CS389L: Automated Logical Reasoning

Lecture 8: Introduction to Theorem Proving

Isil Dillig

Review

» What are some decidable fragments of FOL?
» What is compactness?

» What is a property that cannot be expressed in FOL?
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First-Order Theorem Provers

» A first-order theorem prover is a computer program that
proves the validity of formulas in first-order logic.

» Since validity in FOL is only semi-decidable, first-order
theorem provers are not guaranteed to terminate

» Despite this limitation, many automated theorem provers exist
and are useful: Vampire, SPASS, Otter, ...

» There are even annual competitions between these theorem
provers! (just Google "CADE ATP competition”)

Theorem Provers and Mathematical Theorems

» First-order theorem provers have been used to
prove some mathematical theorems not
previously proven by humans.

» Robbins conjecture (1933): Mathematician
Herbert Robbins conjectured that a group of
axioms he came up with are equivalent to
boolean algebra.

» Neither he nor anyone else could prove this for
decades.
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Robbins Conjecture and Automated Theorem Proving

» 1996: Conjecture eventually proven by

first-order theorem prover EQP after 8
days of search!

Decenber 10,199

Computer Math Proof Shows
Reasoning Power

ByoRAKOLATA

» That a computer can prove theorems
that humans could not was shocking

» The automated proof of Robbins
conjecture even appeared as New York
Times article!
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» Not the only success story: Otter used
by mathematician Ken Kunnen to
prove results in quasi-group theory

Overview

» Today's lecture and next lecture: Discuss basic principles
underlying first-order theorem provers

» The basis underlying all theorem provers today is the principle
of first-order resolution

» First-order theorem provers prove formulas unsatisfiable by
showing there is a resolution refutation for that formula
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Recall: Propositional Resolution

» Recall: Resolution in propositional logic:
Cr: (bV...p... Vi) Cy: (UV...=p...VL)

» Propositional resolution: Deduction of a new clause C3, called
resolvent:

Cy: (WV..VEVEV...... Vi)

» First-order resolution is the same basic principle, but a little
bit more involved

» How to obtain clauses given FOL formula?

» How do we deal with predicates containing syntactically
different terms?

First-Order Resolution Prerequisites

» To perform resolution in first-order logic, we need two new
ingredients:

1. Unification: Which expressions can be made identical?
2. Clausal form: A new normal form for FOL

» Start with unification; then talk about clausal form

Unification Unification
» Unification: problem of determining if two expressions can be » A substitution is a unifier for two expressions e and ¢’ if ec is
made identical by appropriate substitutions for their variables syntactically identical to ¢/o
» Substitution: finite mapping from variables to terms » Two expressions ¢ and ¢’ are unifiable iff they have a unifier;
otherwise non-unifiable.
» Example: Can expressions p(z) and p(a) be unified?
» Example: Are p(z,y) and p(a,v) unifiable?
» Can p(a) and p(b) be unified?
» A unifier:
» We'll write eo to denote the application of substitution o to
expression e » Example 2: Are p(z,z) and p(a,b) unifiable?
» What is p(z)[z — a]? » Example 3: Are p(z) and p(f(z)) unifiable?

Non-Uniqueness of Unifiers

> If two expressions are unifiable, they don't necessarily have a
unique unifier.

» Example: p(z,y) and p(a,v)

» Unifier 1: [z + a,y > b, v+ b]

> Unifier 2: [z + a,y > v]

» Unifier 3: [z + a,y — f(b),v — f(b)]

» But some unifiers are more desirable than others . ..

Composing Substitutions

» To explain what it means for one unifier to be better than
another, we define the composition of substitutions.

» Composition of two substitutions o and ¢ is written 00 = o’
» The composition ¢d of substitutions ¢ and ¢ is obtained by:

1. applying 0 to the range of o

2. add to o all mappings z — t from § where z & dom(o).
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Composing Substitutions Examples

» What is [z — a,y — 2][z — b]?
» What is [z — a,y — f(z,g(w))][z — 1, w > 2]?

> Let
o=z~ a,y— f(u),z— v]
d=[u—d,v— e,z g
What is 66?

Generality of Unifiers

» We prefer unifiers that are as general as possible.

» A unifier o is at least as general as unifier o’ if there exists
another substitution ¢ such that 0§ = o’

» Intuition: o more general than ¢’ if ¢’ can be obtained from o
through another substitution

» We say o more general than ¢’ if o is at least as general as o’
but not the other way around

» Which unifier is more general? o = [z + a,y > v] or
o' =z a,y— flc)ve fo)]?

