
Graphiti: Bridging Graph and Relational DatabaseQueries

YANG HE, Simon Fraser University, Canada
RUIJIE FANG, University of Texas at Austin, USA
IŞIL DILLIG, University of Texas at Austin, USA
YUEPENG WANG, Simon Fraser University, Canada

This paper presents an automated reasoning technique for checking equivalence between graph database
queries written in Cypher and relational queries in SQL. To formalize a suitable notion of equivalence in
this setting, we introduce the concept of database transformers, which transform database instances between
graph and relational models. We then propose a novel verification methodology that checks equivalence
modulo a given transformer by reducing the original problem to verifying equivalence between a pair of
SQL queries. This reduction is achieved by embedding a subset of Cypher into SQL through syntax-directed
translation, allowing us to leverage existing research on automated reasoning for SQL while obviating the
need for reasoning simultaneously over two different data models. We have implemented our approach in a
tool called Graphiti and used it to check equivalence between graph and relational queries. Our experiments
demonstrate that Graphiti is useful both for verification and refutation and that it can uncover subtle bugs,
including those found in Cypher tutorials and academic papers.

CCS Concepts: • Software and its engineering→ Automatic programming; Software verification;
Formal software verification; • Theory of computation→ Program verification.

Additional Key Words and Phrases: Program Verification, Equivalence Checking, Relational Databases, Graph
Databases.

ACM Reference Format:
Yang He, Ruijie Fang, Işıl Dillig, and Yuepeng Wang. 2025. Graphiti: Bridging Graph and Relational Database
Queries. Proc. ACM Program. Lang. 9, PLDI, Article 216 (June 2025), 25 pages. https://doi.org/10.1145/3729319

1 Introduction

Over the past decades, graph databases have garnered significant attention from both industry
and academia, offering more flexible data models with different trade-offs compared to relational

databases. As a result, developers are increasingly interested in migrating relational database
applications to graph databases [54], and systems like Apache Age [1] aim to incorporate graph
components into relational databases to help with this transition.
Nevertheless, transitioning between relational and graph databases often requires developers

to convert queries from one model to the other, and, as evidenced by numerous posts on online
forums [3, 40, 49], translating between relational and graph queries can be quite challenging due to
misunderstandings of joins versus relationships, aggregation semantics, and other complexities. In
fact, we have identified multiple incorrect translations in existing literature where queries claimed
to be equivalent were, in reality, non-equivalent [32, 39, 42]. This underscores a growing need for
rigorous reasoning about the equivalence of graph and relational queries.

Authors’ Contact Information: YangHe, Simon Fraser University, Burnaby, Canada, yha244@sfu.ca; Ruijie Fang, University of
Texas at Austin, Austin, USA, ruijief@cs.utexas.edu; Işıl Dillig, University of Texas at Austin, Austin, USA, isil@cs.utexas.edu;
Yuepeng Wang, Simon Fraser University, Burnaby, Canada, yuepeng@sfu.ca.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/6-ART216
https://doi.org/10.1145/3729319

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 216. Publication date: June 2025.

HTTPS://ORCID.ORG/0009-0007-7755-3112
HTTPS://ORCID.ORG/0000-0001-5348-5468
HTTPS://ORCID.ORG/0000-0001-8006-1230
HTTPS://ORCID.ORG/0000-0003-3370-2431
https://doi.org/10.1145/3729319
https://orcid.org/0009-0007-7755-3112
https://orcid.org/0000-0001-5348-5468
https://orcid.org/0000-0001-8006-1230
https://orcid.org/0000-0003-3370-2431
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3729319

216:2 Yang He, Ruijie Fang, Işıl Dillig, and Yuepeng Wang

Although significant progress has been made in verifying the equivalence of relational database
queries [10–12, 57], to the best of our knowledge, no existing work addresses the equivalence
verification problem between relational and graph queries. A key challenge in this area arises from
the distinct data models of relational and graph databases. Relational databases organize data in
tables, with queries operating on rows and columns through well-defined operations like joins and
aggregations. In contrast, graph databases represent data as nodes and edges, with queries typically
expressing relationships and traversals through graph structures. This fundamental difference in
data representation complicates both the definition of equivalence between graph and relational
queries and the verification process itself.
This paper takes a first step towards developing automated reasoning techniques that can

be used to check equivalence between relational queries written in SQL and graph database
queries implemented in Cypher [19], the most popular graph database query language. Our formal
reasoning technique is built on a novel method that embeds a subset of the Cypher language into
SQL, building on the insight that paths in a graph database instance correspond to joins of rows in
a relational database. This observation not only allows us to translate Cypher queries to SQL in a
syntax-directed way but also facilitates checking equivalence between Cypher and SQL queries.
At a high level, our approach hinges on three crucial components: (1) a formal foundation for
defining equivalence between graph and relational database instances (over arbitrary schemas); (2)
a correct-by-construction technique for translating graph database queries to relational queries
(over a specific schema); and (3) a novel verification methodology that leverages (2) to establish
equivalence between Cypher and SQL queries that operate over any arbitrary schema. We next
explain each of our contributions in more detail.

