CS311H: Discrete Mathematics

Introduction to First-Order Logic

Instructor: Isil Dillig
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Why First-Order Logic?

» So far, we studied the simplest logic: propositional logic

» But for some applications, propositional logic is not expressive
enough

» First-order logic is more expressive: allows representing more
complex facts and making more sophisticated inferences
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A Motivating Example
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For instance, consider the statement “Anyone who drives fast
gets a speeding ticket”

From this, we should be able to conclude "If Joe drives fast,
he will get a speeding ticket”

Similarly, we should be able to conclude "If Rachel drives fast,
she will get a speeding ticket” and so on.

But PL does not allow inferences like that because we cannot

talk about concepts like "everyone”, "someone” etc.

First-order logic (predicate logic) allows making such kinds of
inferences
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Building Blocks of First-Order Logic

» The building blocks of propositional logic were propositions

> In first-order logic, there are three kinds of basic building
blocks: constants, variables, predicates

» Constants: refer to specific objects (in a universe of discourse)
» Examples: George, 6, Austin, CS311, ...

» Variables: range over objects (in a universe of discourse)

» Examples: x,y,z, ...

» If universe of discourse is cities in Texas, = can represent
Houston, Austin, Dallas, San Antonio, ...
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Building Blocks of First-Order Logic, cont.

» Predicates describe properties of objects or relationships
between objects

» Examples: ishappy, betterthan, loves, > ...
» Predicates can be applied to both constants and variables

» Examples: ishappy(George), betterthan(x,y),
loves(George, Rachel), z >3, ...

» A predicate P(c) is true or false depending on whether
property P holds for ¢

» Example: ishappy(George) is true if George is happy, but false
otherwise
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Predicate Examples

» Consider predicate even which represents if a number is even
» What is truth value of even(2)?

» What is truth value of even(5)?

» What is truth value of even(x)?

» Another example: Suppose Q(z,y) denotes z = y + 3

» What is the truth value of Q(3,0)?

» What is the truth value of Q(1,2)?
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Formulas in First Order Logic

Formulas in first-order logic are formed using predicates and

logical connectives.

Example:
Example:
Example:

Example:

even(2) is a formula

even(x) is also a formula

even(x) V odd(x) is also a formula

(odd(x) — — even(x)) A even(x)
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Semantics of First-Order Logic

» In propositonal logic, the truth value of formula depends on a
truth assignment to variables.

» In FOL, truth value of a formula depends interpretation of
predicate symbols and variables over some domain D
» Consider a FOL formula = P(z)
» A possible interpretation:
D = {%,0}, P(x) = true, P(o) = false, z =
» Under this interpretation, what's truth value of =P (z)?
» What about if z = 0?
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More Examples

v

Consider interpretation I over domain D = {1,2}

» P(1,1) = P(1,2) = true, P(2,1) = P(2,2) = false
» Q(1) = false, Q(2) = true

> .’L‘:]_,y:

v

What is truth value of P(z,y) A Q(y) under 7

v

What is truth value of P(y,z) — Q(y) under I?

v

What is truth value of P(z,y) — @Q(z) under 7
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Quantifiers

» Real power of first-order logic over propositional logic:
quantifiers

» Quantifiers allow us to talk about all objects or the existence
of some object

» There are two quantifiers in first-order logic:

1. Universal quantifier (V): refers to all objects

2. Existential quantifier (3): refers to some object
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Universal Quantifiers

v

Universal quantification of P(z), Vz.P(z), is the statement
"P(x) holds for all objects x in the universe of discourse.”

» YVz.P(x) is true if predicate P is true for every object in the
universe of discourse, and false otherwise

» Consider domain D = {o,}, P(o) = true, P(%) = false
» What is truth value of Vz.P(z)?
» Object o for which P(0) is false is counterexample of Vz.P(x)

» What is a counterexample for Vz.P(x) in previous example?
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More Universal Quantifier Examples

» Consider the domain D of real numbers and predicate P(z)
with interpretation 22 > z

» What is the truth value of Vz.P(z)?
» What is a counterexample?
> What if the domain is integers?

» Observe: Truth value of a formula depends on a universe of
discourse!
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Existential Quantifiers

» Existential quantification of P(z), written Jz.P(x), is "There
exists an element z in the domain such that P(z)".

» Jz.P(x) is true if there is at least one element in the domain
such that P(z) is true

> In first-order logic, domain is required to be non-empty.
» Consider domain D = {o,x}, P(o) = true, P(%) = false

» What is truth value of 3z.P(z)?
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Existential Quantifier Examples

» Consider the domain of reals and predicate P(z) with
interpretation = < 0.

» What is the truth value of 3z.P(z)?

» What if domain is positive integers?

» Let Q(y) be the statement y > y?

» What's truth value of Jy.Q(y) if domain is reals?

» What about if domain is integers?
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Quantifiers Summary

Statement When True? When False?
Va.P(z) | P(x) is true for every z | P(z) is false for some x
Jdz.P(z) | P(z) is true for some z | P(x) is false for every x

» Consider finite universe of discourse with objects o1, ..., 0,
» Vz.P(z) is true iff P(01) A P(02)...A P(o0y) is true

» Jdz.P(z) is true iff P(o1)V P(02)...V P(oy) is true
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Quantified Formulas

v

So far, only discussed how to quantify individual predicates.

