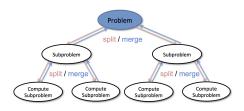
CS311H: Discrete Mathematics

Divide-and-Conquer Algorithms and The Master Theorem

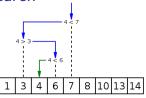
Instructor: Ișil Dillig

Divide-and-Conquer Algorithms



- Divide-and-conquer algorithms are recursive algorithms that:
 - 1. Divide problem into k smaller subproblems of the same form
 - 2. Solve the subproblems
 - Conquer the original problem by combining solutions of subproblems

Example I: Binary Search



- ▶ Problem: Given sorted array of integers, is *i* in the array?
- ▶ Binary search algorithm:
 - 1. Compare i with middle element m of array
 - 2. If i > m, then recursively search right half
 - 3. Otherwise, recursively search left half
- Classic divide-and-conquer algorithm

Binary Search, cont.

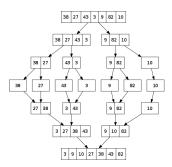
- Question: What is the worst-case complexity of binary search?
- ▶ Let T(n) denote # of steps taken on input array of size n
- ▶ Write recurrence relation for T(n):
- ► Initial condition:
- ▶ How do we get a Big-O estimate from this recurrence?
- ▶ Idea: Solve the recurrence and then find Big-O estimate for it

Solving Recurrence for Binary Search

$$T(n) = T(\frac{n}{2}) + 1$$
 $T(1) = 1$

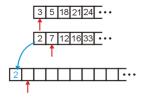
- ▶ Not in a form we can immediately solve, but can massage it!
- ▶ Let $n = 2^k$: $T(2^k) = T(2^{k-1}) + 1$
- Now, let $a_k = T(2^k)$: $a_k = a_{k-1} + 1$ $a_0 = 1$
- What's the solution for this recurrence?
- ▶ Since $n = 2^k$, this implies $T(n) = \log_2 n + 1$
- ▶ Hence, complexity of binary search: $\Theta(\log n)$

Example II: Merge Sort



- ► Problem: Sort elements in array
- Merge sort solution:
 - 1. Recursively sort left half of array
 - 2. Recursively sort right half of array
 - 3. Merge the two sorted arrays

How to Merge Two Sorted Arrays?



- ▶ Input: Two sorted arrays A_1, A_2
- $lackbox{Output:}$ New sorted array that includes all elements in A_1,A_2
- ▶ Idea: Pointers to current elements in A_1, A_2 (initially first)
- Copy smaller element to output array and advance pointer
- ▶ If combined size of A_1 , A_2 is n, merging takes 4n steps (compare, advance two pointers, copy)

Recurrence Relation for Merge Sort

- What is worst-case complexity of Merge Sort?
- ▶ Let T(n) be # operations performed to sort array of length n
- ▶ What is a recurrence relation for T(n)?
- ▶ As before, let $n = 2^k$:

Solving Recurrence Relation

$$a_k = 2 \cdot a_{k-1} + 4 \cdot 2^k \quad a_0 = 1$$

- Particular solution form:
- Particular solution:
- Solution for homogeneous recurrence:
- ▶ Solve for α : $\alpha \cdot 2^0 + 0 \cdot 2^2 = 1 \Rightarrow \alpha = 1$
- ► Solution:
- ▶ Plug in $k = \log_2 n$:
- ▶ Hence, algorithm is $\Theta(n \cdot \log n)$

Summary

Recurrence relations for divide-conquer algorithms look like:

$$T(n) = a \cdot T(\frac{n}{b}) + f(n)$$

- ► These are called divide-and-conquer recurrence relations
- ► To determine complexity of a divide-and conquer algorithm:
 - 1. Write corresponding recurrence relation
 - 2. Solve it exactly
 - 3. Obtain Θ estimate
- ► Can we obtain a Θ estimate without solving recurrence exactly?

