CS389L: Automated Logical Reasoning

Lecture 13: The Omega Test

Isil Dillig

Theory of Integers

» This lecture: Decision procedure for gff theory of integers

> As in previous two lectures, we'll consider T formulas
without disjunctions

» Problem we want to solve: Given an m x n matrix A with
only integer coefficients and a vector b in Z", does

AZ<b
have any integer solutions?
> Integrality requirement actually makes problem much harder

» Finding solution over rationals is poly-time, but integer
problem is NP-complete even without disjunctions

Isil Dillig, C5380L: Automated Logical Reasoning Lecture 13: The Omega Test

Isil Dillg, €S389L: Automated Logical Reasaning ~ Lecture 13: The Omega Test 2/34

Geometric Description

> As before the system AZ < b defines a
polytope

> Last time we asked the question: Is the
polytope empty?

> This time, we want to know if polytope
contains integer points

> While the polytope is convex, the space
formed by all integer points in polytope is
not convex

» Unfortunately, non-convexity makes
problem much harder to solve

Overview of Techniques

» Two different techniques for solving linear integer inequalities

1. Elimination-based techniques: Eliminate variables one by one
until system becomes trivially solvable (e.g., Omega Test,
Cooper’s method)

2. Relaxation-based techniques: Drop integrality requirement and
iteratively add constraints (e.g., Branch-and-bound, Gomory
cuts, Cuts-from-Proofs)

» Plan: Talk about an elimination-based method today; talk
about relaxation-based methods next time

Isil Dillig, C5389L: Automated Logical Reasoning _Lecture 13: The Omega Test

Isil Dillg, €S389L: Automated Logical Reasoning ~ Lecture 13: The Omega Test 4/34

The Omega Test: Historical Perspective

» Omega Test: invented in early 1990's for compiler
optimizations

» Particular application: array dependence analysis

> Array dependence analysis: "Can two expressions ai] and alj]
refer to same element?”

» Can use this information to reorder read and writes from the
array and perform operations in parallel

Array Dependence Analysis Example

> Consider the following code snippet:
for(i=1; i<= 100; i++) {

for(j=i; j<= 100; j++)
ali, j+1] = al100, j]

> Can the expressions a[i, j+1] and a[100,j] ever refer to
same element (not necessarily in same iteration)? No!
> Thus, no array element is both read and written to in the loop

» Hence, we can optimize code by performing assignments in
parallel!

Isil Dillig, C5389L: Automated Logical Reasoning Lecture 13: The Omega Test

5/3

Isil Dillg, €S389L: Automated Logical Reasaning ~ Lecture 13: The Omega Test 6/34




Array Dependence Analysis as Integer Constraints

for(i=1; i<= 100; i++) {
for(j=i; j<= 100; j++)
ali, j+11 = al100, j]

» Can express dependence analysis as linear integer constraints

» Variables w; and w; denote array indices when write is
performed

> Variables r; and r; denote array indices when read is
performed

> How do we express that same element is both read and
written to? w; = r; A wj = 7;

Array Dependence Analysis as Integer Constraints, cont

for(i=1; i<= 100; i++) {
for(j=i; j<= 100; j++)
ali, j+1] = a[100, jI

v

Based on loop start/end conditions, what are constraints on
w;? 1 < w; <100

v

What are constraints on w;? w; < w; < 101

v

What are constraints on ;7 r; = 100

v

What are constraints on ;7 w; < r; < 100

Isil Dillig, C5380L: Automated Logical Reasoning Lecture 13: The Omega Test

Isil Dillg, €S389L: Automated Logical Reasoning ~ Lecture 13: The Omega Test 8/34

Array Dependence Analysis as Integer Constraints, cont

» Thus, an array element may be both read and written in the
loop if the conjunction of these constraints is satisfiable:

wp =1y Nwj =71y

1 <w; <100 A w; < w; <101
n-:100/\wi§rj§100

» Since array indices can't be real numbers, only interested in
integer solution

» Since this constraint has no integer solutions, there is no
dependence between array reads and writes

» Thus, all writes can be done in parallel

Applications of Theory of Integers

» Array dependence analysis one application of decision
procedure for theory of integers

> Omega Test was initially invented to do better job with array
dependence analysis

> Many other applications in software verification, compiler
optimizations, operations research, ...