Formal foundation for graph and relational database equivalence. As mentioned earlier, a
key challenge in reasoning about equivalence between graph and relational queries is the lack of
a straightforward mapping between the data models. To address this, we introduce the concept
of database transformer, adapted from prior work on schema mappings [17, 37, 59], which allows
transforming a database instance from one data model (graphs) to an equivalent instance in another
model (relational databases). This transformation forms the foundation for defining equivalence
between graph and relational database queries.

Correct-by-construction transpilation. Building on this notion of database transformer, we intro-
duce the concept of a standard database transformer (SDT) as the default correctness specification.
In simple terms, the SDT provides a set of transformation rules to map graph elements (nodes
and edges) into relational tables, maintaining the structure and semantics of the graph within
the relational model. For example, nodes in a graph schema are transformed into tables in the
relational schema, where attributes of the node become columns, and edges are represented as
relationships between these tables with foreign keys. The resulting relational schema is referred
to as the induced relational schema. Our method then defines syntax-directed transpilation rules
to convert any Cypher query into a SQL query over this induced schema. The core insight is
that Cypher path queries, which perform pattern matching over subgraphs, can be mapped to
relational joins. However, the actual translation is tricky due to the fact that Cypher supports
flexible, multi-step pattern matching over graph structures, which demands careful handling to
ensure that pattern matching in Cypher—whether simple or complex—is accurately represented as
joins in SQL, preserving the semantics of the original graph query.

Equivalence checking methodology for arbitrary schema. While the transpilation method
described above can generate an equivalent SQL query, the equivalence ismodulo the SDT. However,
in practice, the target relational database often uses a different schema (rather than the induced

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 216. Publication date: June 2025.

Graphiti: Bridging Graph and Relational DatabaseQueries 216:3

relational schema), so the syntax-directed transpilation method alone is insufficient. To address this
gap, we propose a verification methodology that checks equivalence between graph and relational
queries modulo any database transformer.

The key insight of our approach is that, instead of directly reasoning about equivalence between
Cypher and SQL queries—which would require complex SMT encodings that combine graph and
relational structures—we reduce the problem to checking equivalence between SQL queries over
different schemas. This reduction allows us to leverage existing techniques and tools for SQL
equivalence checking [26, 57], avoiding the need for handling the intricate challenge of reasoning
over two fundamentally different data models at the same time.

Transformer

Schemas

 QG

 QR

SDT

Transpiler

RDT

Q′ R

SDT
inference

RDT
inference

SQL checker

?

Fig. 1. Overview of approach.

Figure 1 illustrates the proposed approach
for checking equivalence between Cypher and
SQL queries. Our method takes four inputs: (1)
a Cypher query 𝑄𝐺 , (2) an SQL query 𝑄𝑅 , (3)
schemas for the graph and relational databases,
and (4) a correctness specification Φ in the
form of a database transformer. To establish
equivalence between𝑄𝐺 and𝑄𝑅 modulo Φ, the
method first derives the induced relational schema and the SDT. It then applies a correct-by-
construction transpilation technique to generate a SQL query 𝑄 ′

𝑅
that is provably equivalent to

𝑄𝐺 modulo the SDT (but not modulo Φ). In the final step, the method computes a semantic "diff"
between the induced and target relational schemas, constructing a residual database transformer to
align the two relational instances. Finally, an off-the-shelf SQL equivalence checker is then used to
check equivalence between 𝑄 ′

𝑅
and 𝑄𝑅 .

Overall, our proposed methodology has two key advantages. First, when the user just wants
to translate a Cypher query to SQL but does not care about the underlying relational schema (or
if the desired schema is the same as the induced relational schema), our method can be used to
perform correct-by-construction transpilation. Second, given any arbitrary correctness specification
(in the form of a database transformer), our method can leverage a combination of the proposed
transpilation approach and existing automated reasoning tools for SQL to reason about equivalence
between any pair of Cypher and SQL queries.

We have implemented the proposed approach in a new tool called Graphiti for reasoning about
equivalence between Cypher and SQL queries and conducted an extensive experimental evaluation
of Graphiti on 410 benchmarks. These include 45 benchmarks sourced from public platforms such
as StackOverflow, tutorials, and academic papers; 160 benchmarks translated from SQL by students
with Cypher experience; and 205 benchmarks translated using ChatGPT. In the first evaluation, we
combine Graphitiwith the VeriEQL [26] bounded model checker for SQL, performing equivalence
verification on all 410 query pairs. This reveals equivalence violations in 34 benchmarks, including
3 from the wild, 4 from manual translations, and 27 from GPT-generated translations. In the
second evaluation, we pair Graphiti with the deductive SQL verifier Mediator [57] for full-
fledged verification of an aggregation-free subset. This enables unbounded equivalence verification
between Cypher and SQL queries, where both tables and graphs can have arbitrary sizes. Here,
about 80% of supported queries are verified as equivalent in a push-button manner. Finally, in the
third experiment, we show that Graphiti can generate SQL queries that are competitive with
manually-written ones in terms of execution efficiency.

