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Recall: Recursively Defined Sequences

I In previous lectures, we looked at recursively-defined sequences

I Example: What sequence is this?

a0 = 1
an = an−1 + 1

I Another example: Fibonacci numbers

f0 = 1
f1 = 1
fn = fn−1 + fn−2
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Recurrence Relations

I Recurively defined sequences are often referred to as
recurrence relations

I The base cases in the recursive definition are called initial
values of the recurrence relation

I Example: Write recurrence relation representing number of
bacteria in n’th hour if colony starts with 5 bacteria and
doubles every hour?
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Closed Form Solutions

I Recurrence relations are often very natural to define, but we
usually need to find closed form solution

I Recall: Closed form solution defines n’th number in the
sequence as a function of n

I What is closed form solution to the following recurrence?

a0 = 0
an = an−1 + n
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Closed Form Solutions of Recurrence Relations

I Given an arbitrary recurrence relation, is there a mechanical
way to obtain the closed form solution?

I Not for arbitrary, but for a subclass of recurrence relations

I A linear homogeneous recurrence relation with constant
coefficients is a recurrence relation of the form:

an = c1an−1 + c2an−2 + . . .+ ckan−k

where each ci is a constant and ck is non-zero

I The value of k is called the degree of the recurrence relation

I The recurrence relation for Fibonacci numbers is a degree 2
linear homogeneous recurrence
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Examples and Non-Examples

I Which of these are linear homogenous recurrence relations
with constant coefficients?

I an = an−1 + 2an−5

I an = 2an−2 + 5

I an = an−1 + n

I an = an−1 · an−2

I an = n · an−1
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Characteristic Polynomial

I Cook-book recipe for solving linear homogenous recurrence
relations with constant coefficients

I Definition: The characteristic equation of a recurrence relation
of the form an = c1an−1 + c2an−2 + . . . ckan−k is

rk = c1r
k−1 + c2r

k−2 + . . .+ ck

I i.e., Replace an−i with rn−i−(n−k)
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Characteristic Equation Examples

I What are the characteristic equations for the following
recurrence relations?

I fn = fn−1 + fn−2

I an = 2an−1

I an = 2an−1 + 5an−3
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Characteristic Roots

I The characteristic roots of a linear homogeneous recurrence
relation are the roots of its characteristic equation.

I What are the characteristic roots of the following recurrence
relations?

I an = 2an−1 + 3an−2

I fn = fn−1 + fn−2
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Theorem I for Solving Linear Homogenous Recurrence
Relations

Let an = c1an−1 + c2an−2 + . . .+ ckan−k be a recurrence relation
with k distinct characteristic roots r1, . . . , rk .

I Then the closed form solution for an is of the form:

α1r
n
1 + α2r

n
2 + . . .+ αkr

n
k

I Furthermore, given k initial conditions, the constants
α1, . . . , αk are uniquely determined

I Note: Won’t do the proof because requires a good amount of
linear algebra
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Example

Find a closed form solution for the recurrence an = an−1 + 2an−2

with initial conditions a0 = 2 and a1 = 7

I Characteristic equation:

I Characteristic roots:

I Coefficients:

I Closed-form solution:
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Generalized Theorem

I So far, we assume all characteristic roots are distinct – what
happens if this is not the case?

I Theorem: Let an = c1an−1 + c2an−2 + . . .+ ckan−k be a
recurrence relation with t distinct characteristic roots
r1, . . . , rk with multiplicities m1, . . . ,mk . Then solutions are
of the form:

an =

t∑
i=0

(αi ,0 + αi ,1 · n + . . .+ αi ,mi−1 · nmi−1)rni
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An Example

I Find closed form of recurrence an = 3an−1 − 3an−2 + an−3

with initial conditions a0 = 1, a1 = 3, a2 = 7

I Characteristic equation:

I Characteristic roots:

I Solution form:

I Coefficients:
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Solving Linear Non-Homogeneous Recurrence Relations

I How do we solve linear, but non-homogeneous recurrence
relations, such as an = 2an−1 + 1?

I A linear non-homogeneous recurrence relation with constant
coefficients is of the form:

an = c1an−1 + a2an−2 + . . .+ ckan−k + F (n)

I The recurrence obtained by dropping F (n) is called the
associated homogeneous recurrence relation
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Particular Solution

I A particular solution for a recurrence relation is one that
satisfies the recurrence but not necessarily the initial
conditions

I Example: Consider the recurrence an = an−1 + 1 with initial
condition a0 = 5

I A particular solution for this recurrence is an = n, but it does
not satisfy the initial condition
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Theorem about Linear Non-homogeneous Recurrences

Suppose an = c1an−1 + . . .+ ckan−k + F (n) has particular
solution ap

n , and ah
n is solution for associated homogeneous

recurrence. Then every solution is of the form ap
n + ah

n .
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Why is this theorem useful?

I If we can find a particular solution, then we can also
mechanically find a solution that satisfies initial conditions.

I Example: Solve the recurrence relation an = 3an−1 + 2n with
initial condition a1 = 3

I A particular solution: −n − 3
2 (Why?)

I Solutions for homogeneous recurrence:

I Solutions for recurrence:

I Solve for α:

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Recurrence Relations 17/23



How do we find a particular solution?

Theorem: Consider an = c1an−1 + . . .+ ckan−k + F (n) where:

F (n) = (btn
t + bt−1n

t−1 + . . .+ b1n + b0)s
n

I Case 1: If s is not a root of the associated characteristic
equation, then there exists a particular solution of the form:

(ptn
t + pt−1n

t−1 + . . .+ p1n + p0)s
n

I Case 2: If s is a root with multiplicity m of the characteristic
equation, then there exists a solution of the form:

nm(ptn
t + pt−1n

t−1 + . . .+ p1n + p0)s
n
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Example I

I Consider again the recurrence an = 3an−1 + 2n

I Here, s = 1 and characteristic root is 3

I Hence, there exists a particular solution of the form p1n + p0

I Now, solve for p0, p1:

p1n + p0 = 3(p1(n − 1) + p0) + 2n

I Rearrange: 2n(p1 + 1) + (2p0 − 3p1) = 0

I A solution p1 = −1, p0 = −3
2

I A particular solution: −n − 3
2
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Example II

I Find a particular solution for an = 6an−1 − 9an−2 + 2n

I Characteristic root:

I Particular solution of the form:

I Find p0 such that p0 · 2n = 6(p0 · 2n−1)− 9(p0 · 2n−2) + 2n

I Solve for p0:

I Particular solution:
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Towers of Hanoi

I Given 3 pegs where first peg contains n disks

I Goal: Move all the disks to a different peg (e.g., second one)

I Rule 1: Larger disks cannot rest on top of smaller disks

I Rule 2: Can only move the top-most disk at a time

I Question: How many steps does it take to move all n disks?
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A Recursive Solution

I Solve recursively – Tn is number of steps to move n disks

I Base case: n = 1, move disk from first peg to second: T1 = 1

I Induction: Suppose we can move n − 1 disks in Tn−1 steps;
how many steps does it take to move Tn disks?

I Idea: First move the topmost n − 1 disks to peg 3; can be
done in Tn−1 steps

I Now, move bottom-most disk to peg 2 – takes just 1 step

I Finally, recursively move n − 1 disks in peg 3 to peg 2 – can
be done in Tn−1 steps
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Towers of Hanoi, cont.

I Recurrence relation:

I Initial condition:

I Now find closed form for Tn

I What is a particular solution?

I Solution for homogeneous recurrence:

I Solve for α:

I Solution for recurrence:
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