CS311H: Discrete Mathematics

Structural Induction

Instructor: Ișil Dillig

Structural Induction

- Last time, we talked about recursively defined structures like sets and strings
- Stuctural induction is a technique that allows us to apply induction on recursive definitions even if there is no integer
- Structural induction is also no more powerful than regular induction, but can make proofs much easier

Structural Induction Overview

- Suppose we have:
 - a recursively defined structure S
 - a property P we'd like to prove about S
- Structural induction works as follows:
 - 1. Base case: Prove P about base case in recursive definition
 - 2. Inductive step: Assuming P holds for sub-structures used in the recursive step of the definition, show that P holds for the recursively constructed structure.

Example 1

- ► Consider the following recursively defined set *S*:
 - 1. $a \in S$
 - 2. If $x \in S$, then $(x) \in S$
- ▶ Prove by structural induction that every element in *S* contains an equal number of right and left parantheses.
- ▶ Base case: a has 0 left and 0 right parantheses
- ▶ Inductive step: By the inductive hypothesis, *x* has equal number, say *n*, of right and left parantheses.
- ▶ Thus, (x) has n+1 left and n+1 right parantheses.

Example 2

- ► Consider the set *S* defined recursively as follows:
 - ▶ Base case: $3 \in S$
 - ▶ Recursive step: If $x \in S$ and $y \in S$, then $x + y \in S$
- lacktriangle Prove S is set of all positive integers that are multiples of 3
- ▶ Let A be the set of all positive integers divisible by 3
- \blacktriangleright We want to show that A=S
- ▶ To do this, we need to prove $S \subseteq A$ and $A \subseteq S$

Proof, Part I

Consider the set S defined recursively as follows: $3\in S$ and if $x\in S$ and $y\in S$, then $x+y\in S$

- ▶ Let's first prove $S \subseteq A$, i.e., any element in S is divisible by 3
- ► Base case:
- ► Inductive step:

Proof, Part II

- ▶ Next, need to show S includes all positive multiples of 3
- ▶ Therefore, need to prove that $3n \in S$ for all $n \ge 1$
- ▶ We'll prove this by induction on *n*:
 - ▶ Base case (n=1):
 - ► Inductive hypothesis:
 - ► Need to show:
 - \blacktriangleright

Proving Correctness of Reverse

- \blacktriangleright Earlier, we defined a reverse(w) function for length of strings:
 - ▶ Base case: reverse(ϵ) = ϵ
 - ▶ Recursive step: $\operatorname{reverse}(wa) = a \cdot \operatorname{reverse}(w)$ where $w \in \Sigma^*$ and $a \in \Sigma$
- ▶ Prove $\forall y, x \in \Sigma^*$. reverse(xy) = reverse(y) · reverse(x)
- ▶ Let P(y) be the property

$$\forall x \in \Sigma^*$$
. reverse (xy) = reverse (y) · reverse (x)

▶ We'll prove by structural induction that $\forall y \in \Sigma^*$. P(y) holds

Proof of Correctness of Reverse, cont.

$$P(y): \forall x \in \Sigma^*. \text{ reverse}(xy) = \text{reverse}(y) \cdot \text{reverse}(x)$$

- ► Base case:
- ► Need to show:
- ▶ What is reverse($x \cdot \epsilon$)?
- What is reverse(ϵ) · reverse(x)?
- ▶ Thus, P(y) holds for base case

Proof of Correctness of Reverse, cont.

$$P(y): \forall x \in \Sigma^*. \text{ reverse}(xy) = \text{reverse}(y) \cdot \text{reverse}(x)$$

- ▶ Inductive step: y = za where $z \in \Sigma^*$ and $a \in \Sigma$
- ► Want to show:
- ightharpoonup reverse(xza) =
- ▶ By the inductive hypothesis, reverse(xz) =
- ▶ Thus, $a \cdot \text{reverse}(xz) = a \cdot \text{reverse}(z) \cdot \text{reverse}(x)$
- ▶ By definition, $a \cdot \text{reverse}(z) =$
- ightharpoonup Hence, reverse(xza) = reverse(za) \cdot reverse(x)

One More Reverse Example

- ▶ Prove that reverse(reverse(s)) = s
- We'll prove this by structural induction
- ▶ But need previous lemma for the proof to go through!
- ► Base case:
- Need to show:
- ightharpoonup reverse(ϵ)) = reverse(ϵ) = ϵ

One More Reverse Example, cont.

- ▶ Inductive step: s = wa where $w \in \Sigma^*$, $a \in \Sigma$
- ► Want to show:
- Using definition of reverse:

$$reverse(reverse(wa)) = reverse(a \cdot reverse(w))$$

Using previous lemma,

$$reverse(a \cdot reverse(w)) =$$

- ▶ By inductive hypothesis, reverse(reverse(w)) =
- Using definition of reverse, reverse(a) =
- ▶ Thus, reverse($a \cdot \text{reverse}(w)$) = wa

Structural vs. Strong Induction

- Structural induction may look different from other forms of induction, but it is an implicit form of strong induction
- ▶ Intuition: We can define an integer *k* that represents how many times we need to use the recursive step in the definition
- ▶ For base case, k = 0; if we use recursive step once, k = 1 etc.
- ▶ In inductive step, assume P(i) for $0 \le i \le k$ and prove P(k+1)
- Hence, structural induction is just strong induction, but you don't have to make this argument in every proof!