Contributions. To summarize, this paper makes the following key contributions:

• We propose the first technique for reasoning about equivalence between graph and relational
queries, based on a formal definition of equivalence modulo database transformer.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 216. Publication date: June 2025.

216:4 Yang He, Ruijie Fang, Işıl Dillig, and Yuepeng Wang

CONCEPT PA SENTENCE
:CS :SP

(a) Graph schema. CONCEPT has two property
keys: CID and Name. PA has two property keys:
PID and CSID. SENTENCE has two property keys:
SID and PMID.

Concept Cs Pa Sp Sentence

CID NAME CSID CID PID CSID SPID SID PID SID PMID

(b) Relational schema. Primary keys are in bold. Foreign
keys are underlined and connected to references with
arrows.

Fig. 2. A pair of relational and graph schemas.

Atropine

Aspirin

PA0

PA1

S0

S1

:CS

:CS

:SP

:SP

(a) Graph database instance. Aspirin and Atropine
denote two Concept nodes, PA0 and PA1 are two
PA nodes, and S0 and S1 are two Sentence nodes.

CID NAME
1 Atropine
2 Aspirin

Concept

CID CSID
1 0
1 1

Cs

PID CSID
0 0
1 1

Pa

SPID SID PID
0 0 0
1 0 1

Sp

SID PMID
0 0
1 0

Sentence

(b) Relational database instance.

Fig. 3. Example graph and relational database instances.

• We introduce the concept of standard database transformer, which acts as the default correctness
specification for equivalence between Cypher and SQL queries.
• We develop a sound and complete transpilation technique that translates a subset of Cypher
queries into equivalent SQL queries, guaranteeing that both queries produce the same results
under standard database transformer.
• We show how to leverage the proposed transpilation approach to reduce the equivalence checking
problem (modulo any database transformer) into the problem of checking equivalence between a
pair of SQL queries, allowing us to leverage existing work on automated reasoning for SQL.
• We implement these ideas in a tool called Graphiti and conduct an empirical evaluation on 410
benchmarks, showing that our approach can be used for both verification and falsification.

2 Motivating Example

In this section, we motivate the problem addressed in this work through an example from prior
work [32] that studies SQL analytics for graphs. The queries in this section pertain to a real-world
biomedical research database [41].

Incorrect translation. Figure 2a shows a graph schema that contains three types of nodes called
CONCEPT, PA1, and SENTENCE. The CS relationship (represented by an edge) links concepts to predica-
tion arguments, and the SP relationship (also represented as an edge) links predication arguments to
sentences. On the other hand, Figure 2b shows the relational representation of the graph model. As
shown in Figure 2b, the relational schema contains five tables called Concept, Cs, Pa, Sp, Sentence
that correspond to both the nodes and edges of the graph schema in Figure 2a. For some intuition
about the correspondence between the two databases, Figure 3 shows sample instances of both
database schemas that contain the same entries “Atropine” and “Aspirin”.
Next, consider the SQL and Cypher queries shown in Figures 4a and 4c respectively. The SQL

query aims to find all concepts that link to a concept c1 with CID = 1 and their corresponding
frequencies of connected paths to c1 through the join of Cs, Pa, and Sp tables. Similarly, the Cypher
query first finds all sentences linked to 𝑐1 through the CS - PA - SP path and then counts the
frequencies of paths from those sentences to all concepts. According to Lin et al. [32], these queries
1Here, PA stands for predication argument

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 216. Publication date: June 2025.

Graphiti: Bridging Graph and Relational DatabaseQueries 216:5

SELECT c2.CID, Count (*) FROM Cs AS c2, Pa AS p2, Sp AS s2
WHERE s2.PID = p2.PID AND p2.CSID = c2.CSID AND s2.SID IN (

SELECT s1.SID FROM Cs AS c1, Pa AS p1, Sp AS s1
WHERE s1.PID = p1.PID AND p1.CSID = c1.CSID AND c1.CID = 1)

GROUP BY CID

(a) SQL query

c2.CID Count(*)
1 2

(b) The result of SQL query.

MATCH (𝑐1:CONCEPT {CID:1})-[𝑟1:CS]->(𝑝1:PA)-[𝑟2:SP]->(𝑠:SENTENCE)
WITH 𝑠
MATCH (𝑠:SENTENCE)<-[𝑟3:SP]-(𝑝2:PA)<-[𝑟4:CS]-(𝑐2:CONCEPT)
RETURN 𝑐2.CID, Count (*)

(c) Cypher query

c2.CID Count(*)
1 4

(d) The result of Cypher query.

Fig. 4. A pair of SQL and Cypher queries with their execution results.

CONCEPT(cid, name)→Concept(cid, name) CONCEPT(cid, _), CS(cid, csid, cid, pid), PA(pid, csid)→Cs(cid, csid)
PA(pid, csid)→Pa(pid, csid) PA(pid, _), SP(spid, sid, pid, pid, sid), SENTENCE(sid, _)→Sp(spid, sid, pid)

SENTENCE(sid, pmid)→Sentence(sid, pmid)

Fig. 5. Database transformer for our example. All variables are implicitly universally quantified.

are intended to be equivalent; however, they are actually not equivalent due to the subtle differences
in Cypher and SQL semantics. At a high level, both queries explore how certain concepts (starting
with CID = 1) are linked to other concepts via their occurrence in shared sentences. They do this
by traversing relationships (either explicitly in the graph or via joins in the relational database)
and aggregating the results to identify how frequently these connections occur. However, the two
queries actually differ in how they compute the frequencies and end up providing different results
on two database instances that are meant to contain the same data.

