CS311H: Discrete Mathematics

Divide-and-Conquer Algorithms and
The Master Theorem

Instructor: Isil Dillig

Instructor: Isil Dillig, CS311H: Discrete i Divids d-Conquer it and The Master Theorem 1/19




Divide-and-Conquer Algorithms

split / merge

Subproblem Subproblem

split / merge \\ split / merge

» Divide-and-conquer algorithms are recursive algorithms that:

1. Divide problem into k smaller subproblems of the same form

2. Solve the subproblems

3. Conquer the original problem by combining solutions of
subproblems

Instructor: Isil Dillig, CS311H: Discrete Mathematics Divide-and-Conquer Algorithms and The Master Theorem

2/19



Example I: Binary Search

!
-

4<6
I
I
I

|1|é|4|6|7|8|10|13|14|

» Problem: Given sorted array of integers, is ¢ in the array?

» Binary search algorithm:

1. Compare i with middle element m of array
2. If © > m, then recursively search right half

3. Otherwise, recursively search left half

» Classic divide-and-conquer algorithm

Instructor: lsil Dillig, CS311H: Discrete Mathematics Divide-and-Conquer Algorithms and The Master Theorem 3/19



Binary Search, cont.

v

Question: What is the worst-case complexity of binary search?

v

Let 7'(n) denote # of steps taken on input array of size n

v

Write recurrence relation for T'(n):
Initial condition:

v

v

How do we get a Big-O estimate from this recurrence?

v

Idea: Solve the recurrence and then find Big-O estimate for it

Instructor: Isil Dillig, CS311H: Discrete N i Divids d-Conquer and The Master Theorem 4/19




Solving Recurrence for Binary Search

T(n) = T(g) +1 T(1)=1

v

Not in a form we can immediately solve, but can massage it!

v

Let n = 2F: T(2F) = T(2F 1) 1

v

Now, let a = T(2%): ap = ap_1 +1 ap=1

What's the solution for this recurrence?

v

v

Since n = 2%, this implies T'(n) = logyn + 1

» Hence, complexity of binary search: ©(log n)

:
Instructor: Isil Dillig, CS311H: Discrete Mathematics Divide-and-Conquer Algorithms and The Master Theorem 5/19



Example II: Merge Sort

» Problem: Sort elements in array

» Merge sort solution:

1. Recursively sort left half of array

2. Recursively sort right half of array

3. Merge the two sorted arrays

Instructor: Isil Dillig, CS311H: Discrete Mathematics  Divide-and-Conquer Algorithms and The Master Theorem 6/19



How to Merge Two Sorted Arrays?

ENNEEEENEGE
T

v

Input: Two sorted arrays Aq, As

v

Output: New sorted array that includes all elements in A1, A

v

Idea: Pointers to current elements in Ay, Ao (initially first)

v

Copy smaller element to output array and advance pointer

v

If combined size of Ay, As is n, merging takes 4n steps
(compare, advance two pointers, copy)

Instructor: Isil Dillig, CS311H: Discrete N i Divids d-Conquer and The Master Theorem

/19



Recurrence Relation for Merge Sort

v

What is worst-case complexity of Merge Sort?

v

Let 7'(n) be # operations performed to sort array of length n

v

What is a recurrence relation for T'(n)?

v

As before, let n = 2F:

Instructor: Isil Dillig, CS311H: Discrete Mathematics Divide-and-Conquer Algorithms and The Master Theorem 8/19



Solving Recurrence Relation

ak:2-ak_1—|—4-2k ap =1

Particular solution form:

Particular solution:

Solution for homogeneous recurrence:
Solve for a: a-2°+0-22=1=a =1
Solution:

Plug in £ = log, n:

Hence, algorithm is ©(n - log n)

Instructor: lsil Dillig,

CS311H: Discrete Mathematics Divide-and-Conquer Algorithms and The Master Theorem

9/19



Summary

» Recurrence relations for divide-conquer algorithms look like:

n

T(n):a-T(b

)+ f(n)

» These are called divide-and-conquer recurrence relations

» To determine complexity of a divide-and conquer algorithm:

1. Write corresponding recurrence relation
2. Solve it exactly

3. Obtain © estimate

» Can we obtain a © estimate without solving recurrence
exactly?