» Which unifier is more general? o = [z + a,y > 2] or
o=z~ a,y— w?

Isil Dillig, €5389L: Automated Logical Reasoning  Lecture 8: Introduction to Theore

13/35

Isil Dillg, CS389L: Automated Logical Reasoning  Lecture 8: Introduction to Theore

14/35

Most General Unifiers

> o is a most general unifier (mgu) of expressions e, ¢’ iff o is at
least as general as any other unifier of e and ¢’.

» Intuition: A unifer is most general if it only contains mappings
necessary to unify, but nothing extral

» Consider again p(z,y) and p(a,v).
» Is [z — a,y — b,v — b] an mgu?
» Is [z — a,y — v] an mgu?

» Is [z +— a,y+— v,v+— y] an mgu?

» |f two expressions e and ¢’ are unifiable, then their mgu is
unique modulo variable renaming

Algorithm to Compute MGU

» We'll now give an algorithm to find most general unifiers
(Robinson’s algorithm, 1965)

» Function find mgu(e,e’) takes expressions e, ¢’ and returns
substitution o that is mgu of e, ¢/ or L

> Case l: e=¢'. Theno =[]

» Case 2: e is variable z. If ¢/ does not contain z then
[z — €], otherwise L

» Containment check referred to as occurs check; disallows
infinite terms as a solution

» Case 3: ¢ is variable y = symmetric to case 2

» Case 4: e or €' is a constant. Return L
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Algorithm to Compute MGU, continued
» Case 5: e =17(er,...,€x).
1. If ¢/ #7(ef,...,¢;), then L
2. Otherwise result of unifying [e; ... e;] and [e] ... €]

> Case 6: e is expression list [h T7.

1. If ¢’ is not expression list of the form [’ T'], return L.
2. Let o0 = find mgu(h, h’).

3. Applyoto T, T'

4. Recursively compute MGU ¢’ for ¢ T and o T’

5. Return composition of ¢ and o’

Example of Computing MGUs
» Apply algorithm to find mgu for p(f(z),f(z)) and p(y, f(a))
» Predicates match; unify the arguments.
» Unify first arguments f(z) and y
» Result:
» Apply unifier to second arguments f(z) and f(a) (unchanged)
» Then, unify f(z) and f(a):
» Compose [y — f(z)] and [z — a]

» Final result:
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Another Example

v

Apply algorithm to find mgu for p(z,z) and p(y, f(v))

v

Predicates match; unify the arguments.

v

Unify first arguments z and y; result:

v

Apply unifier to second arguments = and f(y):

v

Now unify y and f(y):

v

Thus p(z,z) and p(y, f(y)) not unifiable

Complexity of unification

» Robinson’s algorithm has worst-case complexity, but only
triggered in “pathological” cases

» There are almost-linear time unification algorithms, but
Robinson’s algorithm still widely used
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First-Order Resolution Ingredients

» Recall: Resolution in FOL requires two new ingredients:
unification and clausal form

» Next, we'll define clausal form

» A formula in FOL in said to be in clausal form it obeys
following syntactic restrictions:

1. Formula should be of the form V., ...,
only universally quantified variables)

T, F(zy,... o) (ie.,

2. The inner formula F(z1,...,zx) should be in CNF

The Bad and The Good News

» Bad News:
In general, if ¢ is the original formula, there may not be an
equivalent formula ¢’ that is of this form

» Good News:
But we can always find an equi-satisfiable formula ¢ that is
of this form

> Since we are trying to determine satisfiability of ¢, this is
good enough ...
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Converting Formulas to Equisatisfiable Clausal Form

Given formula ¢, there are five steps to convert it to equisatisfiable
clausal form:

1. Make sure there are no free variables in ¢
2. Convert resulting formula to Prenex normal form

3. Apply skolemization to remove existentially quantified
variables (resulting formula called Skolem Normal Form)

4. Since formula obtained after step 3 is of the form
Vi, ..., 25 F(21,...2), convert inner formula F to CNF

5. Since all variables are universally quantified, drop explicit
quantifiers and write formula as set of clauses

Step 1: Removing Free Variables

» Suppose a formula ¢ contains free variable z

» How can we construct a formula ¢’ such that z is no longer
free and ¢’ is equisatisfiable to ¢?

