CS311H: Discrete Mathematics

First Order Logic, Rules of Inference

Instructor: Ișil Dillig

Rules of Inference

- We can prove validity in FOL by using proof rules
- Proof rules are written as rules of inference:

Hypothesis1
Hypothesis2
...
Conclusion

An example inference rule:

All men are mortal Socrates is a man

. Socrates is mortal

 We'll learn about more general inference rules that will allow constructing formal proofs

Modus Ponens

► Most basic inference rule is modus ponens:

$$\frac{\phi_1}{\phi_1 \to \phi_2}$$

$$\frac{\phi_2}{\phi_2}$$

 Modus ponens applicable to both propositional logic and first-order logic

Example Uses of Modus Ponens

Application of modus ponens in propositional logic:

$$\begin{array}{c} p \wedge q \\ (p \wedge q) \to r \end{array}$$

Application of modus ponens in first-order logic:

$$P(a) P(a) \to Q(b)$$

Modus Tollens

Second imporant inference rule is modus tollens:

$$\begin{array}{c}
\phi_1 \to \phi_2 \\
\neg \phi_2
\end{array}$$

Example Uses of Modus Tollens

Application of modus tollens in propositional logic:

$$p \to (q \lor r)$$
$$\neg (q \lor r)$$

Application of modus tollens in first-order logic:

$$Q(a) \\ \neg P(a) \to \neg Q(a)$$

Hypothetical Syllogism (HS)

$$\begin{array}{c}
\phi_1 \to \phi_2 \\
\phi_2 \to \phi_3 \\
\hline
\phi_1 \to \phi_3
\end{array}$$

- ▶ Basically says "implication is transitive"
- ► Example:

$$P(a) \to Q(b)$$

 $Q(b) \to R(c)$

Or Introduction and Elimination

Or introduction:

$$\frac{\phi_1}{\phi_1 \vee \phi_2}$$

- Example application: "Socrates is a man. Therefore, either Socrates is a man or there are red elephants on the moon."
- Or elimination:

$$\frac{\phi_1 \vee \phi_2}{\neg \phi_2}$$

$$\frac{\phi_1}{\phi_1}$$

Example application: "It is either a dog or a cat. It is not a dog. Therefore, it must be a cat."

And Introduction and Elimination

And introduction:

$$\frac{\phi_1}{\phi_2} \frac{\phi_2}{\phi_1 \wedge \phi_2}$$

- ► Example application: "It is Tuesday. It's the afternoon. Therefore, it's Tuesday afternoon".
- And elimination:

$$\frac{\phi_1 \wedge \phi_2}{\phi_1}$$

Example application: "It is Tuesday afternoon. Therefore, it is Tuesday".

Resolution

Final inference rule: resolution

$$\frac{\phi_1 \vee \phi_2}{\neg \phi_1 \vee \phi_3}$$

$$\frac{\phi_2 \vee \phi_3}{\phi_2 \vee \phi_3}$$

- ▶ To see why this is correct, observe ϕ_1 is either true or false.
- ▶ Suppose ϕ_1 is true. Then, $\neg \phi_1$ is false. Therefore, by second hypothesis, ϕ_3 must be true.
- ▶ Suppose ϕ_1 is false. Then, by 1st hypothesis, ϕ_2 must be true.
- ▶ In any case, either ϕ_2 or ϕ_3 must be true; $\phi_2 \lor \phi_3$