In particular, when run on the database instances from Figure 3, the SQL query produces the table
shown in Figure 4b whereas the Cypher query produces the one in Figure 4d. These results agree
on the CID’s of the related concepts; however they differ on the frequencies of the relationships, as
is evident from the entries in the Count column of these tables.2 As this example illustrates, queries
that appear to be ostensibly equivalent can have subtle differences in their semantics, motivating
the need for automated reasoning tools that can be used to expose semantic differences between
graph and relational queries. In the remainder of this section, we elucidate some important aspects
and design choices behind our proposed approach.

Need for database transformers. In order to conclude that the SQL and Cypher queries are
semantically different, we need to reason about how they behave when executed on the same data.
However, because graph and relational databases have such different data models, the input database
instances are never identical. Thus, in order to reason about query equivalence, we first need a mech-
anism for defining data equivalence. In our framework, this is done through the concept of database
transformer, which takes as input a graph database instance𝐷 over a certain schema Ψ and produces
a relational database instance 𝐷 ′ over a relational schema Ψ′. Our concept of database transformer
is adapted from prior work on schema mappings [17, 37], generalized to model the correspondence
between graph and relational databases. For our running example, the correspondence between
the two database instances is given by the transformer shown in Figure 5. Intuitively, each rule
describes how each table in the relational database can be generated based on nodes and edges in the
graph. For example, the rule CONCEPT(cid, _), CS(cid, csid, cid, pid), PA(pid, csid) → Cs(cid, csid)
specifies if there is an edge CS connecting two nodes CONCEPT and PA in the graph, and the first
two properties of CS are cid and csid, then there is a row (cid, csid) in the Cs table. Here, the last
two attributes of CS serve as foreign keys referencing to the source and target nodes of the CS edge.

2An equivalent Cypher query of the SQL query in Figure 4a is shown in the Appendix of the extended version [25].

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 216. Publication date: June 2025.

216:6 Yang He, Ruijie Fang, Işıl Dillig, and Yuepeng Wang

Concept’ Cs’ Pa’ Sp’ Sentence’

CID NAME CSID CID SRC TGT PID CSID SPID SID PID SRC TGT SID PMID

Fig. 6. Induced relational schema. Primary keys are in bold. Foreign keys are underlined and connected to
references with arrows.

Induced relational schema and default transformer. As mentioned in Section 1, our approach
to reasoning about equivalence between SQL and Cypher queries relies on first transpiling the given
Cypher query to a SQL query over the induced relational schema, which corresponds to a natural
relational representation of the graph database. In particular, Figure 6 shows the induced relational
schema for Figure 2a and is obtained by (a) translating both node and edge types in the graph
schema into tables, and (b) translating incidence and adjacency information between node and edge
types into functional dependencies. For instance, nodes of type CONCEPT are mapped to the Concept
table, edges of type CS are mapped to the Cs table, and so on. To handle functional dependencies, we
need to introduce foreign keys in the corresponding tables. Compared to the relational schema in
Figure 2b, the induced relational schema preserves the attributes while using additional attributes
(i.e. SRC and TGT) as foreign keys to represent functional dependencies. For example, for edges
of type CS, the source node is of type CONCEPT; thus, the induced relational schema has the SRC
attribute as a foreign key to CID of the Concept table. Similarly, the TGT attribute is considered a
foreign key to the PA table. Given the original graph database schema, our method constructs a
so-called standard database transformer Φsdt that can be used to convert any instance of the given
graph schema to a relational database over its induced schema.

WITH T1 AS (SELECT c1.CID AS c1_CID, . . . , s.SID AS s_SID
FROM Concept AS c1 JOIN CS AS r1

JOIN PA AS p1 JOIN SP AS r2 JOIN Sentence AS s
ON c1.CID = 1 AND c1.CID = r1.SRC AND . . . AND r2.TGT = s.SID),
T2 AS (SELECT s_SID FROM T1),
T3 AS (SELECT s.SID AS s_SID, . . . , c2.CID AS c2_CID
FROM Sentence AS s JOIN SP AS r3

JOIN PA AS p2 JOIN CS AS r4 JOIN Concept AS c2
ON s.SID = r3.TGT AND . . . AND r4.SRC = c2.CID),
T4 AS (SELECT * FROM T2 JOIN T3 ON T2.s_SID = T3.s_SID)

SELECT T4.c2_CID, Count (*) FROM T4 GROUP BY T4.c2_CID

Fig. 7. Transpilation result for the Cypher query.