Isil Dillig, C5380L: Automated Logical Reasoning Lecture 13: The Omega Test

Isil Dillg, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 10/34

Omega Test: Main Idea

» Main idea: Eliminate variables one by one
from the initial system AZ < b

> Geometrically, eliminating a variable
corresponds to computing a projection of
a polytope in n-dimensional space to an
n — 1-dimensional space

» Since the polytope has one less dimension
at each step, resulting problem is easier to
solve than the previous one

Projections in Omega Test

Omega test computes three kind of projections, called shadows:
1. Real Shadow

» Overapproximates satisfiability over integers
» If real shadow has no solutions, neither does original problem

2. Dark Shadow
» Underapproximates satisfiability over integers

» If dark shadow has solution, original problem has solution
3. Gray Shadows
> These correspond to areas between real and dark shadow that

might contain integer points

» Omega test constructs multiple gray shadows

Isil Dillig, C5389L: Automated Logical Reasoning Lecture 13: The Omega Test

11/34

Isil Dillg, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 12/34




Omega Test Work Flow

No solution

Real shadow UNSAT

Has solution

Solution

Dark shadow SAT

No solution

Any subproblem

Gray Gray Gray SAT

shadow 1lshadow 2] lshadow K has solution

UNSAT

Isil Dillg, €S389L: Automated Logical Reasoning Lecture 13: The Omega Test

The Real Shadow

» When constructing the real shadow, we ignore requirement
that solution must be integer

» Thus, resulting projection overapproximates satisfiability of
original problem

» To construct real shadow, we use the Fourier-Motzkin variable
elimination technique

Isil Dillg, C5380L: Automated Logical Reasoning Lecture 13: The Omega Test 14/34

Fourier-Motzkin Variable Elimination
» Suppose we want to eliminate variable z,, from A7 < b
n
> Consider an inequality > a;z; < b;
j=1

n—1
This can be rewritten as a4z, < b; — > a;4;
=1

v

v

If a;, is positive, this yields an upper bound on z,:

n—1
- bi Qij ..
Tn < Qi Z 0 Y
Jj=1

> If a;, is negative, this yields lower bound on z,,:

n—1

bi Qij
Ty > - — z,
"= ap 721 [

Isil Dillg, €S389L: Automated Logical

g Lecture 13: The Omega Test

Fourier-Motzkin Variable Elimination, cont.

» Thus, if we have AZ < b has two rows i and k with positive
and negative coefficients for z,, this yields the inequality:

n—1 n—1

by o b; a;
£ -y <z, < =) Ly
ke, Qin - Qin

» We eliminate z,, by removing it from the middle of inequality:

b o b g

_r E 71% < L - E JIJ.

Afp, — Qkp ijn, — Qin
j=1 =1

> If we do this for every pair of inequalities with positive and
negative coefficients for x,, this yields the real shadow

Isil Dillg, CS389L: Automated Logical R

ning  Lecture 13: The Omega Test 16/34

Fourier-Motzkin Example

» Consider the set of inequalities:
r<y+10 y<15 —z+4+20<y

> Let's compute real shadow on z-axis using Fourier-Motzkin

v

Isolate y on one side:

1z-10<y (2)y<15 (3) —z+20<y
» From (1) and (2), we get z — 10 < 15, i.e.,, z < 25
» From (2) and (3), we get —z +20 < 15, i.e. 2 > 5

» Thus, real shadow on z-axisis 5 < z < 25

Isil Dillg, €5389L: Automated Logical

g Lecture 13: The Om

Dark Shadow

» The second projection Omega test constructs is dark shadow

> Dark shadow underapproximates satisfiability

» Suppose we want to eliminate variable z from AZ < b

» Dark shadow only projects those parts of polytope that are at
least one unit thick in the z-dimension

> If dark shadow has integer solution, original polytope must
also have integer solution. Why?

» Since polytope is at least one unit thick above the dark
shadow in z-dimension, we are guaranteed to have an integer
solution for z as well!

Isil Dillg, CS389L: Automated Logical ning  Lecture 13: The Omega Test 18/34




Math Behind the Dark Shadow

> As in real shadow, consider a pair of inequalities
corresponding to lower and upper bounds on z:

L<ar bx<U

Math Behind the Dark Shadow, cont.
> 1 >
—

l

=

)

i+ 1

ShIee
SHINE

> These imply: » Thus, we have the following inequalities:
L u
—<zr< — L : 1
a=" " a7 2 G
; u 1
1+ 1- b 2 D
» Now, suppose there is no integer between % and %
> If we sum these up, we get:
» Consider first integer 7 smaller than % LU 1 1
S ——fl1> 4
a b a b
' il Cos Automare Logia Fepering Lecre 15, T Omegs Ton w7 o g oAl Atamated Logel Ressoning_Lectre 13 The Omega Tom o

Math Behind Dark Shadow, cont

> |If we rearrange this equation, we get:

bL—ald>b+a—ab

v

Finally, multiplying both sides by —1:

ad —bL<ab—a—0b (%)

v

Recall: We derived this equation by assuming that there is no
integer solution for x

v

That is, we showed "If there is no integer solution for z, then
(*) must hold”

v

Thus, negation of (*) guarantees there exists integer solution
for z!

Math Behind Dark Shadow, cont

> Thus, negation of (*)
ald —bL>ab—a—1b (xx)
guarantees there is an integer value for z!

