
CS389L: Automated Logical Reasoning

Lecture 13: The Omega Test

Işıl Dillig

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 1/34

Theory of Integers

I This lecture: Decision procedure for qff theory of integers

I As in previous two lectures, we’ll consider TZ formulas
without disjunctions

I Problem we want to solve: Given an m × n matrix A with
only integer coefficients and a vector ~b in Zn , does

A~x ≤ ~b

have any integer solutions?

I Integrality requirement actually makes problem much harder

I Finding solution over rationals is poly-time, but integer
problem is NP-complete even without disjunctions

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 2/34

Geometric Description

I As before the system A~x ≤ ~b defines a
polytope

I Last time we asked the question: Is the
polytope empty?

I This time, we want to know if polytope
contains integer points

I While the polytope is convex, the space
formed by all integer points in polytope is
not convex

I Unfortunately, non-convexity makes
problem much harder to solve

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 3/34

Overview of Techniques

I Two different techniques for solving linear integer inequalities

1. Elimination-based techniques: Eliminate variables one by one
until system becomes trivially solvable (e.g., Omega Test,
Cooper’s method)

2. Relaxation-based techniques: Drop integrality requirement and
iteratively add constraints (e.g., Branch-and-bound, Gomory
cuts, Cuts-from-Proofs)

I Plan: Talk about an elimination-based method today; talk
about relaxation-based methods next time

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 4/34

The Omega Test: Historical Perspective

I Omega Test: invented in early 1990’s for compiler
optimizations

I Particular application: array dependence analysis

I Array dependence analysis: ”Can two expressions a[i] and a[j]
refer to same element?”

I Can use this information to reorder read and writes from the
array and perform operations in parallel

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 5/34

Array Dependence Analysis Example

I Consider the following code snippet:

for(i=1; i<= 100; i++) {

for(j=i; j<= 100; j++)

a[i, j+1] = a[100, j]

}

I Can the expressions a[i, j+1] and a[100,j] ever refer to
same element (not necessarily in same iteration)? No!

I Thus, no array element is both read and written to in the loop

I Hence, we can optimize code by performing assignments in
parallel!

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 6/34

1



Array Dependence Analysis as Integer Constraints

for(i=1; i<= 100; i++) {

for(j=i; j<= 100; j++)

a[i, j+1] = a[100, j]

}

I Can express dependence analysis as linear integer constraints

I Variables wi and wj denote array indices when write is
performed

I Variables ri and rj denote array indices when read is
performed

I How do we express that same element is both read and
written to? wi = ri ∧ wj = rj

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 7/34

Array Dependence Analysis as Integer Constraints, cont

for(i=1; i<= 100; i++) {

for(j=i; j<= 100; j++)

a[i, j+1] = a[100, j]

}

I Based on loop start/end conditions, what are constraints on
wi? 1 ≤ wi ≤ 100

I What are constraints on wj ? wi < wj ≤ 101

I What are constraints on ri? ri = 100

I What are constraints on rj ? wi ≤ rj ≤ 100

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 8/34

Array Dependence Analysis as Integer Constraints, cont

I Thus, an array element may be both read and written in the
loop if the conjunction of these constraints is satisfiable:

wi = ri ∧ wj = rj
1 ≤ wi ≤ 100 ∧ wi < wj ≤ 101

ri = 100 ∧ wi ≤ rj ≤ 100

I Since array indices can’t be real numbers, only interested in
integer solution

I Since this constraint has no integer solutions, there is no
dependence between array reads and writes

I Thus, all writes can be done in parallel

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 9/34

Applications of Theory of Integers

I Array dependence analysis one application of decision
procedure for theory of integers

I Omega Test was initially invented to do better job with array
dependence analysis

I Many other applications in software verification, compiler
optimizations, operations research, . . .

