CS311H: Discrete Mathematics

More Number Theory

Instructor: Ișil Dillig

Linear Congruences

- ▶ A congruence of the form $ax \equiv b \pmod{m}$ where a, b, m are integers and x a variable is called a linear congruence.
- Given such a linear congruence, often need to answer:
 - 1. Are there any solutions?
 - 2. What are the solutions?
- **Example:** Does $8x \equiv 2 \pmod{4}$ have any solutions?
- **Example:** Does $8x \equiv 2 \pmod{7}$ have any solutions?
- Question: Is there a systematic way to solve linear congruences?

Determining Existence of Solutions

- ▶ Theorem: The linear congruence $ax \equiv b \pmod{m}$ has solutions iff gcd(a, m)|b.
- Proof involves two steps:
 - 1. If $ax \equiv b \pmod{m}$ has solutions, then gcd(a, m)|b.
 - 2. If gcd(a, m)|b, then $ax \equiv b \pmod{m}$ has solutions.
- ▶ First prove (1), then (2).

Proof, Part I

If $ax \equiv b \pmod{m}$ has solutions, then gcd(a, m)|b.

- •
- •

Proof, Part II

If gcd(a, m)|b, then $ax \equiv b \pmod{m}$ has solutions.

- ▶ Let $d = \gcd(a, m)$ and suppose d|b
- ▶ Then, there is a k such that b = dk
- ▶ By earlier theorem, there exist s, t such that $d = s \cdot a + t \cdot m$
- ▶ Multiply both sides by k: $dk = a \cdot (sk) + m \cdot (tk)$
- ▶ Since b = dk, we have $b a \cdot (sk) = m \cdot tk$
- ▶ Thus, $b \equiv a \cdot (sk) \pmod{m}$
- ightharpoonup Hence, sk is a solution.

Examples

- ▶ Does $5x \equiv 7 \pmod{15}$ have any solutions?
- ▶ Does $3x \equiv 4 \pmod{7}$ have any solutions?

Finding Solutions

- ▶ Can determine existence of solutions, but how to find them?
- ► Theorem: Let $d = \gcd(a, m) = sa + tm$. If d|b, then the solutions to $ax \equiv b \pmod{m}$ are given by:

$$x = \frac{sb}{d} + \frac{m}{d}u$$
 where $u \in \mathbb{Z}$

Example

Let $d = \gcd(a, m) = sa + tm$. If d | b, then the solutions to $ax \equiv b \pmod{m}$ are given by:

$$x = \frac{sb}{d} + \frac{m}{d}u$$
 where $u \in \mathbb{Z}$

- ▶ What are the solutions to the linear congruence $3x \equiv 4 \pmod{7}$?
- .

Another Example

Let $d=\gcd(a,m)=sa+tm$. If d|b, then the solutions to $ax\equiv b\pmod m$ are given by:

$$x = \frac{sb}{d} + \frac{m}{d}u$$
 where $u \in \mathbb{Z}$

- ▶ What are the solutions to the linear congruence $3x \equiv 1 \pmod{7}$?

Inverse Modulo *m*

▶ The inverse of a modulo m, written \overline{a} has the property:

$$a\overline{a} \equiv 1 \pmod{m}$$

- ► Theorem: Inverse of *a* modulo *m* exists if and only if *a* and *m* are relatively prime.
- ▶ Proof: Inverse must satisfy $ax \equiv 1 \pmod{m}$

- ▶ Does 3 have an inverse modulo 7?

Example

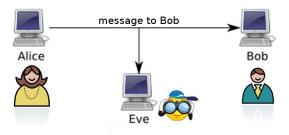
- ▶ Find an inverse of 3 modulo 7.
- ▶ An inverse is any solution to $3x \equiv 1 \pmod{7}$
- ► Earlier, we already computed solutions for this equation as:

$$x = -2 + 7u$$

- ▶ Thus, -2 is an inverse of 3 modulo 7
- ▶ $5, 12, -9, \dots$ are also inverses

Cryptography

 Cryptography is the study of techniques for secure transmission of information in the presence of adversaries



► How can Alice send secrete messages to Bob without Eve being able to read them?

Private vs. Public Crypto Systems

- ► Two different kinds of cryptography systems:
 - 1. Private key cryptography (also known as symmetric)
 - 2. Public key cryptography (asymmetric)
- In private key cryptography, sender and receiver agree on secret key that both use to encrypt/decrypt the message
- In public key crytography, a public key is used to encrypt the message, and private key is used to decrypt the message

Private Key Cryptography

- ▶ Private key crypto is classical method, used since antiquity
- Caesar's cipher is an example of private key cryptography
- ► Caesar's cipher is shift cipher where $f(p) = (p + k) \pmod{26}$
- ▶ Both receiver and sender need to know k to encrypt/decrypt
- Modern symmetric algorithms: RC4, DES, AES, . . .
- Main problem: How do you exchange secret key in a secure way?

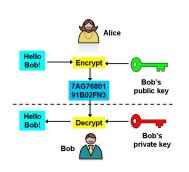
Public Key Cryptography

- ▶ Public key cryptography is the modern method: different keys are used to encrypt vs. decrypt message
- Most commonly used public key system is RSA
- ► Great application of number theory and things we've learned

RSA History

- ▶ Named after its inventors Rivest, Shamir, and Adlemann, all researchers at MIT (1978)
- Actually, similar system invented earlier by British researcher Clifford Cocks, but classified – unknown until 90's

RSA Overview



- Bob has two keys: public and private
- Everyone knows Bob's public key, but only he knows his private key
- Alice encrypts message using Bob's public key
 - Bob decrypts message using private key
- Since public key cannot decrypt, noone can read message accept Bob

High Level Math Behind RSA

- ▶ In the RSA system, private key consists of two very large prime numbers p, q
- ▶ Public key consists of a number n, which is the product of p, q and another number e, which is relatively prime with (p-1)(q-1)
- lacktriangle Encrypt messages using n, e, but to decrypt, must know p, q
- ▶ In theory, can extract p, q from n using prime factorization, but this is intractable for very large numbers
- Security of RSA relies on inherent computational difficulty of prime factorization

Encryption in RSA

- ► To send message to Bob, Alice first represents message as a sequence of numbers
- ▶ Call this number representing message *M*
- lacktriangle Alice then uses Bob's public key n,e to perform encryption as:

$$C = M^e \pmod{n}$$

► *C* is called the ciphertext

RSA Decryption

▶ Decryption key d is the inverse of e modulo (p-1)(q-1):

$$d \cdot e \equiv 1 \pmod{(p-1)(q-1)}$$

- ▶ Decryption function: $C^d \pmod{n}$
- As we saw earlier, d can be computed reasonably efficiently if we know (p-1)(q-1)
- ▶ However, since adversaries do not know p, q, they cannot compute d with reasonable computational effort!

Security of RSA

- ► The encryption function used in RSA is a trapdoor function
- ► Trapdoor function is easy to compute in one direction, but very difficult in reverse direction without additional knowledge
- Decryption without private key is very hard because requires prime factorization (which is intractable for large enough numbers)
- Interesting fact: There are efficient (poly-time) prime factorization algorithms for quantum computers (e.g., Shor's algorithm)
- ► If we could build quantum computers with sufficient "qubits", RSA would no longer be secure!