

Exercise	Naive Set Theory and Russell's Paradox
Prove De Morgan's law for sets: $\overline{A \cup B} = \overline{A} \cap \overline{B}$	 Intuitive formulation of sets is called naive set theory - goes back to German mathematician George Cantor (1800's) In naive set theory, any definable collection is a set (axiom of unrestricted comprehension) In other words, unrestricted comprehension says that {x F(x)} is a set, for any formula F In 1901, Bertrand Russell showed that Cantor's set theory is inconsistent This can be shown using so-called Russell's paradox
Instructor: Ipl Dillig. CS311H: Discrete Mathematics: Sets, Russell's Parados, and Halting Problem 11/25	Instructor: IpI Dillig, CS311H: Discrete Mathematics Sets, Russell's Parados, and Halking Problem 14/25
Russell's Paradox	Russell's Paradox, cont.
 Let R be the set of sets that are not members of themselves: R = {S S ∉ S} Two possibilities: Either R ∈ R or R ∉ R Suppose R ∈ R. But by definition of R, R does not have itself as a member, i.e., R ∉ R But this contradicts R ∈ R 	 Now suppose R ∉ R (i.e., R not a member of itself) But since R is the set of sets that are not members of themselves, R must be a member of R! This shows that set R cannot exist, contradicting the axiom of unrestricted comprehension!! Since we have a contradiction, one can prove any nonsense using naive set theory! Much research on consistent versions of set theory ⇒ Zermelo's ZFC, Russell's type theory etc.
Instructor: Ipl Dillig, C5311H: Discrete Mathematics: Sets, Russell's Paradox, and Halting Problem 15/25	Instructor: IpI Dillig. CS311H: Discrete Mathematica Sets, Russell's Paradoc, and Halting Problem 16/25
 Illustration of Russell's Paradox Russell's paradox and other similar paradoxes inspired artists at the turn of the century, esp. Escher and Magritte Belgian painter Rene Magritte made a graphical illustration of Russell's paradox: 	 Undecidability A proof similar to Russell's paradox can be used to show undecidability of the famous Halting problem A decision problem is a question of a formal system that has a yes or no answer Example: satisfiability/valid in FOL or propositional logic A decision problem is undecidable if it is not possible to have algorithm that always terminates and gives correct answer
Instructor: Ipil Dillig, CS311H: Discrete Mathematics Sets, Russell's Paradox, and Halting Problem 17/25	Instructor: Ipil Dillig, CS311H: Discrete Mathematics Sets, Russell's Paradox, and Halting Problem 18/25