Instructor: Isil Dillig, CS311H: Discrete Mathematics Divide-and-Conquer Algorithms and The Master Theorem 10/19



The Master Theorem

Consider the recurrence 7'(n) = a - T'(%) + ¢ - n? where a,c > 1,
d>0,and b > 1. Then:

1. T(n)is ©(n?) if a < b4
2. T(n)is O(n? logn) if a = b?

3. T(n)is ©(n'°&12) if ¢ > b?

Instructor: lsil Dillig, CS311H: Discrete ics  Divide-and-Conquer Algorithms and The Master Theorem 11/19




Revisiting Examples

v

v

v

v

v

v

Example 1: Recurrence for binary search: T'(n) = T'(3) + 1
Here, a =1,b=2,d =0, Hence a = b¢

By Case 2 of Master Thm, T(n) = ©(n%log n) = O(log n)
Example 2: Recurrence for merge sort: 7'(n) =2 - T(5) +4n
Here, a =2,b =2,d = 1, Hence a = b

By Case 2 of Master Thm, T'(n) = O(n -log n)

Instructor: lsil Dillig,

CS311H: Discrete Mathematics Divide-and-Conquer Algorithms and The Master Theorem

12/19



More Examples

» Example 3: Consider recurrence T'(n) =2 T(%) +3

>

2

v

Example 4: Consider recurrence T'(n) = T(5) +n

Instructor: Isil Dillig, CS311H: Discrete i Divid d-Conquer Algori and The Master Theorem 13/19




Why is the Master Theorem True?
Consider the recurrence T'(n) =a- T(%)+ ¢ n?

> At every level of recursion, # subproblems multiplied by a
» But size of subproblem divided by b

> Let f(n) be c-n?

Total Cost

£(n)

;% ﬂ\ s
AA A A

atf (n/ph)

Instructor: Isil Dillig, CS311H: Discrete Mathematics Divide-and-Conquer Algorithms and The Master Theorem 14/19



Proof of Master Theorem

Total Cost
£(n)
Py
A\/ a children \ af (n/b)
[} \. a2£ (n/b2)
\ \ / >\
/ @ \
/
° °
alf (n/pl)

» What is the height % of this tree?
> Since problem size is 1 in base case, ;z =1 = h = log;n
» At the i'th level, we have a’ subproblems, hence a'°%" leaves

» Equal to n'°%:% — verify by taking log, of both sides

Instructor: Isil Dillig, CS311H: Discrete Mathematics Divide-and-Conquer Algorithms and The Master Theorem 15/19



Proof of Master Theorem, cont.

Total Cost
£(n)
N a chlldren ﬂ af (n/b)
° /.\ \.\ a2£ (n/b?)
» Total amount of work: e/t
log,n—1
n
T(n)= 0% + Y ateco (1)
=0
» Can be rewritten as
log,n—1
T(n) = O(n'°89) + c (i) -n?
pa
=0

Instructor: Isil Dillig, CS311H: Discrete Mathematics Divide-and-Conquer Algorithms and The Master Theorem 16/19



Proof of Master Theorem, cont.

log,n—1
T(n) = O(n'8%) + ¢ (
=0

a

bd)i . ’I’Ld

» Case 1: 7 < 1. In this case, T'(n) is of the form:

log,n—1
T(n) = O(n'°89) 4 ¢. n?. Z rt for |r| < 1
i=0
» Hence: T'(n) = O(n'°#r?) + O(n?)

> Since ;4 <1, we have log,a —d < 1. Thus 7'(n) = O(n?)

Instructor: lsil Dillig, CS311H: Discrete Mathematics Divide-and-Conquer Algorithms and The Master Theorem 17/19



Proof of Master Theorem, cont.

log,n—1
T(n) = O(n'8%) + c(
1=0

a

bd)i . ’/Ld

» Case 2: a = b?. In this case, T(n) is of the form:
log,n—1

T(n) = ©(n'8r%) + Z c-n?
1=0

» Hence: T'(n) = O(n'&?) + O(n - log,n)

» Since n'°8v® = nd, this is O(n? - log,n)

Instructor: Isil Dillig, CS311H: Discrete Mathematics Divide-and-Conquer Algorithms and The Master Theorem 18/19



Proof of Master Theorem, cont.

log,n—1
T -0 log, a a \; d
() =0 + 3 cr ()
i=0
» Case 3: a > b%. In this case, n'°8® > pd,
> Use closed formula for geometric series to expand summation:
a \log,n—1
o L= ()™
c-n®-
1_ @
bd
» This can be rewritten to /(a2 — n?) for some constant ¢’

» Since , al8™ = nlogee T(n) is O(n'o8s)

Instructor: lsil Dillig, CS311H: Discrete Mathematics Divide-and-Conquer Algorithms and The Master Theorem 19/19



