CS311H: Discrete Mathematics

Mathematical Proof Techniques

Instructor: Ișil Dillig

Introduction

- Formalizing statements in logic allows formal, machine-checkable proofs
- But these kinds of proofs can be very long and tedious
- ▶ In practice, humans write slight less formal proofs, where multiple steps are combined into one
- We'll now move from formal proofs in logic to less formal mathematical proofs!

Some Terminology

- Important mathematical statements that can be shown to be true are theorems
- Many famous mathematical theorems, e.g., Pythagorean theorem, Fermat's last theorem
- Pythagorean theorem: Let a,b the length of the two sides of a right triangle, and let c be the hypotenuse. Then, $a^2+b^2=c^2$
- Fermat's Last Theorem: For any integer n greater than 2, the equation $a^n + b^n = c^n$ has no solutions for non-zero a, b, c.

Theorems, Lemmas, and Propositions

- There are many correct mathematical statements, but not all of them called theorems
- Less important statements that can be proven to be correct are propositions
- ► Another variation is a lemma: minor auxiliary result which aids in the proof of a theorem/proposition
- Corollary is a result whose proof follows immediately from a theorem or proposition

Conjectures vs. Theorems

- Conjecture is a statement that is suspected to be true by experts but not yet proven
- ► Goldbach's conjecture: Every even integer greater than 2 can be expressed as the sum of two prime numbers.
- This conjecture is one of the oldest unsolved problems in number theory

General Strategies for Proving Theorems

Many different strategies for proving theorems:

- ▶ Direct proof: $p \rightarrow q$ proved by directly showing that if p is true, then q must follow
- ▶ Proof by contraposition: Prove $p \rightarrow q$ by proving $\neg q \rightarrow \neg p$
- Proof by contradiction: Prove that the negation of the theorem yields a contradiction
- Proof by cases: Exhaustively enumerate different possibilities, and prove the theorem for each case

In many proofs, one needs to combine several different strategies!

Direct Proof

- lacktriangle To prove p o q in a direct proof, first assume p is true.
- ightharpoonup Then use rules of inference, axioms, previously shown theorems/lemmas to show that q is also true
- **Example:** If n is an odd integer, than n^2 is also odd.
- ▶ Proof: Assume n is odd. By definition of oddness, there must exist some integer k such that n=2k+1. Then, $n^2=4k^2+4k+1=2(2k^2+2k)+1$, which is odd. Thus, if n is odd, n^2 is also odd.

More Direct Proof Examples

- An integer a is called a perfect square if there exists an integer b such that $a=b^2$.
- Example: Prove that every odd number is the difference of two perfect squares.

Proof by Contraposition

- ▶ In proof by contraposition, you prove $p \to q$ by assuming $\neg q$ and proving that $\neg p$ follows.
- Makes no difference logically, but sometimes the contrapositive is easier to show than the original
- ▶ Prove: If n^2 is odd, then n is odd.

Proof by Contradiction

- lackbox Proof by contradiction proves that p o q is true by proving unsatisfiability of its negation
- ▶ What is negation of $p \rightarrow q$?
- Assume both p and $\neg q$ are true and show this yields contradiction

Example

▶ Prove by contradiction that "If 3n + 2 is odd, then n is odd."

Another Example

- ▶ Recall: Any rational number can be written in the form $\frac{p}{q}$ where p and q are integers and have no common factors.
- **Example:** Prove by contradiction that $\sqrt{2}$ is irrational.

- \blacktriangleright

Example, cont

Proof by Cases

- In some cases, it is very difficult to prove a theorem by applying the same argument in all cases
- ► For example, we might need to consider different arguments for negative and non-negative integers
- Proof by cases allows us to apply different arguments in different cases and combine the results
- lacktriangle Specifically, suppose we want to prove statement p, and we know that we have either q or r
- ▶ If we can show $q \to p$ and $r \to p$, then we can conclude p

Proof by Cases, cont.

- ▶ In general, there may be more than two cases to consider
- Proof by cases says that to show

$$(p_1 \vee p_2 \ldots \vee p_k) \to q$$

it suffices to show:

$$p_1 \to q$$

$$p_2 \to q$$

$$\dots$$

$$p_k \to q$$

Example

- Prove that |xy| = |x||y|
- ▶ Here, proof by cases is useful because definition of absolute value depends on whether number is negative or not.
- There are four possibilities:
 - 1. x, y are both non-negative
 - 2. x non-negative, but y negative
 - 3. x negative, y non-negative
 - 4. x, y are both negative
- ▶ We'll prove the property by proving these four cases separately

Proof

- \blacktriangleright

- ► Caveat: Your cases must cover all possibilites; otherwise, the proof is not valid!