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 10/34

Omega Test: Main Idea

I Main idea: Eliminate variables one by one
from the initial system A~x ≤ ~b

I Geometrically, eliminating a variable
corresponds to computing a projection of
a polytope in n-dimensional space to an
n − 1-dimensional space

I Since the polytope has one less dimension
at each step, resulting problem is easier to
solve than the previous one

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 11/34

Projections in Omega Test

Omega test computes three kind of projections, called shadows:

1. Real Shadow
I Overapproximates satisfiability over integers

I If real shadow has no solutions, neither does original problem

2. Dark Shadow
I Underapproximates satisfiability over integers

I If dark shadow has solution, original problem has solution

3. Gray Shadows
I These correspond to areas between real and dark shadow that

might contain integer points

I Omega test constructs multiple gray shadows

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 12/34

2



Omega Test Work Flow

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 13/34

The Real Shadow

I When constructing the real shadow, we ignore requirement
that solution must be integer

I Thus, resulting projection overapproximates satisfiability of
original problem

I To construct real shadow, we use the Fourier-Motzkin variable
elimination technique

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 14/34

Fourier-Motzkin Variable Elimination

I Suppose we want to eliminate variable xn from A~x ≤ ~b

I Consider an inequality
n∑

j=1
aij xj ≤ bi

I This can be rewritten as ainxn ≤ bi −
n−1∑
j=1

aij xj

I If ain is positive, this yields an upper bound on xn :

xn ≤ bi
ain
−

n−1∑
j=1

aij
ain

xj

I If ain is negative, this yields lower bound on xn :

xn ≥ bi
ain
−

n−1∑
j=1

aij
ain

xj

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 15/34

Fourier-Motzkin Variable Elimination, cont.

I Thus, if we have A~x ≤ ~b has two rows i and k with positive
and negative coefficients for xn , this yields the inequality:

bk
akn
−

n−1∑

j=1

akj
akn

xj ≤ xn ≤
bi
ain
−

n−1∑

j=1

aij
ain

xj

I We eliminate xn by removing it from the middle of inequality:

bk
akn
−

n−1∑

j=1

akj
akn

xj ≤
bi
ain
−

n−1∑

j=1

aij
ain

xj

I If we do this for every pair of inequalities with positive and
negative coefficients for xn , this yields the real shadow

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 16/34

Fourier-Motzkin Example

I Consider the set of inequalities:

x ≤ y + 10 y ≤ 15 −x + 20 ≤ y

I Let’s compute real shadow on x -axis using Fourier-Motzkin

I Isolate y on one side:

(1) x − 10 ≤ y (2) y ≤ 15 (3) − x + 20 ≤ y

I From (1) and (2), we get x − 10 ≤ 15, i.e., x ≤ 25

I From (2) and (3), we get −x + 20 ≤ 15, i.e. x ≥ 5

I Thus, real shadow on x -axis is 5 ≤ x ≤ 25

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 17/34

Dark Shadow

I The second projection Omega test constructs is dark shadow

I Dark shadow underapproximates satisfiability

I Suppose we want to eliminate variable x from A~x ≤ ~b

I Dark shadow only projects those parts of polytope that are at
least one unit thick in the x -dimension

I If dark shadow has integer solution, original polytope must
also have integer solution. Why?

I Since polytope is at least one unit thick above the dark
shadow in x -dimension, we are guaranteed to have an integer
solution for x as well!

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 18/34

3



Math Behind the Dark Shadow

I As in real shadow, consider a pair of inequalities
corresponding to lower and upper bounds on x :

L ≤ ax bx ≤ U

I These imply:
L
a
≤ x ≤ U

b

I Now, suppose there is no integer between La and Ub

I Consider first integer i smaller than La

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 19/34

Math Behind the Dark Shadow, cont.

I II I

I Thus, we have the following inequalities:

L
a − i ≥ 1

a

i + 1− Ub ≥ 1
b

I If we sum these up, we get:

L
a
− U

b
+ 1 ≥ 1

a
+

1

b

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 20/34

Math Behind Dark Shadow, cont

I If we rearrange this equation, we get:

bL − aU ≥ b + a − ab

I Finally, multiplying both sides by −1:

aU − bL ≤ ab − a − b (∗)

I Recall: We derived this equation by assuming that there is no
integer solution for x

I That is, we showed ”If there is no integer solution for x , then
(*) must hold”

I Thus, negation of (*) guarantees there exists integer solution
for x !

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 21/34

Math Behind Dark Shadow, cont

I Thus, negation of (*)

aU − bL > ab − a − b (∗∗)

guarantees there is an integer value for x !

