CS389L: Automated Logical Reasoning

Lecture 12: Decision Procedure for the
Theory of Rationals

Isil Dillig

Overview

Today: Talk about how to decide satisfiability of the
quantifier-free fragment of T

We'll only consider quantifier free conjunctive Ty formulas
(i-e., no disjunctions)

Most common technique for deciding satisfiability in Tg is
Simplex algorithm

Simplex algorithm developed by Dantzig in 1949 for solving
linear programming problems

Since deciding satisfiability of qff conjunctive formulas is a
special case of linear programming, we can use Simplex
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The Plan Linear Programming
> In a linear programming (LP) problem, we have an m x n
matrix A, an m-dimensional vector b, and n-dimensional
vector ¢
> 1 i i . . . Lo N .
Overview of linear programming » Want to find a solution for Z maximizing objective function
» Satisfiability as linear programming Tz
» Simplex algorithm subject to linear inequality constraint
AT <b
» Very important problem; applications in airline scheduling,
transportation, telecommunications, finance, production
management, marketing, networking, compilers . ..
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Geometric Formulation

» For m x n matrix A, the system AZ < b forms
a convex polytope in n-dimensional space

> Polytope is generalization of polyhedron from
3-dim space to higher dimensional space

» Convexity: For all pairs of points v1, % and for any A € [0, 1],
the point Avj + (1 — \)v3 also lies in polytope

» Goal of linear programming: Find a point that (i) lies inside
the polytope, and (i) maximizes the value of ¢7%

Linear

>

Programming Lingo

In LP, a value of Z that satisfies constraints A7 < b called
feasible solution; otherwise, called infeasible solution

Example: Maximize 2y — z subject to:

z+y < 3

20—y < —=H
Is (0,0) a feasible solution?
What about (—2,1)?

For a given solution for Z, the corresponding value of objective
function 7% called objective value

What is objective value for (—2,1)?
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Linear Prograaming Lingo, cont

> A feasible solution whose objective value is maximum over all
feasible solutions called optimal solution

» If a linear program has no feasible solutions, the linear
program is infeasible

» |If optimal solution is co, then problem is called unbounded

Geometric Interpretation

> Feasible solution is a point within the polytope

> The linear programming problem is infeasible if
the polytope defined by AZ < b is empty

» An LP problem is unbounded if the polytope is
open in the direction of the objective function

» Question: If polytope is not closed, does this mean optimal
solution is co?

> Since the polytope defined by AZ < b is convex, the optimal
solution for bounded LP problem must lie on exterior
boundary of polytope
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Deciding T as Linear Program

» How do we determine Tq satisfiability using LP?

» First, convertTg formula to NNF.

> In this form, every atomic formula is of the form:

(€ {=#2,<})

a1y + agre + ...+ apry, X C

» First, rewrite it as equisat formula containing only < and > 0

iTt>c =
iTz<c =
iTt=c =
—»T—»
T (@"Z+y<chy>0)V
't #c = e
# (—@aTZ+y< —cAy>0)

Deciding T as Linear Program, cont

v

Current formula in NNF and no negations

Each atomic formula is one of three forms:

v

1 apx + ...+ ainzp < b;
2. apm + ot QT +y < By
3. y>0

» Next, convert to DNF: Formula is satisfiable iff any of the
clauses satisfiable

» Thus, want to formulate each clause as a linear program
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Deciding T as Linear Program, cont

» Each clause is of the following form:

A @iz + .+ ainz, < b;
AN Naim + . apz, +y < B
AN y>0

» How can we decide whether this constraint is satisfiable by
formulating it as an LP problem?
» This constraint is satisfiable iff the optimal solution of the

following LP problem is strictly positive:

Maximize y
Subject to:
Naaw + .o+ inwn < b ANapm + .+ @i, +y < By

» Why?

Satisfiability as Linear Programming

» Thus, we can formulate satisfiability of every gff conjunctive
Tq formula as a linear programming problem.