Syntax-directed transpilation. Intuitively,
the standard database transformer establishes a
one-to-one correspondence between elements
of the graph database and the correspond-
ing entries in the induced relational database.
Hence, we can use syntax-directed translation
to directly transpile the Cypher query to a
SQL query over the induced schema. Here,
the transformer Φsdt fixes the mapping be-
tween “atomic elements” of both databases;
thus, atomic queries over nodes and edges in Cypher can be translated to atomic queries over
SQL tables. This forms the base case for an inductive transpilation scheme, leveraging the key
insight that Cypher path queries correspond to relational joins. For example, a Cypher path query
like MATCH (𝑢)-[:CS]->(𝑣) translates to a SQL join query between the Concept, Cs, and Pa tables,
since the database transformer specifies that the CS edge type maps to the Cs table in the relational
schema. Such a transpilation scheme is conceptually simple, but as our final transpilation result in
Figure 7 shows, one must take significant care to address the different types of path patterns in
Cypher syntax, in addition to translating compositions of path queries with other Cypher operators
such as aggregation. Specifically, the first pattern matching in Figure 4c is translated to T1 while
the WITH clause propagates the intermediate results to T2. Similarly, the second pattern matching
is translated to T3. Due to the shared node s:SENTENCE in these two path patterns, we join T2 and
T3 as T4. The final RETURN clause is translated to GroupBy because of the aggregation expression.

Checking equivalence. While our approach allows correct-by-construction transpilation from
Cypher to SQL, there are several reasons why this is not sufficient. First, our approach does

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 216. Publication date: June 2025.

Graphiti: Bridging Graph and Relational DatabaseQueries 216:7

Concept’(cid, name)→Concept(cid, name) Concept’(cid, _), Cs’(cid, csid, cid, pid), Pa’(pid, csid)→Cs(cid, csid)
Pa’(pid, csid)→Pa(pid, csid) Pa’(pid, _), Sp’(spid, sid, pid, pid, sid), Sentence’(sid, _)→Sp(spid, sid, pid)

Sentence’(sid, pmid)→Sentence(sid, pmid)

Fig. 8. Residual database transformer. All variables are universally quantified.

not guarantee that the transpilation result is the most efficient, so even though one could use
existing SQL query optimizers to further optimize the query, the user may want to write their
hand-optimized SQL query. Second, the user may want to use a different relational schema rather
than our default version. Third, while our transpilation rules allow translating Cypher to SQL, they
do not address the reverse direction. Motivated by these shortcomings, our method leverages the
proposed transpilation algorithm to perform verification between any given pair of Cypher and SQL
queries by utilizing existing tools for SQL. In particular, the key idea is to infer a residual database
transformer that specifies the relationship between the relational database over the induced schema
and the target relational database (as specified by the user-provided database transformer). For our
running example, Figure 8 shows the residual transformer that can be used to convert instances
of the induced relational schema from Figure 6 to instances of the desired schema. Given such a
residual schema, we can use an existing SQL equivalence checker, such as VeriEQL [26], to refute
equivalence between these queries and obtain the counterexample shown in Figure 3.

3 Preliminaries

3.1 Background on Graph Databases

A graph database instance is a property graph, which contains nodes and edges carrying data.
Typically, nodes model entities, and edges model relationships. Each node or edge in the graph
stores data represented as pairs of property keys and values. Additionally, each node or edge
is assigned a label, which describes the kind of entity or relationship it models. A well-formed
property graph should conform to a graph schema, which is formalized below.

Definition 3.1 (Node/edge type). A node type 𝑡node is a tuple (𝑙, 𝐾1, . . . , 𝐾𝑛) where 𝑙 is the label
of the node (e.g., Actor) and 𝐾1, . . . , 𝐾𝑛 are the property keys for that node type (e.g., name, dob,
etc.). An edge type 𝑡edge is also a tuple (𝑙, 𝑡src, 𝑡tgt, 𝐾1, . . . , 𝐾𝑚) where 𝑙 is a label (e.g., ACTS_IN), 𝑡src
and 𝑡tgt are the types of the source and target nodes respectively, and 𝐾1, . . . , 𝐾𝑚 are the property
keys (e.g., role) for that edge type.

For each node type 𝑡node = (𝑙, 𝐾1, . . . , 𝐾𝑛), we define label(𝑡node) to give the label 𝑙 of 𝑡node, and
we assume that 𝐾1 is the default property key for 𝑡node, which is a key with a globally unique value,
similar to a primary key in a relational database. We define keys(𝑡node) = {𝐾1, . . . , 𝐾𝑛} to yield
the set of property keys associated with 𝑡node. For an edge type 𝑡edge = (𝑙 ′, 𝑡src, 𝑡tgt, 𝐾 ′1, . . . , 𝐾 ′𝑚) we
similarly define label(𝑡edge) = 𝑙 ′ and keys(𝑡edge) = {𝐾 ′1, . . . , 𝐾 ′𝑚}, with key 𝐾 ′1 being the default
property key. Additionally, we define dstType(𝑡edge) = 𝑡src and srcType(𝑡edge) = 𝑡tgt.

Definition 3.2 (Graph database schema). A graph database schema Ψ𝐺 is a pair (𝑇𝑁 ,𝑇𝐸) where
𝑇𝑁 is a set of node types and 𝑇𝐸 is a set of edge types.

