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Linear Congruences

Instructor: Isil Dillig,

A congruence of the form ax = b (mod m) where a, b, m are
integers and x a variable is called a linear congruence.

Given such a linear congruence, often need to answer:

1. Are there any solutions?

2. What are the solutions?
Example: Does 8z = 2 (mod 4) have any solutions?
Example: Does 8z = 2 (mod 7) have any solutions?

Question: Is there a systematic way to solve linear
congruences?
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Determining Existence of Solutions

» Theorem: The linear congruence az = b (mod m) has
solutions iff ged(a, m)|b.

» Proof involves two steps:

1. If az = b (mod m) has solutions, then ged(a, m)|b.
2. If ged(a, m)|b, then az = b (mod m) has solutions.

» First prove (1), then (2).
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Proof, Part |

If ax = b (mod m) has solutions, then gcd(a, m)|b.

>
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Proof, Part Il

If ged(a, m)|b, then az = b (mod m) has solutions.
> Let d = ged(a, m) and suppose d|b
» Then, there is a £ such that b = dk
> By earlier theorem, there exist s,t such that d =s-a+t-m
> Multiply both sides by k: dk = a - (sk) + m - (tk)
> Since b = dk, we have b — a - (sk) = m - tk
> Thus, b = a - (sk) (mod m)

» Hence, sk is a solution. O
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Examples

» Does 52 = 7 (mod 15) have any solutions?

» Does 3z =4 (mod 7) have any solutions?
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Finding Solutions

» Can determine existence of solutions, but how to find them?

» Theorem: Let d = ged(a, m) = sa + tm. If d|b, then the
solutions to ax = b (mod m) are given by:
sb

m
J:—E—i-gu where u € Z
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Example

Let d = ged(a, m) = sa + tm. If d|b, then the solutions to
ar = b (mod m) are given by:

b
a::s——i—%u where u € Z

d

> What are the solutions to the linear congruence 3z =4 (mod 7)?
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Another Example

Let d = ged(a, m) = sa + tm. If d|b, then the solutions to
az = b (mod m) are given by:

b
:c:%—l—%u where u € Z

> What are the solutions to the linear congruence 3z =1 (mod 7)?

Instructor: Isil Dillig, CS311H: Discrete Mathematics More Number Theory 9/21



Inverse Modulo m

» The inverse of ¢ modulo m, written @ has the property:
aa =1 (mod m)
» Theorem: Inverse of a modulo m exists if and only if a and m
are relatively prime.
» Proof: Inverse must satisfy az = 1 (mod m)
>
| 4
» Does 3 have an inverse modulo 77
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Example

v

Find an inverse of 3 modulo 7.

v

An inverse is any solution to 3z = 1 (mod 7)

v

Earlier, we already computed solutions for this equation as:

r=—-24+"Tu

v

Thus, —2 is an inverse of 3 modulo 7

v

5,12, -9, ... are also inverses
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Cryptography

» Cryptography is the study of techniques for secure
transmission of information in the presence of adversaries

{». message to Bob >'.

Alice Bob

A = &

Eve

» How can Alice send secrete messages to Bob without Eve
being able to read them?
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Private vs. Public Crypto Systems

» Two different kinds of cryptography systems:

1. Private key cryptography (also known as symmetric)

2. Public key cryptography (asymmetric)

> In private key cryptography, sender and receiver agree on
secret key that both use to encrypt/decrypt the message

> In public key crytography, a public key is used to encrypt the
message, and private key is used to decrypt the message
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Private Key Cryptography
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Private key crypto is classical method, used since antiquity
Caesar's cipher is an example of private key cryptography
Caesar's cipher is shift cipher where f(p) = (p + k) (mod 26)
Both receiver and sender need to know k to encrypt/decrypt
Modern symmetric algorithms: RC4, DES, AES, ...

Main problem: How do you exchange secret key in a secure
way’?
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Public Key Cryptography

» Public key cryptography is the modern method: different keys
are used to encrypt vs. decrypt message

» Most commonly used public key system is RSA

» Great application of number theory and things we've learned
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RSA History

» Named after its inventors Rivest, Shamir, and Adlemann, all
researchers at MIT (1978)

» Actually, similar system invented earlier by British researcher
Clifford Cocks, but classified — unknown until 90's
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RSA Overview

» Bob has two keys: public and private

Alice > Everyone knows Bob's public key, but
R only he knows his private key
Bob! —'Encryplq—
Tacresot ounerey > Alice encrypts message using Bob's
———————————— i——¥————————-— public key
Bobt —— Decrypt +—— Qe

o » Bob decrypts message using private key

Bob “ private key

» Since public key cannot decrypt, noone
can read message accept Bob
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High Level Math Behind RSA

> In the RSA system, private key consists of two very large
prime numbers p, q

» Public key consists of a number n, which is the product of
p, q and another number e, which is relatively prime with

(p—1(¢—1)
» Encrypt messages using n, e, but to decrypt, must know p, ¢

> In theory, can extract p, g from n using prime factorization,
but this is intractable for very large numbers

» Security of RSA relies on inherent computational
difficulty of prime factorization
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Encryption in RSA

v

To send message to Bob, Alice first represents message as a
sequence of numbers

v

Call this number representing message M

v

Alice then uses Bob's public key n, e to perform encryption as:

C = M*® (mod n)

v

C is called the ciphertext
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RSA Decryption

» Decryption key d is the inverse of ¢ modulo (p — 1)(¢ — 1):
d-e=1 (mod(p—1)(¢g—1))
» Decryption function: C?¢ (mod n)

> As we saw earlier, d can be computed reasonably efficiently if
we know (p —1)(¢g —1)

» However, since adversaries do not know p, ¢, they cannot
compute d with reasonable computational effort!

:
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Security of RSA

>
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The encryption function used in RSA is a trapdoor function

Trapdoor function is easy to compute in one direction, but
very difficult in reverse direction without additional knowledge

Decryption without private key is very hard because requires
prime factorization (which is intractable for large enough
numbers)

Interesting fact: There are efficient (poly-time) prime
factorization algorithms for quantum computers (e.g., Shor's

algorithm)

If we could build quantum computers with sufficient "qubits”,
RSA would no longer be secure!
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