Combining Proof Techniques

- So far, our proofs used a single strategy, but often it's necessary to combine multiple strategies in one proof
- ► Example: Prove that every rational number can be expressed as a product of two irrational numbers.
- Proof: Let's first employ direct proof.
- lacktriangle Observe that any rational number r can be written as $\sqrt{2} rac{r}{\sqrt{2}}$
- ▶ We already proved $\sqrt{2}$ is irrational.
- ▶ If we can show that $\frac{r}{\sqrt{2}}$ is also irrational, we have a direct proof.

Combining Proofs, cont.

- •

Lesson from Example

- In this proof, we combined direct and proof-by-contradiction strategies
- ▶ In more complex proofs, it might be necessary to combine two or even more strategies and prove helper lemmas
- It is often a good idea to think about how to decompose your proof, what strategies to use in different subgoals, and what helper lemmas could be useful

If and Only if Proofs

- ▶ Some theorems are of the form "P if and only if Q" ($P \leftrightarrow Q$)
- ▶ The easiest way to prove such statements is to show $P \to Q$ and $Q \to P$
- Therefore, such proofs correspond to two subproofs
- ▶ One shows $P \rightarrow Q$ (typically labeled \Rightarrow)
- ▶ Another subproof shows $Q \to P$ (typically labeled \Leftarrow)

Example

- ▶ Prove "A positive integer n is odd if and only if n^2 is odd."
- ▶ ⇒ We have already shown this using a direct proof earlier.
- ► ← We have already shown this by a proof by contraposition.
- Since we have proved both directions, the proof is complete.

Counterexamples

- ► So far, we have learned about how to prove statements are true using various strategies
- But how to prove a statement is false?
- ▶ What is a counterexample for the claim "The product of two irrational numbers is irrational"?

Prove or Disprove

Which of the statements below are true, which are false? Prove your answer.

- ▶ For all integers n, if n^2 is positive, n is also positive.
- ▶ For all integers n, if n^3 is positive, n is also positive.
- ▶ For all integers n such that $n \ge 0$, $n^2 \ge 2n$

Existence and Uniqueness

- Common math proofs involve showing existence and uniqueness of certain objects
- Existence proofs require showing that an object with the desired property exists
- Uniqueness proofs require showing that there is a unique object with the desired property

Existence Proofs

- One simple way to prove existence is to provide an object that has the desired property
- ► This sort of proof is called constructive proof
- ► Example: Prove there exists an integer that is the sum of two perfect squares
- But not all existence proofs are contructive can prove existence through other methods (e.g., proof by contradiction or proof by cases)
- ► Such indirect existence proofs called nonconstructive proofs

Non-Constructive Proof Example

- ▶ Prove: "There exist irrational numbers x, y s.t. x^y is rational"
- \blacktriangleright We'll prove this using a non-constructive proof (by cases), without providing irrational x,y
- ▶ Consider $\sqrt{2}^{\sqrt{2}}$. Either (i) it is rational or (ii) it is irrational
- ▶ Case 1: We have $x = y = \sqrt{2}$ s.t. x^y is rational
- ▶ Case 2: Let $x=\sqrt{2}^{\sqrt{2}}$ and $y=\sqrt{2}$, so both are irrational. Then, $\sqrt{2}^{\sqrt{2}^{\sqrt{2}}}=\sqrt{2}^2=2$. Thus, x^y is rational

Proving Uniqueness

- Some statements in mathematics assert uniqueness of an object satisfying a certain property
- ► To prove uniqueness, must first prove existence of an object *x* that has the property
- ▶ Second, we must show that for any other y s.t. $y \neq x$, then y does not have the property
- \blacktriangleright Alternatively, can show that if y has the desired property that x=y

Example of Uniqueness Proof

- ▶ Prove: "If a and b are real numbers with $a \neq 0$, then there exists a unique real number r such that ar + b = 0"
- Existence: Using a constructive proof, we can see r=-b/a satisfies ar+b=0
- ▶ Uniqueness: Suppose there is another number s such that $s \neq r$ and as + b = 0. But since ar + b = as + b, we have ar = as, which implies r = s.

Summary of Proof Strategies

- \blacktriangleright Direct proof: $p\to q$ proved by directly showing that if p is true, then q must follow
- ▶ Proof by contraposition: Prove $p \rightarrow q$ by proving $\neg q \rightarrow \neg p$
- Proof by contradiction: Prove that the negation of the theorem yields a contradiction
- ▶ Proof by cases: Exhaustively enumerate different possibilities, and prove the theorem for each case

Invalid Proof Strategies

- ▶ Proof by obviousness: "The proof is so clear it need not be mentioned!"
- ► Proof by intimidation: "Don't be stupid of course it's true!"
- ▶ Proof by mumbo-jumbo: $\forall \alpha \in \theta \exists \beta \in \alpha \diamond \beta \approx \gamma$
- Proof by intuition: "I have this gut feeling.."
- Proof by resource limits: "Due to lack of space, we omit this part of the proof..."
- Proof by illegibility: "sdjikfhiugyhjlaks??fskl; QED."

Don't use anything like these in CS311!!