For each graph database schema Ψ𝐺 = (𝑇𝑁 ,𝑇𝐸), we assume that the label of each node or edge
type uniquely defines it: ∀𝑡1, 𝑡2 ∈ 𝑇𝑁 ∪𝑇𝐸 .label(𝑡1) ≠ label(𝑡2). Thus, we can use types and labels
interchangeably. Additionally, we assume that all property keys are unique inside a given schema
Ψ𝐺 , i.e., there are no name clashes between arbitrary pairs of property keys between different types.

Definition 3.3 (Graph database). An instance of a graph database schemaΨ𝐺 = (𝑇𝑁 ,𝑇𝐸) is a tuple
𝐺 = (𝑁, 𝐸, 𝑃,𝑇) where𝑁 is a set of nodes, 𝐸 ⊆ 𝑁 ×𝑁 is a set of edges, 𝑃 : (𝑁 ∪𝐸)×Keys→ Values,
and 𝑇 : 𝑁 ∪ 𝐸 → 𝑇𝑁 ∪𝑇𝐸 gives the type of a node 𝑛 ∈ 𝑁 or an edge 𝑒 ∈ 𝐸.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 216. Publication date: June 2025.

216:8 Yang He, Ruijie Fang, Işıl Dillig, and Yuepeng Wang

Query 𝑄 ::= 𝑅 | OrderBy(𝑅, 𝑘, 𝑏) | Union(𝑄,𝑄) | UnionAll(𝑄,𝑄)
Return Query 𝑅 ::= Return(𝐶, 𝐸, 𝑘)
Clause 𝐶 ::= Match(𝑃𝑃, 𝜙) | Match(𝐶, 𝑃𝑃, 𝜙) | OptMatch(𝐶, 𝑃𝑃, 𝜙) | With(𝐶,𝑋,𝑋)
Path Patt. 𝑃𝑃 ::= 𝑁𝑃 | 𝑁𝑃, 𝐸𝑃, 𝑃𝑃
Node Patt. 𝑁𝑃 ::= (𝑋, 𝑙) Edge Patt. 𝐸𝑃 ::= (𝑋, 𝑙, 𝑑)
Expression 𝐸 ::= 𝑘 | 𝑣 | Cast(𝜙) | Agg(𝐸) | 𝐸 ⊕ 𝐸
Predicate 𝜙 ::= ⊤ | ⊥ | 𝐸 ⊙ 𝐸 | IsNull(𝐸) | 𝐸 ∈ 𝑣 | Exists(𝑃𝑃) | 𝜙 ∧ 𝜙 | 𝜙 ∨ 𝜙 | ¬𝜙

𝑋 ∈ Node/Edge Names 𝑙 ∈ Labels 𝑘 ∈ Property Keys 𝑣 ∈ Values 𝑏 ∈ Bools
Agg ∈ {Count,Avg, Sum,Min,Max} 𝑑 ∈ {→,←,↔}

Fig. 9. Featherweight Cypher syntax where ⊕, ⊙ correspond to arithmetic and logical operators respectively.

We use the notation 𝑃 (𝑛, 𝑘) to give the value of a property key 𝑘 in node 𝑛 and analogously
define 𝑃 (𝑒, 𝑘) for an edge 𝑒 . We also use the notation 𝐺 ⊲ Ψ𝐺 to denote that G is an instance of
schema Ψ𝐺 , and we refer to any subgraph of 𝐺 as a property graph.

3.2 Query Language for Graph Databases

To formalize our method, we focus on a subset of the popular Cypher database query language [19].
This subset, which we refer to as “Featherweight Cypher”, is presented in Figure 9. 3 A query 𝑄
is either a union of return queries 𝑅 or an order-by statement following one or more such return
queries. Each return query 𝑅 takes as input a clause 𝐶 , a list of expressions 𝐸, and a list of property
key names 𝑘 . Intuitively, the return query shapes a list of graphs into a table. Each clause in the
return statement is a Match, representing a pattern match over an input property graph, and
the patterns are specified using the path pattern 𝑃𝑃 . We do not include Cypher features such as
unbounded-length path queries and graph reachability primitives (e.g., shortestPath), which are
not expressible in the core SQL fragment considered in this paper.

Example 3.4. Consider the following Cypher query

MATCH (n:EMP)-[:WORK_AT]->(m:DEPT) RETURN m.dname AS name, Count(n) AS num

that returns a table containing department names and the number of employees. We can represent
it using our featherweight Cypher syntax as follows

Return(Match([(n, EMP), (e, WORK_AT,→), (m, DEPT)],⊤), [m.dname,Count(n.id)], [name, num])
Here, the match clause retrieves all paths of length one from EMP nodes to DEPT nodes connected
by an edge of type WORK_AT. Then, the return clause reshapes the set of matched paths into a table
with two columns: name and num. The name column is populated with values corresponding to
the property key dname of the DEPT node, and the num column is populated by the count of n.id,
where m and n refer to the source and target nodes of the matched edge, respectively.