» Thus, to construct dark shadow, we remove inequalities
containing z and add inequality ()

> Resulting projection is underapproximation because only
projects those parts that are at least one unit thick, but there
might be an integer solution for z even if it's not unit thick

Isil Dillig, C5389L: Automated Logical Reasoning Lecture 13: The Omega Test

21/34

Isil Dillg, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test

234

Dark Shadow Example

» Compute the dark shadow of these inequalities on the z-axis

Ndy>z (2)2y>6-3z (3)3y<T7—=z
> Using (1), (3), we have a =4, L=z and b =3,U =7 — x:
47—-2)-3z>12-4-3 = x<2—73

» Using (2), (3), we have a =2,£ =6 — 3z and
b=3,U=T—uzx:

5

AT—2)=3(6-30)>6-3-2 = o>

» What can we conclude based on dark shadow?

Dark Shadow Geometrically

» Compute the dark shadow of these inequalities on the z-axis
4y>z (2)2y>6-3z (3)3y<7—=z

> Geometrically:

Isil Dillig, C5389L: Automated Logical Reasoning  Lecture 13: The Omega Test

2334

Isil Dillg, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test

24/34




Gray Shadows

> Recall: Real shadow overapproximates the problem, and dark
shadow underapproximates it.

» If real shadow has integer solutions, but dark shadow does not,
we still don't know if original problem has integer solutions.

> In this case, Omega test constructs projections called gray
shadows

» Gray shadows look for integer solutions outside the dark
shadow, but inside the real shadow.

Constructing the Gray Shadow
» Consider again the pair of inequalities:

L<ax bz<U

v

By construction, any point in the real shadow satisfies:

bL < abzr < ald (1)

v

Also, by construction, any point outside dark shadow satisfies:
ald —bL <ab—a—b

> We can rewrite above as: ald < DL+ ab—a—b (2)

v

Combining (1) and (2), we have:
bL < abz <bL+ab—a—10b

Isil Dillig, C5389L: Automated Logical Reasoning Lecture 13: The Omega Test

25/34

Isil Dillg, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test

26/34

Constructing Gray Shadow, cont.

» Thus, any point inside real shadow but outside dark shadow
must satisfy:

bL < abr <ab+bL—a—0>

» Dividing by b, points in the gray shadow must satisfy:

£§{m§[/+w

> Observe: If z is an integer, az must also be integer
» Furthermore, ax must be equal to
L+

for some 1 in the range [0, =2="]

Constructing Gray Shadow, cont.

» Thus, we construct each gray shadow by adding the equality:
ar =L+ 1
for each 4 in the range [0, %}

» If any subproblem has integer solution, then so does original
problem

> If no subproblem has integer solution, original problem
unsatisfiable

Isil Dillig, C5389L: Automated Logical Reasoning Lecture 13: The Omega Test

27/34

Isil Dillg, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test

28/34

Remark about Gray Shadows

> Observe: If there are n integers between 0 and ‘”"T‘l_b
Omega test constructs n gray shadows

» Thus, Omega test is very sensitive to coefficients in formula
> The larger a is, the more gray shadows we must consider
» Nightmare for Omega test: Real shadow has solution, dark

shadow has no solution, and coefficient a is very large, and
problem is unsatisfiable

Gary Shadow Example

v

Consider these inequalities:

(1) by<3z+3 (2)4y<9-2z (3)4y>3

v

Real shadow: + <z <3

1
1

v
ot

Dark shadow: % <z<li

|

» Do we need to consider gray shadows?

Isil Dillig, C5389L: Automated Logical Reasoning Lecture 13: The Omega Test

20/34

Isil Dillg, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test

30/34




Gary Shadow Example, cont.

v

v

v

v

v

Consider these inequalities:

(1)5y<3z+3 (2)4y<9-2z (3)4y >3

Derive gray shadow using constraints (1) and (3)
by <3z+3 (UB) 4y >3 (LB)

We have L=3,a =4,U=3x+3,b=5

Check 4z =3+ i for i € [0, 222=2] (ie, i €[0,1])

Satisfiable for i =1 = has solutions!

Example, cont

Geometrically:

Gray Shadow

Isil Dillig,

CS389L: Automated Logical Reasoning Lecture 13: The Omega Test

31734

Isil Dillg, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test

32/3

An Optimization

Omega test uses important optimization to handle equality
constraints

Equality constraints can be expressed as pair of inequalities,
but handling equalities directly much more efficient

Thus, Omega test handles equality constraints in a special way

Uses interesting coefficient-reducing technique based on
symmetric modulo

Details are in paper posted on class webpage

Omega Test Summary

> Omega test is an elimination-based technique for solving linear

inequalities over integers

» Constructs three kinds of projections: real shadow, dark
shadow, gray shadow

» Problem has no solution if real shadow has no solution
» Problem has solution if dark shadow has solution

» Otherwise, problem has solution iff one of the dark shadows
has solution

> Omega test handles equalities specially using the symmetric
modulo technique

Isil Dillig,

CS389L: Automated Logical Reasoning  Lecture 13: The Omega Test

33/34

Isil Dillg, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test

34/34




