CS311H: Discrete Mathematics
Mathematical Proof Techniques
Instructor: Işıl Dillig

Review of Proof Strategies

Many different strategies for proving theorems:

- **Direct proof**: \(p \rightarrow q \) proved by directly showing that if \(p \) is true, then \(q \) must follow
- **Proof by contraposition**: Prove \(p \rightarrow q \) by proving \(\neg q \rightarrow \neg p \)
- **Proof by contradiction**: Prove that the negation of the theorem yields a contradiction
- **Proof by cases**: Exhaustively enumerate different possibilities, and prove the theorem for each case

In many proofs, one needs to combine several different strategies!

Quick Example

- Prove: If \(n = ab \), then \(a \leq \sqrt{n} \) or \(b \leq \sqrt{n} \)

Proof by Contradiction

- Suppose we want to show that \(p \rightarrow q \) is true
- **Recall**: Formula is valid iff negation is undated
- What is the negation of \(p \rightarrow q \)?
- **Proof by contradiction**: Show that \(p \land \neg q \) is not possible

Example

- Prove by contradiction that "If \(3n + 2 \) is odd, then \(n \) is odd."
Another Example

- **Recall:** Any rational number can be written in the form \(\frac{p}{q} \) where \(p \) and \(q \) are integers and have no common factors.

- **Example:** Prove by contradiction that \(\sqrt{2} \) is irrational.

- **Proof:** Suppose \(\sqrt{2} \) was rational. Then, \(\sqrt{2} = \frac{p}{q} \) where \(p, q \) are integers with no common factors.

 - By squaring both sides, we have: \(2 = \frac{p^2}{q^2} \), i.e., \(2q^2 = p^2 \)
 - Since \(p^2 \) is even, \(p \) must also be even (proved earlier)
 - Hence, \(p = 2k \) for some \(k \), and \(p^2 = 4k^2 = 2q^2 \).

Example, cont

- This implies \(q^2 = 2k^2 \); thus, \(q^2 \) is also even

 - Again, if \(q^2 \) is even, this means \(q \) is even.

 - But since both \(p \) and \(q \) are even, this means they have a common factor, i.e., 2

 - But this contradicts our assumption!

Proof by Cases

- In some cases, it is very difficult to prove a theorem by applying the same argument in all cases

 - For example, we might need to consider different arguments for negative and non-negative integers

 - **Proof by cases** allows us to apply different arguments in different cases and combine the results

 - Specifically, suppose we want to prove statement \(p \), and we know that we have either \(q \) or \(r \)

 - If we can show \(q \rightarrow p \) and \(r \rightarrow p \), then we can conclude \(p \)

Proof by Cases, cont.

- In general, there may be more than two cases to consider

 - **Proof by cases** says that to show

 \[(p_1 \lor p_2 \ldots \lor p_k) \rightarrow q \]

 it suffices to show:

 - \(p_1 \rightarrow q \)
 - \(p_2 \rightarrow q \)
 - \(\ldots \)
 - \(p_k \rightarrow q \)

Example

- Prove that \(|xy| = |x||y| \)

 - Here, proof by cases is useful because definition of absolute value depends on whether number is negative or not.

 - There are four possibilities:
 1. \(x, y \) are both non-negative
 2. \(x \) non-negative, but \(y \) negative
 3. \(x \) negative, \(y \) non-negative
 4. \(x, y \) are both negative

 - We’ll prove the property by proving these four cases separately

Proof

- **Case 1:** \(x, y \geq 0 \). In this case, \(|xy| = xy = |x||y| \)

- **Case 2:** \(x \geq 0, y < 0 \). Here, \(|xy| = -xy = x \cdot (-y) = |x||y| \)

- **Case 3:** \(x < 0, y \geq 0 \). Here, \(|xy| = -xy = (-x) \cdot y = |x||y| \)

- **Case 4:** \(x, y < 0 \). Here, \(|xy| = xy = (-x) \cdot (-y) = |x||y| \)

 - Since we proved it for all cases, the theorem is valid.

 - **Caveat:** Your cases must cover all possibilities; otherwise, the proof is not valid!
Another Example

- Prove that \(\max(x, y) + \min(x, y) = x + y \)

Combining Proof Techniques

- So far, our proofs used a single strategy, but often it’s necessary to combine multiple strategies in one proof.
- **Example**: Prove that every rational number can be expressed as a product of two irrational numbers.

 Proof: Let’s first employ direct proof.

 Observe that any rational number \(r \) can be written as \(\sqrt{2} \cdot r \).

 We already proved \(\sqrt{2} \) is irrational.

 If we can show that \(r \sqrt{2} \) is also irrational, we have a direct proof.

Combining Proofs, cont.

- Now, employ proof by contradiction to show \(r \sqrt{2} \) is irrational.

 Suppose \(\sqrt{2} \) was rational.

 Then, for some integers \(p, q \): \(\sqrt{2} = \frac{p}{q} \).