3.3 Relational Databases

Definition 3.5 (Relational schema). A relational database schema is a pair Ψ𝑅 := (𝑆, 𝜉) where
𝑆 : R → [A] is a mapping from a set of relation names R to a list of attributes, and 𝜉 is an integrity

constraint. We assume that all attribute names in a schema are unique.

We represent an integrity constraint as a conjunction of three types of atomic constraints:
(1) Primary key constraints: A primary key constraint PK(𝑅) = 𝑎 specifies that attribute 𝑎 is the

primary key for relation 𝑅 — i.e., there cannot be multiples tuples of 𝑅 that agree on 𝑎.
3The denotational semantics is formally described in the Appendix of the extended version [25].

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 216. Publication date: June 2025.

Graphiti: Bridging Graph and Relational DatabaseQueries 216:9

Query 𝑄 ::= 𝑅 | Π𝐿 (𝑄) | 𝜎𝜙 (𝑄) | 𝜌𝑅 (𝑄) | 𝑄 ∪𝑄 | 𝑄 ⊎𝑄 | 𝑄 ⊗ 𝑄
| GroupBy(𝑄, 𝐸, 𝐿, 𝜙) | With(𝑄, 𝑅,𝑄) | OrderBy(𝑄, 𝑎, 𝑏)

Attribute List 𝐿 ::= 𝐸 | 𝜌𝑎 (𝐸) | 𝐿, 𝐿
Attribute Expr 𝐸 ::= 𝑎 | 𝑣 | Cast(𝜙) | Agg(𝐸) | 𝐸 ⊕ 𝐸
Predicate 𝜙 ::= 𝑏 | 𝐸 ⊙ 𝐸 | IsNull(𝐸) | 𝐸 ∈ 𝑣 | 𝐸 ∈ 𝑄 | 𝜙 ∧ 𝜙 | 𝜙 ∨ 𝜙 | ¬𝜙
Join Op ⊗ ::= × | ⊲⊳𝜙 | ⊲⊳ 𝜙 | ⊲⊳𝜙 | ⊲⊳ 𝜙

𝑅 ∈ Relation Names 𝑎 ∈ Attr Names 𝑣 ∈ Values 𝑏 ∈ Bools Agg ∈ {Count, Avg, Sum, Min, Max}
Fig. 10. Featherweight SQL syntax; ⊕ and ⊙ represent arithmetic and logical operators respectively

Transformer Φ ::= 𝑃, . . . , 𝑃 → 𝑃 | Φ Φ
Predicate 𝑃 ::= 𝐸 (𝑡, . . . , 𝑡)
Term 𝑡 ::= 𝑐 | 𝑣 | _

𝐸 ∈ Table Names ∪ Node Labels ∪ Edge Labels 𝑐 ∈ Constants 𝑣 ∈ Variables
Fig. 11. Syntax of the database transformer.

(2) Foreign key constraints: A foreign key constraint FK(𝑅.𝑎) = 𝑅′ .𝑎′ specifies that the attribute
𝑎 in relation 𝑅 is a foreign key corresponding to attribute 𝑎′ in relation 𝑅′. That is, the values
stored in attribute 𝑎 of relation 𝑅 must be a subset of the values stored in attribute 𝑎′ of 𝑅′.

(3) Not-null constraints: A not-null constraint NotNull(𝑅, 𝑎) specifies that the value stored at
attribute 𝑎 of relation 𝑅 must not be Null.

Definition 3.6 (Relational database instance). A relational database instance 𝑅 is a collection
of tuples {𝑟1, . . . , 𝑟𝑚}, where each 𝑟𝑖 ∈ 𝑅 is of the form (𝑎1 : 𝑣1, . . . , 𝑎𝑛 : 𝑣𝑛). Here, 𝑎1, . . . , 𝑎𝑛 are
attributes and 𝑣1, . . . , 𝑣𝑛 are values. We let Attrs(𝑟𝑖) return the list of attributes 𝑎1, . . . , 𝑎𝑛 in sequence.
We use the notation 𝑟𝑖 .𝑎 to denote the value stored in attribute 𝑎 of tuple 𝑟𝑖 .

As with graph databases, we use the notation 𝑅 ⊲ Ψ𝑅 , to denote that 𝑅 is instance of Ψ𝑅 .

SQL query language. In this paper, we consider relational database queries written in SQL.
Figure 10 shows the subset of SQL that we use in our formalization. At a high level, this language
extends core relational algebra (e.g., projection Π, selection 𝜎 , renaming 𝜌 , joins ⊗, set and bag
unions ∩,⊎) to incorporate GroupBy, OrderBy, and With clauses. It can express a representative
fragment of SQL queries that are commonly used in practice. The semantics of these SQL operators
are standard and formally defined by prior work such as He et al. [26].

4 Problem Statement

In this section, we first describe the language for database transformers and then formally define
the equivalence checking problem between graph and relational databases.