I Thus, to construct dark shadow, we remove inequalities
containing x and add inequality (∗∗)

I Resulting projection is underapproximation because only
projects those parts that are at least one unit thick, but there
might be an integer solution for x even if it’s not unit thick

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 22/34

Dark Shadow Example

I Compute the dark shadow of these inequalities on the x -axis

(1) 4y ≥ x (2) 2y ≥ 6− 3x (3) 3y ≤ 7− x

I Using (1), (3), we have a = 4,L = x and b = 3,U = 7− x :

4(7− x )− 3x > 12− 4− 3 ⇒ x <
23

7

I Using (2), (3), we have a = 2,L = 6− 3x and
b = 3,U = 7− x :

2(7− x )− 3(6− 3x ) > 6− 3− 2 ⇒ x >
5

7

I What can we conclude based on dark shadow?

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 23/34

Dark Shadow Geometrically

I Compute the dark shadow of these inequalities on the x -axis

(1) 4y ≥ x (2) 2y ≥ 6− 3x (3) 3y ≤ 7− x

I Geometrically:

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 24/34

4



Gray Shadows

I Recall: Real shadow overapproximates the problem, and dark
shadow underapproximates it.

I If real shadow has integer solutions, but dark shadow does not,
we still don’t know if original problem has integer solutions.

I In this case, Omega test constructs projections called gray
shadows

I Gray shadows look for integer solutions outside the dark
shadow, but inside the real shadow.

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 25/34

Constructing the Gray Shadow
I Consider again the pair of inequalities:

L ≤ ax bx ≤ U

I By construction, any point in the real shadow satisfies:

bL ≤ abx ≤ aU (1)

I Also, by construction, any point outside dark shadow satisfies:

aU − bL ≤ ab − a − b

I We can rewrite above as: aU ≤ bL+ ab − a − b (2)

I Combining (1) and (2), we have:

bL ≤ abx ≤ bL+ ab − a − b

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 26/34

Constructing Gray Shadow, cont.

I Thus, any point inside real shadow but outside dark shadow
must satisfy:

bL ≤ abx ≤ ab + bL − a − b

I Dividing by b, points in the gray shadow must satisfy:

L ≤ ax ≤ L+
ab − a − b

b

I Observe: If x is an integer, ax must also be integer

I Furthermore, ax must be equal to

L+ i

for some i in the range [0, ab−a−bb ]

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 27/34

Constructing Gray Shadow, cont.

I Thus, we construct each gray shadow by adding the equality:

ax = L+ i

for each i in the range [0, ab−a−bb ]

I If any subproblem has integer solution, then so does original
problem

I If no subproblem has integer solution, original problem
unsatisfiable

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 28/34

Remark about Gray Shadows

I Observe: If there are n integers between 0 and ab−a−b
b ,

Omega test constructs n gray shadows

I Thus, Omega test is very sensitive to coefficients in formula

I The larger a is, the more gray shadows we must consider

I Nightmare for Omega test: Real shadow has solution, dark
shadow has no solution, and coefficient a is very large, and
problem is unsatisfiable

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 29/34

Gary Shadow Example

I Consider these inequalities:

(1) 5y ≤ 3x + 3 (2) 4y ≤ 9− 2x (3) 4y ≥ 3

I Real shadow: 1
4 ≤ x ≤ 3

I Dark shadow: 15
12 ≤ x ≤ 15

8

I Do we need to consider gray shadows?

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 30/34

5



Gary Shadow Example, cont.

I Consider these inequalities:

(1) 5y ≤ 3x + 3 (2) 4y ≤ 9− 2x (3) 4y ≥ 3

I Derive gray shadow using constraints (1) and (3)

5y ≤ 3x + 3 (UB) 4y ≥ 3 (LB)

I We have L = 3, a = 4,U = 3x + 3, b = 5

I Check 4x = 3 + i for i ∈ [0, 4·5−4−55 ] (i.e., i ∈ [0, 1])

I Satisfiable for i = 1 ⇒ has solutions!

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 31/34

Example, cont

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 32/34

An Optimization

I Omega test uses important optimization to handle equality
constraints

I Equality constraints can be expressed as pair of inequalities,
but handling equalities directly much more efficient

I Thus, Omega test handles equality constraints in a special way

I Uses interesting coefficient-reducing technique based on
symmetric modulo

I Details are in paper posted on class webpage

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 33/34

Omega Test Summary

I Omega test is an elimination-based technique for solving linear
inequalities over integers

I Constructs three kinds of projections: real shadow, dark
shadow, gray shadow

I Problem has no solution if real shadow has no solution

I Problem has solution if dark shadow has solution

I Otherwise, problem has solution iff one of the dark shadows
has solution

I Omega test handles equalities specially using the symmetric
modulo technique

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 13: The Omega Test 34/34

6


