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Divide-and-Conquer Algorithms

I Divide-and-conquer algorithms are recursive algorithms that:

1. Divide problem into k smaller subproblems of the same form

2. Solve the subproblems

3. Conquer the original problem by combining solutions of
subproblems
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Example I: Binary Search

I Problem: Given sorted array of integers, is i in the array?

I Binary search algorithm:

1. Compare i with middle element m of array

2. If i > m, then recursively search right half

3. Otherwise, recursively search left half

I Classic divide-and-conquer algorithm
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Binary Search, cont.

I Question: What is the worst-case complexity of binary search?

I Let T (n) denote # of steps taken on input array of size n

I Write recurrence relation for T (n):
I Initial condition:

I How do we get a Big-O estimate from this recurrence?

I Idea: Solve the recurrence and then find Big-O estimate for it
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Solving Recurrence for Binary Search

T (n) = T (
n

2
) + 1 T (1) = 1

I Not in a form we can immediately solve, but can massage it!

I Let n = 2k : T (2k ) = T (2k−1) + 1

I Now, let ak = T (2k ): ak = ak−1 + 1 a0 = 1

I What’s the solution for this recurrence?

I Since n = 2k , this implies T (n) = log2n + 1

I Hence, complexity of binary search: Θ(log n)
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Example II: Merge Sort

I Problem: Sort elements in array

I Merge sort solution:

1. Recursively sort left half of array

2. Recursively sort right half of array

3. Merge the two sorted arrays

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Divide-and-Conquer Algorithms and The Master Theorem 6/19



How to Merge Two Sorted Arrays?

I Input: Two sorted arrays A1,A2

I Output: New sorted array that includes all elements in A1,A2

I Idea: Pointers to current elements in A1,A2 (initially first)

I Copy smaller element to output array and advance pointer

I If combined size of A1,A2 is n, merging takes 4n steps
(compare, advance two pointers, copy)
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Recurrence Relation for Merge Sort

I What is worst-case complexity of Merge Sort?

I Let T (n) be # operations performed to sort array of length n

I What is a recurrence relation for T (n)?

I As before, let n = 2k :

I
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Solving Recurrence Relation

ak = 2 · ak−1 + 4 · 2k a0 = 1

I Particular solution form:

I Particular solution:

I Solution for homogeneous recurrence:

I Solve for α: α · 20 + 0 · 22 = 1 ⇒ α = 1

I Solution:

I Plug in k = log2 n:

I Hence, algorithm is Θ(n · log n)
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Summary

I Recurrence relations for divide-conquer algorithms look like:

T (n) = a · T (
n

b
) + f (n)

I These are called divide-and-conquer recurrence relations

I To determine complexity of a divide-and conquer algorithm:

1. Write corresponding recurrence relation

2. Solve it exactly

3. Obtain Θ estimate

I Can we obtain a Θ estimate without solving recurrence
exactly?
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The Master Theorem

Consider the recurrence T (n) = a · T (nb ) + c · nd where a, c ≥ 1,
d ≥ 0, and b > 1. Then:

1. T (n) is Θ(nd ) if a < bd

2. T (n) is Θ(nd logn) if a = bd

3. T (n) is Θ(n logba) if a > bd
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Revisiting Examples

I Example 1: Recurrence for binary search: T (n) = T (n2 ) + 1

I Here, a = 1, b = 2, d = 0, Hence a = bd

I By Case 2 of Master Thm, T (n) = Θ(n0log n) = Θ(log n)

I Example 2: Recurrence for merge sort: T (n) = 2 · T (n2 ) + 4n

I Here, a = 2, b = 2, d = 1, Hence a = bd

I By Case 2 of Master Thm, T (n) = Θ(n · log n)
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More Examples

I Example 3: Consider recurrence T (n) = 2 · T (n2 ) + 3

I

I

I Example 4: Consider recurrence T (n) = T (n2 ) + n2

I

I
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Why is the Master Theorem True?

Consider the recurrence T (n) = a · T (nb ) + c · nd

I At every level of recursion, # subproblems multiplied by a

I But size of subproblem divided by b

I Let f (n) be c · nd
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Proof of Master Theorem

I What is the height h of this tree?

I Since problem size is 1 in base case, n
bh

= 1 ⇒ h = logbn

I At the i ’th level, we have a i subproblems, hence a logbn leaves

I Equal to n logba – verify by taking logb of both sides
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Proof of Master Theorem, cont.

I Total amount of work:

T (n) = Θ(n logba) +

logbn−1∑
i=0

a i · c · ( n
bi

)d

I Can be rewritten as:

T (n) = Θ(n logba) +

logbn−1∑
i=0

c · ( a

bd
)i · nd
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Proof of Master Theorem, cont.

T (n) = Θ(n logba) +

logbn−1∑
i=0

c · ( a

bd
)i · nd

I Case 1: a
bd
< 1. In this case, T (n) is of the form:

T (n) = Θ(n logba) + c · nd ·
logbn−1∑

i=0

r i for |r | < 1

I Hence: T (n) = Θ(n logba) + Θ(nd )

I Since a
bd
< 1, we have logba − d < 1. Thus T (n) = Θ(nd )
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Proof of Master Theorem, cont.

T (n) = Θ(n logba) +

logbn−1∑
i=0

c · ( a

bd
)i · nd

I Case 2: a = bd . In this case, T (n) is of the form:

T (n) = Θ(n logba) +

logbn−1∑
i=0

c · nd

I Hence: T (n) = Θ(n logba) + Θ(nd · logbn)

I Since n logba = nd , this is Θ(nd · logbn)
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Proof of Master Theorem, cont.

T (n) = Θ(n logba) +

logbn−1∑
i=0

c · ( a

bd
)i · nd

I Case 3: a > bd . In this case, n logba > nd .

I Use closed formula for geometric series to expand summation:

c · nd ·
1− ( a

bd
)logbn−1

1− a
bd

I This can be rewritten to c′(a logbn − nd ) for some constant c′

I Since , a logbn = n logba , T (n) is Θ(n logba)
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