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Course staff

I Instructor: Işil Dillig

I E-mail: isil@cs.utexas.edu

I Office hours: Thursday 3-4 pm

I TA: Shankara Pailoor (spailoor@cs.utexas.edu)

I Office hours: Monday 4-5 pm
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What is this Course About?

I This course is about computational logic and its applications
in reasoning about software correctness.

I Explore logical theories widely used in computer science.

I Learn about decision procedures that allow us to automatically
decide satisfiability and validity of logical formulas.
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Why Should You Care?

Logic is a fundamental part of computer science:

I Artificial intelligence: planning, automated game playing, ...

I Programming languages: Static analysis, software
verification, program synthesis, ...

I Software engineering: automated test generation, automated
program repair, ...
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Overview of the Course

I Part I: Propositional logic

I SAT solvers

I Applications and variations (e.g., MaxSAT)

I Binary Decision Diagrams
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Overview, cont

I Part II: First-order theorem proving

I Semantics of FOL and theoretical properties

I Basics of first-order theorem proving

I Decidable fragments of FOL
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Overview, cont.

I Part III: SMT Solving

I Decision procedures for commonly used theories (e.g., equality,
linear arithmetic)

I Combining theories, Nelson-Oppen method

I DPLL(T) and practical SMT solvers
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Overview, cont.

I Part IV: Applications in formal methods

I Program verification

I Program synthesis

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 1: Introduction and Review of Basics 8/37

Logistics

I All class material (slides, relevant reading etc.) posted on the
course website:

http://www.cs.utexas.edu/∼idillig/cs389L

I Also have a Piazza page:
piazza.com/utexas/spring2021/cs389l

I Please post all non-personal questions on Piazza instead of
emailing us!
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Optional Reference #1

I The Calculus of Computation
by Aaron Bradley and Zohar Manna
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Optional Reference #2

I Decision Procedures: An Algorithmic Point of View
by Daniel Kroening and Ofer Strichman
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Workload and Grading

I No exams or big projects

I Combination of problem sets and programming assignments

I Collaboration on homeworks is not allowed

I You can have 2 day “late days” total that you can use
throughout the semester
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Exams

I Exam dates: February 28, May 2 – put these dates on your
calendar! (free during finals week)

I All exams closed-book, closed-notes, closed-laptop,
closed-phone etc, but can bring 3 cheat sheets

I Please introduce yourself!
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Let’s get started!

I Today: Review of basic propositional logic

I Should already know this stuff – quick refresher!
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Review of Propositional Logic: PL Syntax

Atom truth symbols > (“true”) and ⊥ (“false”)
propositional variables p, q , r , p1, q1, r1, · · ·

Literal atom α or its negation ¬α

Formula literal or application of a
logical connective to formulae F ,F1,F2

¬F “not” (negation)
F1 ∧ F2 “and” (conjunction)
F1 ∨ F2 “or” (disjunction)
F1 → F2 “implies” (implication)
F1 ↔ F2 “if and only if” (iff)
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PL Semantics

I Interpretation I : mapping from each propositional variables
in F to exactly one truth value

I : {p 7→ >, q 7→ ⊥, · · · }

I Formula F + Interpretation I = Truth value

I We write I |= F if F evaluates to > under I (satisfying
interpretation or model)

I Similarly, I 6|= F if F evaluates to ⊥ under I (falsifying
interpretation or counter-model).
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Inductive Definition of PL Semantics

Base Cases:
I |= > I 6|= ⊥
I |= p iff I [p] = >
I 6|= p iff I [p] = ⊥

Inductive Cases:
I |= ¬F iff I 6|= F
I |= F1 ∧ F2 iff I |= F1 and I |= F2

I |= F1 ∨ F2 iff I |= F1 or I |= F2

I |= F1 → F2 iff, I 6|= F1 or I |= F2

I |= F1 ↔ F2 iff, I |= F1 and I |= F2

or I 6|= F1 and I 6|= F2
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Simple Example

I Consider formula F1 : (p ∧ q)→ (p ∨ ¬q)

I What is its truth value under interpretation
I1 : {p 7→ >, q 7→ ⊥} ?

I What about formula F2 : (p ↔ ¬q)→ (q → ¬r) and
interpretation I2 = {p 7→ ⊥, q 7→ >, r 7→ >}?
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Satisfiability and Validity

I F is satisfiable iff there exists an interpretation I such that
I |= F .

I F valid iff for all interpretations I , I |= F .

I F is contingent if it is satisfiable but not valid.