The Master Theorem

Consider the recurrence $T(n) = a \cdot T(\frac{n}{b}) + c \cdot n^d$ where $a, c \ge 1$, $d \ge 0$, and b > 1. Then:

- 1. T(n) is $\Theta(n^d)$ if $a < b^d$
- 2. T(n) is $\Theta(n^d \log n)$ if $a = b^d$
- 3. T(n) is $\Theta(n^{\log_b a})$ if $a > b^d$

Revisiting Examples

- ▶ Example 1: Recurrence for binary search: $T(n) = T(\frac{n}{2}) + 1$
- ▶ Here, a = 1, b = 2, d = 0, Hence $a = b^d$
- ▶ By Case 2 of Master Thm, $T(n) = \Theta(n^0 \log n) = \Theta(\log n)$
- ▶ Example 2: Recurrence for merge sort: $T(n) = 2 \cdot T(\frac{n}{2}) + 4n$
- ▶ Here, a = 2, b = 2, d = 1, Hence $a = b^d$
- ▶ By Case 2 of Master Thm, $T(n) = \Theta(n \cdot \log n)$

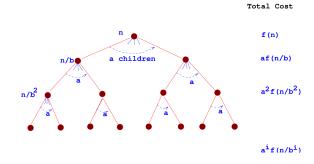
More Examples

- ► Example 3: Consider recurrence $T(n) = 2 \cdot T(\frac{n}{2}) + 3$
- \triangleright
- ► Example 4: Consider recurrence $T(n) = T(\frac{n}{2}) + n^2$
- \triangleright
- \triangleright

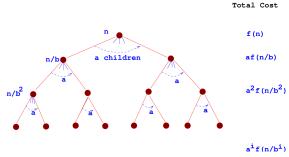
Why is the Master Theorem True?

Consider the recurrence $T(n) = a \cdot T(\frac{n}{b}) + c \cdot n^d$

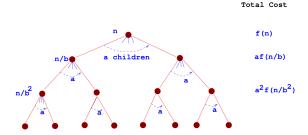
- ▶ At every level of recursion, # subproblems multiplied by a
- But size of subproblem divided by b
- ▶ Let f(n) be $c \cdot n^d$



Proof of Master Theorem



- ▶ What is the height *h* of this tree?
- ▶ Since problem size is 1 in base case, $\frac{n}{b^h} = 1 \Rightarrow h = \log_b n$
- ▶ At the i'th level, we have a^i subproblems, hence $a^{\log_b n}$ leaves
- ▶ Equal to $n^{\log_b a}$ verify by taking \log_b of both sides



Total amount of work:

$$T(n) = \Theta(n^{\log_b a}) + \sum_{i=0}^{\log_b n - 1} a^i \cdot c \cdot (\frac{n}{b^i})^d$$

 $a^{i}f(n/b^{i})$

Can be rewritten as:

$$T(n) = \Theta(n^{\log_b a}) + \sum_{i=0}^{\log_b n - 1} c \cdot (\frac{a}{b^d})^i \cdot n^d$$

$$T(n) = \Theta(n^{\log_b a}) + \sum_{i=0}^{\log_b n - 1} c \cdot (\frac{a}{b^d})^i \cdot n^d$$

▶ Case 1: $\frac{a}{b^d}$ < 1. In this case, T(n) is of the form:

$$T(n) = \Theta(n^{\log_b a}) + c \cdot n^d \cdot \sum_{i=0}^{\log_b n - 1} r^i \quad \text{for } |r| < 1$$

- ► Hence: $T(n) = \Theta(n^{\log_b a}) + \Theta(n^d)$
- ▶ Since $\frac{a}{b^d} < 1$, we have $\log_b a d < 1$. Thus $T(n) = \Theta(n^d)$

$$T(n) = \Theta(n^{\log_b a}) + \sum_{i=0}^{\log_b n - 1} c \cdot (\frac{a}{b^d})^i \cdot n^d$$

► Case 2: $a = b^d$. In this case, T(n) is of the form:

$$T(n) = \Theta(n^{\log_b a}) + \sum_{i=0}^{\log_b n - 1} c \cdot n^d$$

- ► Hence: $T(n) = \Theta(n^{\log_b a}) + \Theta(n^d \cdot \log_b n)$
- ▶ Since $n^{\log_b a} = n^d$, this is $\Theta(n^d \cdot \log_b n)$

$$T(n) = \Theta(n^{\log_b a}) + \sum_{i=0}^{\log_b n - 1} c \cdot (\frac{a}{b^d})^i \cdot n^d$$

- ► Case 3: $a > b^d$. In this case, $n^{\log_b a} > n^d$.
- ▶ Use closed formula for geometric series to expand summation:

$$c \cdot n^d \cdot \frac{1 - \left(\frac{a}{b^d}\right)^{\log_b n - 1}}{1 - \frac{a}{b^d}}$$

- ▶ This can be rewritten to $c'(a^{\log_b n} n^d)$ for some constant c'
- ▶ Since, $a^{\log_b n} = n^{\log_b a}$, T(n) is $\Theta(n^{\log_b a})$