» Three popular methods for solving LP problems:

1. Ellipsoid method (Khachian, 1979)
2. Interior-point algorithm (Karmarkar, 1984)
3. Simplex algorithm (Dantzig, 1949)

» Among these, ellipsoid and interior-point method are
polynomial-time, but Simplex is worst-case exponential

» Despite this, Simplex remains most popular and performs
better for most problems of interest
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Prerequisites for Simplex

> To apply Simplex, we have to transform linear inequality
system into standard form and then into slack form

» Standard form:
Maximize ¢7z B
Subject to: AZ <b
Z>0

» Bad news: In general, not all problems require non-negative
solution, thus Z < 0 requirement unrealistic

» Good news: We can convert every LP problem into an
equisatisfiable standard form representation

» Equisat. means original problem has optimal objective value ¢
iff problem in standard form has optimal objective value ¢

Conversion to Standard Form

» Main idea: Any negative variable can be written as difference
of two non-negative integers

v

For each such variable, introduce two new variables z/ and

v

Add non-negativity constraints: z/ > 0 and z// > 0

v

Express ; as 2] — x/' by substituting z — ;' for each
occurence of x;
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Standard Form Example

> Consider the following linear program:

Maximize 2z — 31
Subject to: T+ <T
—T1 — T2 S -7
I — 212 < 4
I 2 0

> Variable 2z does not have non-negativity constraint; thus
rewrite it as 25 — 2/
» Equisatisfiable system in standard form:

Maximize
Subject to:

2z — 315 + 3y
mah—a) <7
—ry —axy + ) <=7
@ — 22 + 22 <4
21,2y, 2y >0

Conversion to Slack Form

v

To apply Simplex, we need inequalities to be in slack form

> In slack form, we only have equalities; the only inequality
allowed is non-negativity constraints

» For each inequality A;Z < b;, introduce a new slack variable s;

> Slack variables measure the difference (i.e., "slack”) between
left-hand and right-hand side

> Rewrite inequality as equality s; = b; — A;z and introduce
non-negativity constraint s; > 0
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Slack Form Conversion Example
» Consider LP problem from previous example:

Maximize
Subject to:

271 — 3x2 + 323

T+ a—13 <7
-1 — 2+ a3 < -7
T — 21+ 223 < 4

7, 72,73 > 0

> In slack form:

Maximize
Subject to:

211 — 3x0 + 313

oy=T—21 — T2+ 13

5 =T+ + 22 — 23
16 =4 — @1 + 219 — 213
T, T2, T3, T4, T5, Tg > 0

Basic and Non-Basic Variables

> In slack form, there is exactly one variable on the left hand
side of equalities

» Variables appearing on the left-hand side called basic variables
> Variables appearing on RHS called non-basic variables

» Invariant: Only non-basic variables can appear in the objective
function

» Initially, all basic variables are slack variables, but this will
change as algorithm proceeds
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Slack Form: Summary

» We'll denote the set of basic variables by B and non-basic
variables by N.

» Then we'll write the slack form as a set of equations of the
following form:

z = v+ Y c¢jz; (objective function)
zeN

i = bi— Y, ayz; (forevery z; € B)
zEN

» There are implicit non-negativity constraints on all variables,
but we omit them

» Question: Given original matrix A is m X n, what is | B|?

Basic Solution

» For each LP problem in slack form, there is a basic solution

v

To obtain basic solution, set all non-basic variables to zero

» Compute values of basic variables on the left-hand side

» What is basic solution for this slack form?
z = 311+ 19+ 213
g = 30—1z — 19 — 313
Ty = 24 — 2£K1 - 2.%2 - 5:63
26 = 36—4x — 1 — 213

v

Basic solution called feasible basic solution if it doesn't violate
non-negativity constraints
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Simplex Algorithm Phases

» Simplex algorithm has two phases:
1. Phase I: Compute a feasible basic solution, if one exists
2. Phase Il: Optimize value of objective function

> Understanding Phase | relies on understanding phase Il

» Thus, we'll talk about Phase Il first

Simplex Algorithm Optimization Phase Overview

» Starting with a feasible basic solution, each iteration rewrites
one slack form into an equivalent slack form

> This rewriting is similar to Gaussian elimination: involves
pivot operations on matrix

» Geometrically, each iteration of Simplex "walks” from one
vertex to an adjacent vertex until it reaches a local maximum

» By convexity, local optimum is global optimum; thus
algorithm can safely stop when local maximum is reached
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Simplex Algorithm Optimization Phase

» When rewriting one slack form to another, goal is to increase
value of objective function associated with basic solution

> Recall: Objective functionis z = v+ Y ¢z
zEN

» How can we increase value of 27

> If there is a term c;x; with positive ¢;, we can increase value
of z by increasing x;'s value, i.e., by making x; a basic variable

> What if there are no positive ¢;'s?

» Then, we know we can't increase value of z, thus we are done!