I Duality between satisfiability and validity:

F is valid iff ¬F is unsatisfiable

I Thus, if we have a procedure for checking satisfiability, this
also allows us to decide validity
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Examples

I Sat, unsat, or valid?

I (p ∧ q)→ ¬p

I (p → q)→ (¬(p ∧ ¬q))

I (p → (q → r)) ∧ ¬((p ∧ q)→ r)
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Deciding Satisfiability and Validity

I Before we talk about practical algorithms for deciding
satisfiability, let’s review some simple techniques

I Two very simple techniques:

I Truth table method: essentially a search-based technique

I Semantic argument method: deductive way of deciding
satisfiability

I Modern SAT solvers combine search and deduction!
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Method 1: Truth Tables

Example F : (p ∧ q) → (p ∨ ¬q)

p q p ∧ q ¬q p ∨ ¬q F

0 0 0 1 1 1
0 1 0 0 0 1

1 0 0 1 1 1
1 1 1 0 1 1

Thus F is valid.
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Another Example

F : (p ∨ q) → (p ∧ q)

p q p ∨ q p ∧ q F
0 0 0 0 1 ← satisfying I
0 1 1 0 0 ← falsifying I
1 0 1 0 0
1 1 1 1 1

Thus F is satisfiable, but invalid.
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Bad Idea!

I Truth tables are completely brute-force, impractical ⇒ must
list all 2n interpretations!

I Does not work for any other logic where domain is not finite
(e.g., first-order logic)
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Method 2: Semantic Argument

I Semantic argument method is essentially a proof by
contradiction, and is also applicable for theories with
non-finite domain.

I Main idea: Assume F is not valid ⇒ there exists some
falsifying interpretation I such that I 6|= F

I Apply proof rules.

I If we derive a contradiction in every branch of the proof, then
F is valid.
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The Proof Rules (I)

I According to semantics of negation, from I |= ¬F , we can
deduce I 6|= F :

I |= ¬F
I 6|= F

I Similarly, from I 6|= ¬F , we can deduce:

I 6|= ¬F
I |= F
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The Proof Rules (II)

I According to semantics of conjunction, from I |= F ∧G , we
can deduce:

I |= F ∧G

I |= F
I |= G

←and

I Similarly, from I 6|= F ∧G , we can deduce:

I 6|= F ∧G

I 6|= F | I 6|= G

I The second deduction results in a branch in the proof, so each
case has to be examined separately!
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The Proof Rules (III)

I According to semantics of disjunction, from I |= F ∨G , we
can deduce:

I |= F ∨G

I |= F | I |= G

I Similarly, from I 6|= F ∨G , we can deduce:

I 6|= F ∨G

I 6|= F
I 6|= G
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The Proof Rules (IV)

I According to semantics of implication:

I |= F → G

I 6|= F | I |= G

I And:
I 6|= F → G

I |= F
I 6|= G
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The Proof Rules (V)

I According to semantics of iff:

I |= F ↔ G

I |= F ∧G | I |= ¬F ∧ ¬G

I And:
I 6|= F ↔ G

I |= F ∧ ¬G | I |= ¬F ∧G
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The Proof Rules (Contradiction)

I Finally, we derive a contradiction, when I both entails F and
does not entail F :

I |= F
I 6|= F
I |= ⊥
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An Example

Prove F : (p ∧ q) → (p ∨ ¬q) is valid.
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Another Example

I Prove that the following formula is valid using semantic
argument method:

F : ((p → q) ∧ (q → r))→ (p → r)
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Equivalence

I Formulas F1 and F2 are equivalent (written F1 ⇔ F2) iff for
all interpretations I , I |= F1 ↔ F2

F1 ⇔ F2 iff F1 ↔ F2 is valid

I Thus, if we have a procedure for checking satisfiability, we can
also check equivalence.
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Implication

I Formula F1 implies F2 (written F1 ⇒ F2) iff for all
interpretations I , I |= F1 → F2

F1 ⇒ F2 iff F1 → F2 is valid

I Thus, if we have a procedure for checking satisfiability, we can
also check implication

I Caveat: F1 ⇔ F2 and F1 ⇒ F2 are not formulas (they are not
part of PL syntax); they are semantic judgments!
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Example

I Prove that F1 ∧ (¬F1 ∨ F2) implies F2 using semantic
argument method.
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Summary

I Next lecture:

Normal forms and algorithms for deciding satisfiability

I Optional reading:

Bradley & Manna texbook until Section 1.6
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