> ¢ is satisfiable iff there exists some o € U under which

Uil {z o} ¢

> But this is the same as saying ¢ is satisfiable iff U, I |= 3z.¢
for some U, I

» Thus, to perform step 1 of transformation, existentially
quantify all free variables of ¢
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Prenex Normal Form

> A formula is in prenex normal form (PNF) if all of its
quantifiers appear at the beginning of formula:

Q1. ... Qua. Flo,..., )
where F' is quantifier-free and @ € {V,3}
> Is Vz.3y.(p(z,y) — ¢(z)) in PNF?

» What about Vz.((3y.p(z,y)) — ¢(z)) in PNF?

Step 2: Conversion to Prenex Normal Form

» Step2a: Convert to NNF.

» Conversion to NNF is just like in propositional logic, but need
new equivalences for distributing negation over quantifiers:

—Vz.p < dr.—¢
—-Jdz.¢p < Vr.-¢

» Step 2b: Rename quantified variables as necessary so no two
quantified variables have the same name.

» Step 2c: Move quantifiers to front of formula
Qiz1, ..., Qnu,. F' such that if Q; is in the scope of
quantifier Q;, then i < j.

» Claim: Formula in PNF is equivalent to original formula.
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Conversion to PNF Example
» Convert formula to PNF:

Vo.~(3y.p(z,y) Ap(z,2)) VIy.pz,y)

Step 3: Skolemization

» After converting formula to PNF, we want to remove all
existential quantifiers

» Skolemization produces equisatisfiable formula without
existential quantifiers

» Suppose an existentially quantified variable y appears in the
scope of quantifiers zp, ..., x

» Skolemization: replaces y with function term: f(z,...,z,)
where f is a fresh function symbol

» This new function f called Skolem function

» What happens if y is not in scope of any quantifiers?
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Skolemization: Intuition |

» Consider formula Jz.F

» We know there is some object for which F' holds, but we
don’t want to make any assumptions about this object

» Thus, we replace z with a fresh object constant ¢ in F

» The formula F|[c/z] is equisatisfiable to 3z.F, but not
equivalent

Skolemization: Intuition Il

» However, if existential variable z is in scope of universally
quantified variables, we can’t replace it with object constant

» Consider formula: Vz.3y.hates(z, y)

» What does this formula say?

> Now, let's replace y with object constant ¢: Va.hates(z, ¢)
» What does this formula say?

» Clearly, very different meaning!

» Want to capture that two people can hate different people =
introduce function constant
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Skolem Normal Form

» The formula after performing skolemization looks like this:
Vi, ... Vo, F(a,... o)
» This form is called Skolem Normal Form

» Resulting formula not equivalent to original formula, but
equisatisfiable

Conversion to Clausal Form Example

» Convert formula to clausal form:
Vy.(p(y) A =(V2.(r(z) = q(y, 2, w))))
» Step 1: Remove free variables:

Jw.Vy.(p(y) A =(Vz.(r(2) = q(y, 2, w))))

» Step 2a: Convert to NNF (necessary for PNF):

Jw.Vy.(p(y) A ~(Vz.(-r(2) V q(y, z,w)))) remove —
Jw.Vy.(p(y) A (3z.(r(2) A —q(y, z,w)))) push negations

> Step 2b: Move quantifiers out (necessary for PNF):

Jw.Vy.3z.(p(y) A ((r(2) A ~q(y, 2, w))))
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Conversion to Clausal Form Example, continued

» In Prenex Normal Form:
Fw.Vy3z.(p(y) A ((r(2) A =q(y, 2, w))))
> Step 3a: Now, skolemize w (easiest to start outside):
Vy.3z.(p(y) A ((r(2) A =q(y, 2, ¢))))
» Step 3b: Skolemize z:

Vy.(p(y) A ((r(F(¥) A=y, f(y), €))))

Conversion to Clausal Form Example, continued

» In Skolem Normal Form:

Vy.(p(y) A ((r(F () A=y, f(y), €))))

» Step 4: Convert inner formula to CNF (already in CNF)

» Step 5: Drop universal quantifiers:

() A((r(f () A —aly, f () 0))))

» Step 6: Finally, write formula as a set of clauses

WA F)} ey f(y). o)}

» This formula is now in clausal form
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Summary

» Today: Talked about two necessary ingredients for first-order
resolution:

1. Unification
2. Clausal form

» Next lecture: First-order resolution and theorem provers
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