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Recall: Recursively Defined Sequences

> In previous lectures, we looked at recursively-defined sequences
> Example: What sequence is this?

@ = 1
ap, = ap—1+1

» Another example: Fibonacci numbers

fo =1
h =1
fn = fn—l +fn—2
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Recurrence Relations

» Recurively defined sequences are often referred to as
recurrence relations

» The base cases in the recursive definition are called initial
values of the recurrence relation

» Example: Write recurrence relation representing number of
bacteria in n'th hour if colony starts with 5 bacteria and
doubles every hour?
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Closed Form Solutions

» Recurrence relations are often very natural to define, but we
usually need to find closed form solution

» Recall: Closed form solution defines n'th number in the
sequence as a function of n

» What is closed form solution to the following recurrence?

aw = 0
Gpn = Qp—1+N
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Closed Form Solutions of Recurrence Relations

» Given an arbitrary recurrence relation, is there a mechanical
way to obtain the closed form solution?

> Not for arbitrary, but for a subclass of recurrence relations

» A linear homogeneous recurrence relation with constant
coefficients is a recurrence relation of the form:

Op = Clap—1 + C20p—2 + ... + Cpap_f
where each ¢; is a constant and ¢ is non-zero
» The value of £ is called the degree of the recurrence relation

» The recurrence relation for Fibonacci numbers is a degree 2
linear homogeneous recurrence
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Examples and Non-Examples

» Which of these are linear homogenous recurrence relations
with constant coefficients?

> p = Ap_1+ 20,5
> Gp, =20,_9+5

> Qp = Up_1+"N

> Qp = Ap—1 " Ap—2

> Gp =N Ap-1
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Characteristic Polynomial

» Cook-book recipe for solving linear homogenous recurrence
relations with constant coefficients

» Definition: The characteristic equation of a recurrence relation
of the form a,, = c1an—1 + c2ap—9 + ... CLOp_} IS

rk = clrkfl + 627’]“2 + ...+

» i.e., Replace a,_; with 7= (k)
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Characteristic Equation Examples

» What are the characteristic equations for the following
recurrence relations?

> fn = fn—l +fn—2
> ay, = 2a,_1

> G, = 20,1+ 50an_3
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Characteristic Roots

» The characteristic roots of a linear homogeneous recurrence
relation are the roots of its characteristic equation.

» What are the characteristic roots of the following recurrence
relations?

> Gp = 20,1+ 30,2

> fn = fnfl +fn72
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Theorem | for Solving Linear Homogenous Recurrence
Relations

Let a, = c1ay—1 + c2ap—2 + ...+ cra,_j be a recurrence relation
with & distinct characteristic roots 71, ..., 7.

» Then the closed form solution for a,, is of the form:
a1 + agry + .. agry

» Furthermore, given k initial conditions, the constants
a1, ...,qp are uniquely determined

» Note: Won't do the proof because requires a good amount of
linear algebra

Instructor: lsil Dillig, CS311H: Discrete Mathematics Recurrence Relations 10/23



Example

Find a closed form solution for the recurrence a,, = a,,—1 + 2a,—9
with initial conditions ag =2 and a; =7

» Characteristic equation:
» Characteristic roots:
» Coefficients:

» Closed-form solution:
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Generalized Theorem

» So far, we assume all characteristic roots are distinct — what
happens if this is not the case?

» Theorem: Let a, = c1ay,_1 + c20y_2+ ...+ cra,—j be a
recurrence relation with ¢ distinct characteristic roots
r1,...,r, with multiplicities my, ..., my. Then solutions are
of the form:

t

i—1
ay, = E (ot+oui-n+...+ g, 0™ )
i=0
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An Example

» Find closed form of recurrence a,, = 3a,_1 — 3ay_9 + ap_3
with initial conditions aqg =1,a1 =3,a0 =7
» Characteristic equation:

» Characteristic roots:

Solution form:

v

Coefficients:

v
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Solving Linear Non-Homogeneous Recurrence Relations

» How do we solve linear, but non-homogeneous recurrence
relations, such as a, = 2a,,_1 + 17

> A linear non-homogeneous recurrence relation with constant
coefficients is of the form:

ap = Clap—1+ a2ap—2+ ...+ can_i + F(n)

» The recurrence obtained by dropping F'(n) is called the
associated homogeneous recurrence relation
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Particular Solution

» A particular solution for a recurrence relation is one that
satisfies the recurrence but not necessarily the initial
conditions

» Example: Consider the recurrence a, = a,_1 + 1 with initial
condition ag = 5

» A particular solution for this recurrence is a, = n, but it does
not satisfy the initial condition
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Theorem about Linear Non-homogeneous Recurrences

Suppose a,, = ¢1ap—1 + ...+ cpa,— + F(n) has particular
solution af, and a,}; is solution for associated homogeneous
recurrence. Then every solution is of the form a} + a.
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Why is this theorem useful?

» If we can find a particular solution, then we can also
mechanically find a solution that satisfies initial conditions.

» Example: Solve the recurrence relation a, = 3a,,_1 + 2n with
initial condition a; = 3

» A particular solution: —n — 3 (Why?)
» Solutions for homogeneous recurrence:
» Solutions for recurrence:

» Solve for a:
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How do we find a particular solution?
Theorem: Consider a, = c1ap—1 + ...+ can—i + F(n) where:

F(TI,) = (btnt + bt,lnt_l 4+ ...+ bl?’l, + bo)sn

» Case 1: If s is not a root of the associated characteristic
equation, then there exists a particular solution of the form:

(ptnt +pant T L pin+ Po)s”

» Case 2: If s is a root with multiplicity m of the characteristic
equation, then there exists a solution of the form:

n™(pn' 4+ pioin'™ L+ pin+ po)s”
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Example |

» Consider again the recurrence a, = 3a,_1 + 2n

v

Here, s = 1 and characteristic root is 3

v

Hence, there exists a particular solution of the form pin + pg

v

Now, solve for pg, p1:

pin+po = 3(p1(n — 1) + po) + 2n

v

Rearrange: 2n(p; + 1) + (2po — 3p1) =0

v

A solution p1 = —1,py = _%

A particular solution: —n — %

v
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Example Il

» Find a particular solution for a,, = 6a,_1 — 9a,_o + 2"

Characteristic root:

v

» Particular solution of the form:

v

Find po such that pg - 2" = 6(po - 2" 1) — 9(pg - 277 2) + 27

v

Solve for py:

Particular solution:

v

Instructor: lsil Dillig, CS311H: Discrete Mathematics Recurrence Relations 20/23



Towers of Hanoi

i
3

Given 3 pegs where first peg contains n disks

v

v

Goal: Move all the disks to a different peg (e.g., second one)

v

Rule 1: Larger disks cannot rest on top of smaller disks

v

Rule 2: Can only move the top-most disk at a time

v

Question: How many steps does it take to move all n disks?
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A Recursive Solution

v

Solve recursively — T}, is number of steps to move n disks
» Base case: n = 1, move disk from first peg to second: T} =1

» Induction: Suppose we can move n — 1 disks in T),_1 steps;
how many steps does it take to move 77, disks?

> ldea: First move the topmost n — 1 disks to peg 3; can be
done in T,,_ steps

» Now, move bottom-most disk to peg 2 — takes just 1 step

> Finally, recursively move n — 1 disks in peg 3 to peg 2 — can
be done in T, | steps
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Towers of Hanoi, cont.

Recurrence relation:

v

Initial condition:

v

v

Now find closed form for T,

v

What is a particular solution?

» Solution for homogeneous recurrence:

v

Solve for o

v

Solution for recurrence:
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