Resolution Example

► Example 1:

$$P(a) \vee \neg Q(b)$$
$$Q(b) \vee R(c)$$

► Example 2:

$$\begin{array}{c} p \lor q \\ q \lor \neg p \end{array}$$

Summary

Name	Rule of Inference
Modus ponens	$ \begin{array}{c} \phi_1 \\ \phi_1 \to \phi_2 \\ \hline \phi_2 \\ \phi_1 \to \phi_2 \end{array} $
Modus tollens	$\frac{\neg \phi_2}{\neg \phi_1}$
Hypothetical syllogism	$ \begin{array}{c} \phi_1 \to \phi_2 \\ \phi_2 \to \phi_3 \\ \hline \phi_1 \to \phi_3 \end{array} $
Or introduction	$\frac{\phi_1}{\phi_1 \vee \phi_2}$
Or elimination	$\frac{\phi_1 \vee \phi_2}{\neg \phi_2}$
And introduction	$\frac{\phi_1}{\phi_2} \frac{\phi_2}{\phi_1 \wedge \phi_2}$
And elimination	$\frac{\phi_1 \wedge \phi_2}{\phi_1}$
Resolution	$\frac{\begin{array}{c} \phi_1 \lor \phi_2 \\ \neg \phi_1 \lor \phi_3 \\ \hline \phi_2 \lor \phi_3 \end{array}$

Using the Rules of Inference

Assume the following hypotheses:

- 1. It is not sunny today and it is colder than yesterday.
- 2. We will go to the lake only if it is sunny.
- 3. If we do not go to the lake, then we will go hiking.
- 4. If we go hiking, then we will be back by sunset.

Show these lead to the conclusion: "We will be back by sunset."

Encoding in Logic

- First, encode hypotheses and conclusion as logical formulas.
- ► To do this, identify propositions used in the argument:
 - ▶ s = "It is sunny today"
 - ▶ c= "It is colder than yesterday"
 - ▶ I = "We'll go to the lake"
 - ▶ h = "We'll go hiking"
 - ▶ b= "We'll be back by sunset"

Encoding in Logic, cont.

- "It's not sunny today and colder than yesterday."
- "We will go to the lake only if it is sunny"
- "If we do not go to the lake, then we will go hiking."
- "If we go hiking, then we will be back by sunset."
- Conclusion: "We'll be back by sunset"

Formal Proof Using Inference Rules

- 1. $\neg s \land c$ Hypothesis
- 2. $l \rightarrow s$ Hypothesis
- 3. $\neg l \rightarrow h$ Hypothesis
- 4. $h \rightarrow b$ Hypothesis

Another Example

Assume the following hypotheses:

- 1. It is not raining or Kate has her umbrella
- 2. Kate does not have her umbrella or she does not get wet
- 3. It is raining or Kate does not get wet
- 4. Kate is grumpy only if she is wet

Show these lead to the conclusion: "Kate is not grumpy."

Encoding in Logic

- First, encode hypotheses and conclusion as logical formulas.
- ▶ To do this, identify propositions used in the argument:
 - ▶ r = "It is raining"
 - ▶ u= "Kate has her umbrella"
 - w = "Kate is wet"
 - ▶ g = "Kate is grumpy"

Encoding in Logic, cont.

- "It is not raining or Kate has her umbrella."
- "Kate does not have her umbrella or she does not get wet"
- "It is raining or Kate does not get wet."
- " Kate is grumpy only if she is wet."
- Conclusion: "Kate is not grumpy."

Formal Proof Using Inference Rules

- 1. $\neg r \lor u$ Hypothesis
- 2. $\neg u \lor \neg w$ Hypothesis
- 3. $r \lor \neg w$ Hypothesis
- 4. $g \rightarrow w$ Hypothesis

Additional Inference Rules for Quantified Formulas

- ► Inference rules we learned so far are sufficient for reasoning about quantifier-free statements
- ► Four more inference rules for making deductions from quantified formulas
- ► These come in pairs for each quantifier (universal/existential)
- One is called generalization, the other one called instantiation

Universal Instantiation

- ▶ If we know something is true for all members of a group, we can conclude it is also true for a specific member of this group
- ► This idea is formally called universal instantiation:

$$\frac{\forall x. P(x)}{P(c)}$$
 (for any c)

▶ If we know "All CS classes at UT are hard", universal instantiation allows us to conclude "CS311 is hard"!

