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Linear Congruences

I A congruence of the form ax ≡ b (mod m) where a, b,m are
integers and x a variable is called a linear congruence.

I Given such a linear congruence, often need to answer:

1. Are there any solutions?

2. What are the solutions?

I Example: Does 8x ≡ 2 (mod 4) have any solutions?

I Example: Does 8x ≡ 2 (mod 7) have any solutions?

I Question: Is there a systematic way to solve linear
congruences?
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Determining Existence of Solutions

I Theorem: The linear congruence ax ≡ b (mod m) has
solutions iff gcd(a,m)|b.

I Proof involves two steps:

1. If ax ≡ b (mod m) has solutions, then gcd(a,m)|b.

2. If gcd(a,m)|b, then ax ≡ b (mod m) has solutions.

I First prove (1), then (2).
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Proof, Part I

If ax ≡ b (mod m) has solutions, then gcd(a,m)|b.

I

I

I

I

I

I
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Proof, Part II

If gcd(a,m)|b, then ax ≡ b (mod m) has solutions.

I Let d = gcd(a,m) and suppose d |b

I Then, there is a k such that b = dk

I By earlier theorem, there exist s, t such that d = s · a + t ·m

I Multiply both sides by k : dk = a · (sk) +m · (tk)

I Since b = dk , we have b − a · (sk) = m · tk

I Thus, b ≡ a · (sk) (mod m)

I Hence, sk is a solution.
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Examples

I Does 5x ≡ 7 (mod 15) have any solutions?

I Does 3x ≡ 4 (mod 7) have any solutions?
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Finding Solutions

I Can determine existence of solutions, but how to find them?

I Theorem: Let d = gcd(a,m) = sa + tm. If d |b, then the
solutions to ax ≡ b (mod m) are given by:

x =
sb

d
+

m

d
u where u ∈ Z
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Example

Let d = gcd(a,m) = sa + tm. If d |b, then the solutions to
ax ≡ b (mod m) are given by:

x =
sb

d
+

m

d
u where u ∈ Z

I What are the solutions to the linear congruence 3x ≡ 4 (mod 7)?

I
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Another Example

Let d = gcd(a,m) = sa + tm. If d |b, then the solutions to
ax ≡ b (mod m) are given by:

x =
sb

d
+

m

d
u where u ∈ Z

I What are the solutions to the linear congruence 3x ≡ 1 (mod 7)?

I

I
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Inverse Modulo m

I The inverse of a modulo m, written a has the property:

aa ≡ 1 (mod m)

I Theorem: Inverse of a modulo m exists if and only if a and m
are relatively prime.

I Proof: Inverse must satisfy ax ≡ 1 (mod m)

I

I

I Does 3 have an inverse modulo 7?
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Example

I Find an inverse of 3 modulo 7.

I An inverse is any solution to 3x ≡ 1 (mod 7)

I Earlier, we already computed solutions for this equation as:

x = −2 + 7u

I Thus, −2 is an inverse of 3 modulo 7

I 5, 12,−9, . . . are also inverses

Instructor: Işıl Dillig, CS311H: Discrete Mathematics More Number Theory 11/21



Cryptography

I Cryptography is the study of techniques for secure
transmission of information in the presence of adversaries

I How can Alice send secrete messages to Bob without Eve
being able to read them?
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Private vs. Public Crypto Systems

I Two different kinds of cryptography systems:

1. Private key cryptography (also known as symmetric)

2. Public key cryptography (asymmetric)

I In private key cryptography, sender and receiver agree on
secret key that both use to encrypt/decrypt the message

I In public key crytography, a public key is used to encrypt the
message, and private key is used to decrypt the message
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Private Key Cryptography

I Private key crypto is classical method, used since antiquity

I Caesar’s cipher is an example of private key cryptography

I Caesar’s cipher is shift cipher where f (p) = (p + k) (mod 26)

I Both receiver and sender need to know k to encrypt/decrypt

I Modern symmetric algorithms: RC4, DES, AES, . . .

I Main problem: How do you exchange secret key in a secure
way?
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Public Key Cryptography

I Public key cryptography is the modern method: different keys
are used to encrypt vs. decrypt message

I Most commonly used public key system is RSA

I Great application of number theory and things we’ve learned
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RSA History

I Named after its inventors Rivest, Shamir, and Adlemann, all
researchers at MIT (1978)

I Actually, similar system invented earlier by British researcher
Clifford Cocks, but classified – unknown until 90’s
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RSA Overview

I Bob has two keys: public and private

I Everyone knows Bob’s public key, but
only he knows his private key

I Alice encrypts message using Bob’s
public key

I Bob decrypts message using private key

I Since public key cannot decrypt, noone
can read message accept Bob
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High Level Math Behind RSA

I In the RSA system, private key consists of two very large
prime numbers p, q

I Public key consists of a number n, which is the product of
p, q and another number e, which is relatively prime with
(p − 1)(q − 1)

I Encrypt messages using n, e, but to decrypt, must know p, q

I In theory, can extract p, q from n using prime factorization,
but this is intractable for very large numbers

I Security of RSA relies on inherent computational
difficulty of prime factorization
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Encryption in RSA

I To send message to Bob, Alice first represents message as a
sequence of numbers

I Call this number representing message M

I Alice then uses Bob’s public key n, e to perform encryption as:

C = M e (mod n)

I C is called the ciphertext
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RSA Decryption

I Decryption key d is the inverse of e modulo (p − 1)(q − 1):

d · e ≡ 1 (mod(p − 1)(q − 1))

I Decryption function: C d (mod n)

I As we saw earlier, d can be computed reasonably efficiently if
we know (p − 1)(q − 1)

I However, since adversaries do not know p, q , they cannot
compute d with reasonable computational effort!
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Security of RSA

I The encryption function used in RSA is a trapdoor function

I Trapdoor function is easy to compute in one direction, but
very difficult in reverse direction without additional knowledge

I Decryption without private key is very hard because requires
prime factorization (which is intractable for large enough
numbers)

I Interesting fact: There are efficient (poly-time) prime
factorization algorithms for quantum computers (e.g., Shor’s
algorithm)

I If we could build quantum computers with sufficient ”qubits”,
RSA would no longer be secure!
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