Simplex Algorithm Optimization Phase, cont

> Suppose we can increase objective value, i.e., there exists a
term c;x; with positive c;

> We want to increase 7;'s value, but is there a limit on how
much we can increase z;?

» Consider equality z; = b; — ajz; — ...

> Observe: If a;; is positive and we increase z; beyond ab— T;
. . . )
becomes negative and we violate constraints

> Thus, the amount by which we can increase z; is limited by
the smallest :—l among all i's
i

> If there is no positive coefficient a;;, we can increase ; (and
thus z) without limit = optimal solution = oo
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Summary

> Thus, given term cjx; with positive ¢; in objective function,
we want to increase z; as much as possible

> To increase z; as much as possible, we find equality that most
severely restricts how much we can increase x;

» Equality that most severaly restricts z; has following
characteristics:

1. z;'s coefficient a;; is positive (otherwise doesn't limit ;)

2. has smallest value of 2= (most severely restricting)
ij

Simplex Algorithm Optimization Phase, cont

> Suppose equality with basic var. z; is most restrictive for z;
> Swap roles of z; and z; by making z; basic and z; non-basic

> To do this, rewrite z; in terms of z; and plug this in to all
other equations; this operation is called a pivot

> After performing this pivot operation, what is new value of z;?
> We have increased the value of z; from 0 to ;—’
ij

» Thus, after performing pivot we still have feasible solution but
objective value is now greater
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Simplex Optimization Phase Summary

» Pivot operation exchanges a basic variable with a non-basic
variable to increase objective value of basic solution

» Simplex repeats this pivot operation until one of two
conditions hold:

1. All coefficients in objective function are negative = optimal
solution found

2. There exists a non-basic variable z; with positive coefficient ¢;
in objective function, but all coefficients a;; are negative =
optimal solution = oo

Example
z = 311+ 19+ 213
ry = 30—1 — 1 — 313
5 = 24 —2x — 21 — Ha3
6 = 36 —4r — 12 — 233

» How can we increase value of objective function?

v

Which equality restricts z; the most?

v

Rewrite z; in terms of zg4:

1 1 1
—23 — — I
3T %
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Example, cont

> Plug this in for 2; in all other equations (i.e., pivot):

— x . 3
z = 27T + ;42 + ?3 - gﬁ
— 2
SRR S S |
— 2 3
T, = 21 — g - 5 + 7
m = 6 - 72 — 43 + %
» How can we increase value of 27
>
» Which equality restricts x3 the most?
» What is z3 in terms of z5, 2, 267
3 3 1 n 1
T3 == — —Ip — —T5 + —
3= 5 g g% Sxﬁ

Example, cont

> New slack form after making z3 basic, z5 non-basic:

- 11 . oxs . llzg
R RS S
= 29 _ 12 Lo 2T6
$1—34 2+§ éfj
R
_%ﬁ 3z @,E
o= 3 + 3 t 3 16

» Can we increase 27?7

v

Which equality restricts z» the most?

v

Solve z in terms of z3:
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Example, cont.

» New slack form after making z, basic, 23 non-basic:

cem -3 -z -m
$1=8+%+%*%
noa th 1LY
x4=18—%+%5

» Can we increase objective value?

v

What is optimal objective value?

v

What is optimal solution?

Degenerate Problems

> Can the objective value decrease between two successive
iterations?

» Objective value can't decrease; but can it stay the same? Yes

» Example: Suppose we make 7, the new basic variable, and
most constraining equality is:

T =2+ 213+ 134
» 1o's old value was 0; what is its new value? Also 0

> These kinds of problems where objective value can stay the
same after pivoting are called degenerate problems
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Degenerate Problems and Termination

» If problem is not degenerate, Simplex guaranteed to terminate
for any pivot selection strategy (b/c objective value increases)

» Bad news: For degenerate problems, Simplex might not
terminate

» Good news: There are pivot selection strategies for which
Simplex is always guaranteed to terminate, even for
degenerate problems

» One such strategy is Bland's rule: If there are multiple
variables with positive coefficients in objective function,
always choose the variable with smallest index

> Example: If z = 22 4+ bap — 43, Bland's rule chooses ; as
new basic variable since it has smallest index

Simplex Algorithm Phases

» Simplex algorithm has two phases:

1. Phase |I: Compute a feasible basic solution, if one exists

2. Phase Il: Optimize value of objective function /

» So far, we talked about the second phase, assuming we
already have a feasible basic solution