» But we can also quantify entire formulas containing multiple
predicates and logical connectives.

» dz.(even(z) A gt(z, 100)) is a valid formula in FOL

» What's truth value of this formula if domain is all integers?
» assuming even(z) means "z is even” and gt(z, y) means z > y
» What about Vz.(even(z) A gt(z, 100))?
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More Examples of Quantified Formulas
» Consider the domain of integers and the predicates even(x)
and div4(x) which represents if z is divisible by 4

» What is the truth value of the following quantified formulas?

> Va. (divd(z) — even(z))
> Vz. (even(z) — divd(z))
> 3. (~divd(z) A even(z))
> 3. (~divd(z) — even(z))

> Va. (ndivd(xz) — even(z))
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Translating English Into Quantified Formulas

Assuming freshman(z) means "z is a freshman" and inCS311(z)
“x is taking CS311", express the following in FOL

» Someone in CS311 is a freshman
» No one in CS311 is a freshman
» Everyone taking CS311 are freshmen

» Every freshman is taking CS311
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DeMorgan's Laws for Quantifiers

> Learned about DeMorgan's laws for propositional logic:
“(pANg) = pVg
~(pVe = pAg

v

DeMorgan's laws extend to first-order logic, e.g.,
=(even(z) V divd(z)) = (—even(z) A ~divd(zx))

» Two new DeMorgan’s laws for quantifiers:
~Vz.P(z) = 3Jz.-P(z)
-Jz.P(z) = Vz.-P(x)

v

When you push negation in, V flips to 3 and vice versa
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Using DeMorgan’s Laws

» Expressed "Noone in CS311 is a freshman” as
—Jz.(inCS311(z) A freshman(z))

> Let’s apply DeMorgan’s law to this formula:

» Using the fact that p — ¢ is equivalent to =p V ¢, we can
write this formula as:

» Therefore, these two formulas are equivalent!
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Nested Quantifiers

» Sometimes may be necessary to use multiple quantifiers

> For example, can't express “Everybody loves someone” using a
single quantifier

» Suppose predicate loves(z, y) means "Person z loves person 3"
» What does Vz.3y.loves(z, y) mean?
» What does Jy.Vz.loves(z, y) mean?

» Observe: Order of quantifiers is very important!
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More Nested Quantifier Examples

Using the loves(x,y) predicate, how can we say the following?

» "Someone loves everyone”

» "There is somone who doesn’t love anyone”

» "There is someone who is not loved by anyone”
» "Everyone loves everyone”

» "There is someone who doesn't love herself/himself.”
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Summary of Nested Quantifiers

Statement When True?

P(z,y) is true for every pair =,y

There is an z for which P(z,y) is true for every y

Y)
y)
Vo.Jy. Pz, y) For every x, there is a y for which P(z,y) is true
y)
Y)
y)

There is a pair z, y for which P(z,y) is true

Observe: Order of quantifiers is only important if quantifiers of different
kinds!
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Understanding Quantifiers

® % o A
] A
Ao B

Which formulas are true/false? If false, give a counterexample

> Vz.3y. (sameShape(z, y) A differentColor(z, y))
> Vz.3y. (sameColor(z, y) A differentShape(z, y))

> Va. (triangle(z) — (Jy. (circle(y) A sameColor(z, y))))
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Understanding Quantifiers, cont.

® % o A
] A
Ao B

Which formulas are true/false? If false, give a counterexample

> Va.Vy. ((triangle(z) A square(y)) — sameColor(z, y))
> Jz.Vy.—sameShape(z, y)

> Va. (circle(z) — (Jy.(—circle(y) A sameColor(z, y))))
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Translating First-Order Logic into English

Given predicates student(z), atUT(z), and friends(z, y), what do
the following formulas say in English?

> Vz. ((atUT(z) A student(z)) — (Jy.(friends(z, y) A —atUT(y))))
> Vz.((student(z) A matUT(z)) — —Jy.friends(z, y))

> Va.Vy.((student(z) A student(y) A friends(z, y)) —
(atUT(z) A atUT(y)))
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Translating English into First-Order Logic

Given predicates student(z), atUT (x), and friends(z,y), how do
we express the following in first-order logic?

» "Every UT student has a friend”
> "At least one UT student has no friends”

» "All UT students are friends with each other”
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Satisfiability, Validity in FOL
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The concepts of satisfiability, validity also important in FOL

An FOL formula F' is satisfiable if there exists some domain
and some interpretation such that F' evaluates to true

Example: Prove that Vz.P(xz) — Q(x) is satisfiable.

An FOL formula F' is valid if, for all domains and all
interpretations, F' evaluates to true

Prove that Vz.P(z) — Q(z) is not valid.

Formulas that are satisfiable, but not valid are contingent,
e.g., Vz.P(z) = Q(x)
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Equivalence

» Two formulas Fy and F5 are equivalent if [ <+ F5 is valid

» In PL, we could prove equivalence using truth tables, but not
possible in FOL

» However, we can still use known equivalences to rewrite one
formula as the other

» Example: Prove that —(Vz. (P(z) — Q(z))) and
Jz. (P(x) A =Q(z)) are equivalent.

» Example: Prove that —3z.Vy.P(z,y) and Vz.Jy.—P(z,y) are
equivalent.
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