 This can be rewritten as \(\sqrt{2} = \frac{ap}{bq} \).

 Since \(r \) is rational, it can be written as quotient of integers:

 \[\sqrt{2} = \frac{a}{b} \cdot \frac{p}{q} \]

 But this would mean \(\sqrt{2} \) is rational, a contradiction.

Lesson from Example

- In this proof, we combined direct and proof-by-contradiction strategies – “proof within proof”

 In more complex proofs, it might be necessary to combine two or even more strategies and prove helper lemmas.

If and Only If Proofs

- Some theorems are of the form “\(P \) if and only if \(Q \)” (\(P \leftrightarrow Q \))

 The easiest way to prove such statements is to show \(P \rightarrow Q \) and \(Q \rightarrow P \).

 Therefore, such proofs correspond to two subproofs.

 One shows \(P \rightarrow Q \) (typically labeled \(\Rightarrow \))

 Another subproof shows \(Q \rightarrow P \) (typically labeled \(\Leftarrow \)).

Example

- Prove “A positive integer \(n \) is odd if and only if \(n^2 \) is odd.”

 \(\Rightarrow \) We have already shown this using a direct proof earlier.

 \(\Leftarrow \) We have already shown this by a proof by contraposition.

 Since we have proved both directions, the proof is complete.
Counterexamples

- So far, we have learned about how to prove statements are true using various strategies
- But how do we prove that a statement is false?
- Prove that the claim “The product of two irrational numbers is irrational” is false.

Prove or Disprove

Which of the statements below are true, which are false? Prove your answer.

- For all integers n, if n^2 is positive, n is also positive.
- For all integers n, if n^3 is positive, n is also positive.
- For all integers n such that $n \geq 0$, $n^2 \geq 2n$

Existence and Uniqueness

- Common math proofs involve showing existence and uniqueness of certain objects
- Existence proofs require showing that an object with the desired property exists
- Uniqueness proofs require showing that there is a unique object with the desired property

Existence Proofs

- One simple way to prove existence is to provide an object that has the desired property – called constructive proof
- Example: Prove there exists an integer that is the sum of two perfect squares
- But not all existence proofs have to be constructive – possible to prove existence through other methods such as proof by contradiction or proof by cases
- Such indirect existence proofs called nonconstructive proofs

Non-Constructive Proof Example

- Prove: “There exist irrational numbers x, y s.t. x^y is rational”
- We’ll prove this using a non-constructive proof (by cases), without providing irrational x, y
- Consider $\sqrt{2}^{\sqrt{2}}$. Either (i) it is rational or (ii) it is irrational
- Case 1: We have $x = y = \sqrt{2}$ s.t. x^y is rational
- Case 2: Let $x = \sqrt{2}^{\sqrt{2}}$ and $y = \sqrt{2}$, so both are irrational. Then, $\sqrt{2}^{\sqrt{2}^{\sqrt{2}}} = \sqrt{2}^{\sqrt{2}} = 2$. Thus, x^y is rational

Non-Constructive Proofs

- This proof is non-constructive because it does not give concrete irrational numbers x, y for which x^y is rational
- In classical mathematics/logic, such non-constructive proofs are completely acceptable
- However, there is a school of mathematicians/logicians who only accept constructive proofs
- The branch of logic dealing with only constructive arguments is called intuitionistic (constructive) logic
Proving Uniqueness

- Some statements in mathematics assert uniqueness of an object satisfying a certain property.
- To prove uniqueness, must first prove existence of an object x that has the property.
- Second, we must show that for any other y s.t. $y \neq x$, then y does not have the property.
- Alternatively, can show that if y has the desired property that $x = y$.

Example of Uniqueness Proof

- Prove: "If a and b are real numbers with $a \neq 0$, then there exists a unique real number r such that $ar + b = 0$".
- **Existence**: Using a constructive proof, we can see $r = -b/a$ satisfies $ar + b = 0$.
- **Uniqueness**: Suppose there is another number s such that $s \neq r$ and $as + b = 0$. But since $ar + b = as + b$, we have $ar = as$, which implies $r = s$.

Summary of Proof Strategies

- **Direct proof**: $p \rightarrow q$ proved by directly showing that if p is true, then q must follow.
- **Proof by contraposition**: Prove $p \rightarrow q$ by proving $\neg q \rightarrow \neg p$.
- **Proof by contradiction**: Prove that the negation of the theorem yields a contradiction.
- **Proof by cases**: Exhaustively enumerate different possibilities, and prove the theorem for each case.

Invalid Proof Strategies

- **Proof by obviousness**: "The proof is so clear it need not be mentioned!"
- **Proof by intimidation**: "Don’t be stupid – of course it’s true!"
- **Proof by mumbo-jumbo**: $\forall \alpha \in \theta \exists \beta \in \alpha \circ \beta \approx \gamma$
- **Proof by intuition**: "I have this gut feeling."
- **Proof by resource limits**: "Due to lack of space, we omit this part of the proof..."

Don’t use anything like these in CS311!!