» However, the initial basic solution might not feasible even if
the linear program is feasible
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Example of Infeasible Initial Basic Solution

» Consider the following linear program:
z = 2x — @
T3 = 2—211 4+ 1
7y = —4—1 451

What is the initial basic solution?

v

v

Clearly, this solution is not feasible

v

Goal of Phase | of Simplex is to determine if a feasible basic
solution exists, and if so, what it is

Overview of Phase |

v

To find an initial basic solution, we construct an auxiliary
linear program L,

v

This auxiliary linear program has the property that we can find
a feasible basic solution for it after at most one pivot operation

v

Furthermore, original LP problem has a feasible solution if and
only if the optimal objective value for Lg,, is zero

v

If optimal value of L, is 0, we can extract basic feasible
solution of original problem from optimal solution to Lgy,
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Constructing the Auxiliary Linear Program

» Consider the original LP problem:
Maximize Z”: ¢z
Jj=1
Subject to:
(i € [L,m])

(G € [1,n])

n
2wy < by
=1

z; >0

» This problem is feasible iff the following LP problem L, has
optimal value 0:

Maximize
Subject to:

—Iy

> aym — a3 < b (i€ [L,m])
Jj=1

Zj >0 (.7 € [07 "])

Justification for Auxiliary LP

Maximize
Subject to:

—I9

> agr —ap < b (i €[1,m])
j=1

7 >0 (7 €[0,n])

= Suppose 7y has optimal value 0. Then clearly a;;z; < b; is satisfied
for all inequalities

< (a) Suppose original problem has feasible solution z*. Then z*
combined with xy = 0 is feasible solution for L ;.

< (b) Due to the non-negativity constraint, —z can be at most 0; thus,
this solution is optimal for L.
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Finding Feasible Basic Solution for L4,

» So far, we argued that original problem L has feasible solution
iff Lgy, has optimal value 0.

» But we still need to figure out how to find feasible basic
solution to Lgyy-

> Next: We'll see how we can find feasible basic solution for
Lquz after one pivot operation.

Auxiliary Problem in Slack Form

]
n
b + 20 — 30 a4y
=

i

» If all b;'s are positive, basic solution already feasible

> If there is at least some negative b;, find equality z; with most
negative b;

» Make xy new basic variable, and x; non-basic

» Claim: After this one pivot operation, all b;'s are
non-negative; thus basic solution is feasible

Why is This True? Example
» Suppose this equality has most negative b;: > Consider the following linear program from earlier:
n
z = 2x — X
Ii:bi+xoizaij$j 3 = 2—211 4+ 10
7=l 2 = —4—121+ 51
» Rewrite to make 1z basic:
» Construct Lgyy:
n aur
xO:—bi—&—xi-i-Zaijxj zZ = —I
j=1 3 = 2430 — 211+ 12
) o ' z = —4d+x0—11+ 512
> Now, —b; is positive and greater than all other |b;|'s
» Which equation has most negative constant?
» Thus, when we plug in equality for ay into other equations,
their new constants will be positive » Swap 24 and zo:
» Hence, we find a feasible basic solution after at most one Ty =441y + 3 — Sy
pivot step




Example, cont

> After pivoting, we obtain the new slack form:

z = —4—134— 11+ 510
3 = 6—13 — 4+ 14
9 = 4+z4+ 1 — 510

v

What is current objective value?

» How can we increase it?

v

Which equation constrains z, the most?

Example, cont

» After pivoting, new slack form:

z = —Iy

— 4 _m_m Zg
"z ?4 54 5Qj5z
3 R S S

v

Objective function cannot be increased, so we are done!
> In original problem, objective function was z = 2z; — 2

» Since 7 is now a basic variable, substitute for zp with RHS:
o —4 9:171 T4

T 75 5
> Swap 2 and 1p: .
» Thus, Phase | returns the following slack form to Phase II:
4 1 -4, 9
n=F—gntntn Bk
5 5 _ 4 i T4
2 = 5o RtE
_ i 971 | a4
3= 55 t3
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Summary

> To solve constraints in Tg (linear inequalities over rationals),
we use Simplex algorithm for LP

» Simplex has two phases

» In first phase, we construct slack form such that it has a basic

feasible solution

> In second phase, we start with basic feasible solution and

rewrite one slack form into equivalent one until objective value
can't increase

» Although Simplex is a worst-case exponential, it is more

popular than polynomial-time algorithms for LP
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