{m-1,n} + 1 & \text{if } n = 0 \text{ and } m > 0$
 $a_{m,n} = \begin{cases} a_{m-1,n} + 1 & \text{if } n = 0 \text{ and } m > 0 \\ a_{m,n} = 1 & \frac{j(j+1)}{2} \end{cases}$
Number Normannian Statements The statements of the statements

Another Example

 \blacktriangleright Consider the function $\mathbb{Z}^- \to \mathbb{Z}^-$ defined recursively as follows:

$$\begin{array}{rcl} f(-1) & = & -1 \\ f(n) & = & f(n+1) + n & \text{for } n < -1 \end{array}$$

Prove that:

r: Ișil Dilli

$$f(n) = -\frac{|n| \cdot (|n| + 1)}{2}$$