General Induction and Well-Ordered Sets

- Inductive proofs can be used for any well-ordered set
- ▶ A set S is well-ordered iff:
 - 1. Can define a total order \leq between elements of S ($a \leq b$ or $b \leq a$, and \leq is symmetric and transitive)
 - 2. Every subset of S has a least element according to this total order
- **Example**: (\mathbb{Z}^+, \leq) is well-ordered set with least element 1

Generalized Induction

- ► Can use induction to prove properties of any well-ordered set:
 - ▶ Base case: Prove property about least element in set
 - ▶ Inductive step: To prove P(e), assume P(e') for all e' < e
- Mathematical induction is just a special case of this

Ordered Pairs of Natural Numbers

- ▶ Consider the set $\mathbb{N} \times \mathbb{N}$, pairs of non-negative integers
- Let's define the following order ≤ on this set:

$$(x_1, y_1) \leq (x_2, y_2)$$
 if $\begin{cases} x_1 < x_2 \\ \text{or } x_1 = x_2 \land y_1 \leq y_2 \end{cases}$

- This is an example of lexicographic order, which is a kind of total order
- ▶ Therefore, $(\mathbb{N} \times \mathbb{N}, \preceq)$ is a well-ordered set
- Question: What is the least element of this set?

Generalized Induction Example

▶ Suppose that $a_{m,n}$ is defined recursively for $(m,n) \in \mathbb{N} \times \mathbb{N}$:

$$a_{0,0} = 0$$
 $a_{m,n} = \begin{cases} a_{m-1,n} + 1 & \text{if } n = 0 \text{ and } m > 0 \\ a_{m,n-1} + n & \text{if } n > 0 \end{cases}$

- Show that $a_{m,n} = m + n(n+1)/2$
- ▶ Proof is by induction on (m, n) where $(m, n) \in (\mathbb{N} \times \mathbb{N}, \preceq)$
- Base case:
- ▶ By recursive definition, $a_{0,0} = 0$
- $0 + 0 \cdot 1/2 = 0$; thus, base case holds.

Inductive Step

Show
$$a_{m,n} = m + n(n+1)/2$$
 for:

$$a_{0,0} = 0$$
 $a_{m,n} = \begin{cases} a_{m-1,n} + 1 & \text{if } n = 0 \text{ and } m > 0 \\ a_{m,n-1} + n & \text{if } n > 0 \end{cases}$

▶ Inductive hypothesis: For all $(0,0) \le (i,j) < (k_1,k_2)$:

$$a_{i,j} = i + \frac{j(j+1)}{2}$$

► Want to show:

Example, cont.

Show $a_{m,n} = m + n(n+1)/2$ for:

$$a_{0,0} = 0$$
 $a_{m,n} = \begin{cases} a_{m-1,n} + 1 & \text{if } n = 0 \text{ and } m > 0 \\ a_{m,n-1} + n & \text{if } n > 0 \end{cases}$

- Since recursive step of definition has two cases, we need to do proof by cases:
 - Case 1: $k_2 = 0$, $k_1 > 0$
 - Case 2: $k_2 > 0$

Example, cont.

Show $a_{m,n} = m + n(n+1)/2$ for:

$$a_{0,0} = 0$$
 $a_{m,n} = \begin{cases} a_{m-1,n} + 1 & \text{if } n = 0 \text{ and } m > 0 \\ a_{m,n-1} + n & \text{if } n > 0 \end{cases}$

- ► Case 1: $k_2 = 0, k_1 > 0$. Then, $a_{k_1,k_2} = a_{k_1-1,k_2} + 1$
- ▶ Since $(k_1 1, k_2) < (k_1, k_2)$, inductive hypothesis applies.
- By the IH, we know:

$$a_{k_1-1,k_2} = k_1 - 1 + \frac{k_2(k_2+1)}{2}$$

▶ But then $a_{k_1,k_2} = a_{k_1-1,k_2} + 1 = k_1 + \frac{k_2(k_2+1)}{2}$

Example, cont.

Show $a_{m,n} = m + n(n+1)/2$ for:

$$\begin{array}{rcl} a_{0,0} & = & 0 \\ \\ a_{m,n} & = & \left\{ \begin{array}{ll} a_{m-1,n}+1 & \text{if } n=0 \text{ and } m>0 \\ \\ a_{m,n-1}+n & \text{if } n>0 \end{array} \right. \end{array}$$

- ► Case 2: $k_2 > 0$. Then, $a_{k_1,k_2} = a_{k_1,k_2-1} + k_2$
- ▶ Since $(k_1, k_2 1) < (k_1, k_2)$, inductive hypothesis applies.
- ▶ By the IH, we know: $a_{k_1,k_2-1} =$
- ▶ But then $a_{k_1,k_2} = k_1 + \frac{k_2(k_2-1)}{2} + k_2$
- $a_{k_1,k_2} = k_1 + \frac{k_2^2 k_2 + 2k_2}{2} = k_1 + \frac{k_2(k_2 + 1)}{2}$

Another Example

▶ Consider the function $\mathbb{Z}^- \to \mathbb{Z}^-$ defined recursively as follows:

$$f(-1) = -1$$

 $f(n) = f(n+1) + n$ for $n < -1$

▶ Prove that:

$$f(n) = -\frac{|n| \cdot (|n|+1)}{2}$$

▶ Hint: Consider (\mathbb{Z}^-, \preceq) where $a \preceq b$ iff $|b| \leq |a|$