Example

- ► Consider predicates man(x) and mortal(x) and the hypotheses:
 - 1. All men are mortal:
 - 2. Socrates is a man:
- Using rules of inference, prove mortal(Socrates)

Universal Generalization

- Suppose we can prove a claim for an arbitrary element in the domain.
- Since we've made no assumptions about this element, proof should apply to all elements in the domain.
- ► This correct reasoning is captured by universal generalization

$$\frac{P(c) \text{ for arbitrary c}}{\forall x. P(x)}$$

Example

Prove $\forall x. Q(x)$ from the hypotheses:

1.
$$\forall x. (P(x) \rightarrow Q(x))$$
 Hypothesis

2.
$$\forall x. P(x)$$
 Hypothesis

3.
$$P(c) \rightarrow Q(c)$$
 \forall -inst (1)

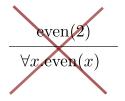
4.
$$P(c)$$
 \forall -inst (2)

5.
$$Q(c)$$
 Modus ponens (3), (4)

6.
$$\forall x. Q(x)$$
 \forall -gen (5)

Caveat About Universal Generalization

- ▶ When using universal generalization, need to ensure that *c* is truly arbitrary!
- If you prove something about a specific person Mary, you cannot make generalizations about all people



Existential Instantiation

- ▶ Consider formula $\exists x.P(x)$.
- ▶ We know there is some element, say c, in the domain for which P(c) is true.
- ► This is called existential instantiation:

$$\frac{\exists x. P(x)}{P(c)}$$
 (for unused c)

- ▶ Here, c is a fresh name (i.e., not used before in proof).
 - ▶ Otherwise, can prove non-sensical things such as: "There exists some animal that can fly. Thus, rabbits can fly"!

Example Using Existential Instantiation

Consider the hypotheses $\exists x.P(x)$ and $\forall x.\neg P(x)$. Prove that we can derive a contradiction (i.e., false) from these hypotheses.

- 1. $\exists x. P(x)$ Hypothesis
- 2. $\forall x. \neg P(x)$ Hypothesis
- 3.
- 4.
- 5.
- 6.

Existential Generalization

- lacktriangle Suppose we know P(c) is true for some constant c
- ▶ Then, there exists an element for which *P* is true
- ▶ Thus, we can conclude $\exists x.P(x)$
- ► This inference rule called existential generalization:

$$\frac{P(c)}{\exists x. P(x)}$$

Example Using Existential Generalization

```
Consider the hypotheses atUT(George) and smart(George).
Prove \exists x. (atUT(x) \land smart(x))
```

- 1. atUT(George) Hypothesis
- 2. smart(George) Hypothesis
- 3.
- 4.

Summary of Inference Rules for Quantifiers

Name	Rule of Inference
Universal Instantiation	$\frac{\forall x. P(x)}{P(c)} \text{ (any } c)$
Universal Generalization	$\frac{P(c) \text{ (for arbitrary } c)}{\forall x. P(x)}$
Existential Instantiation	$\frac{\exists x. P(x)}{P(c) \text{ for } \frac{\text{fresh } c}{c}}$
Existential Generalization	$\frac{P(c)}{\exists x. P(x)}$

Example I

▶ Prove that these hypotheses imply $\exists x.(P(x) \land \neg B(x))$:

1.
$$\exists x. (C(x) \land \neg B(x))$$
 (Hypothesis)

2.
$$\forall x. (C(x) \rightarrow P(x))$$
 (Hypothesis)

Example II

▶ Prove the below hypotheses are contradictory by deriving false

1.
$$\forall x. (P(x) \rightarrow (Q(x) \land S(x)))$$
 (Hypothesis)

- 2. $\forall x. (P(x) \land R(x))$ (Hypothesis)
- 3. $\exists x. (\neg R(x) \lor \neg S(x))$ (Hypothesis)

Example III

Prove $\exists x. \ father(x, Evan)$ from the following premises:

- 1. $\forall x. \forall y. ((parent(x, y) \land male(x)) \rightarrow father(x, y))$
- 2. parent(Tom, Evan)
- 3. male(Tom)