4.1 Language for Database Transformers

In this section, we present a small domain-specific language (DSL), shown in Figure 11, for expressing
database transformers. Following prior work [59], our DSL generalizes the standard concept of
schema mapping [17, 37] for relational databases to a more flexible form. In particular, a database
transformer in this DSL is expressed as a set of first-order formulas of the form 𝑃1, . . . , 𝑃𝑛 → 𝑃0,
where each 𝑃𝑖 is a predicate that represents a database element, such as a table in a relational
database or a node or edge in a graph database. Each predicate is of the form 𝐸 (𝑡1, . . . , 𝑡𝑛) where 𝐸
corresponds a table name, node labels, or edge labels, and each 𝑡 𝑗 is a term (variable or a constant),
with _ denoting a fresh variable that is not used. All variables are implicitly universally quantified
but the quantifiers are omitted in the syntax for brevity. Intuitively, the formula 𝑃1, . . . , 𝑃𝑛 → 𝑃0
expresses that, if predicates 𝑃1, . . . , 𝑃𝑛 hold over a database instance 𝐷 , then predicate 𝑃0 holds over
another database instance 𝐷 ′.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 216. Publication date: June 2025.

216:10 Yang He, Ruijie Fang, Işıl Dillig, and Yuepeng Wang

Graph
DB 𝒟

Rela,onal
DB 𝒟′

Cypher query 𝒬

SQL query 𝒬′

𝒟′ = Φ(𝒟) 𝒬 ≃Φ 𝒬′

Table 𝒯

Table 𝒯′

𝒯′ = 𝒯

Fig. 12. Definition of equivalence between Cypher
and SQL queries where Φ is the user-provided
schema transformer. A pair of Cypher and SQL
queries are equivalent if they produce the same
table (modulo renaming) whenever they are exe-
cuted on a pair of database instances satisfying Φ.

Semantics. To define the semantics of our transformer DSL, we first represent a database trans-
former Φ as a set of universally quantified first-order logic formulas, denoted as ⟦Φ⟧. The idea
behind the semantics of our DSL is to represent each database instance as a set of ground predi-
cates and then check whether these predicates entail the first-order logic formula ⟦Φ⟧ under the
Herbrand semantics.

To make this discussion more precise, we introduce a function C that maps a database instance to
a set of ground predicates representing its structure and contents. Formally, C is defined as follows:

C(𝐷) = {𝐸 (𝑡1, . . . , 𝑡𝑛) | 𝐸 ∈ 𝐷}
The mapping of elements in 𝐷 to predicates depends on whether 𝐷 is a relational or graph database:
• For relational database instance 𝐷: If 𝑅 is a table in 𝐷 with a set of records {(𝑎1, . . . , 𝑎𝑛)},
then 𝑅 is converted to the following set of ground predicates:

{𝑅(𝑎1, . . . , 𝑎𝑛) | (𝑎1, . . . , 𝑎𝑛) ∈ 𝑅}
Here, 𝑅 represents the table name, and each 𝑎𝑖 is a constant representing a value in the record.
• For graph database instance 𝐷: If 𝑁 (𝑙, 𝑎1, . . . , 𝑎𝑛) denotes a node with label 𝑙 and values
𝑎1, . . . , 𝑎𝑛 of property keys 𝐾1, . . . , 𝐾𝑛 , nodes are converted to the following set of ground facts:

{𝑙 (𝑎1, . . . , 𝑎𝑛) | node 𝑁 (𝑙, 𝑎1, . . . , 𝑎𝑛) ∈ 𝐷}
Similarly, if 𝐸 (𝑙, 𝑠, 𝑡, 𝑎1, . . . , 𝑎𝑛) denotes an edge with label 𝑙 that connects nodes 𝑠 and 𝑡 and has
property values 𝑎1, . . . 𝑎𝑛 , then edges are converted to predicates as follows:

{𝑙 (𝑎1, . . . , 𝑎𝑛, 𝑠, 𝑡) | edge 𝐸 (𝑙, 𝑠, 𝑡, 𝑎1, . . . , 𝑎𝑛) ∈ 𝐷}
Given a database instance 𝐷 , C(𝐷) yields a set of ground predicates representing the structure

and contents of 𝐷 . We can now define the semantics of the transformer Φ as follows:

Φ(𝐷) = 𝐷 ′ ⇔ C(𝐷) ∪ C(𝐷 ′) |= ⟦Φ⟧
where the notation 𝑆 |= 𝜑 indicates that the set 𝑆 of ground predicates is a Herbrand model of 𝜑 .

Example 4.1. Consider the graph and relational database instances 𝐺, 𝑅 from Figures 3a and 3b
respectively. For the transformer Φ shown in Figure 5, we have Φ(𝐺) = 𝑅.

4.2 Equivalence Checking Problem

In this section, we formally define what it means for a pair of graph and relational queries to be
equivalent modulo a database transformer Φ, expressed in the DSL of Section 4.1. To this end, we
first introduce some necessary definitions and notations.

Definition 4.2 (Database query). A database query 𝑄 over schema Ψ takes as input a database
instance 𝐷 such that 𝐷 ⊲ Ψ and yields a table. We denote the semantics of 𝑄 as ⟦𝑄⟧𝐷 .

The definition above is sufficiently general to describe both SQL and Cypher queries, as both
query languages return a table.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 216. Publication date: June 2025.

Graphiti: Bridging Graph and Relational DatabaseQueries 216:11

Algorithm 1Methodology for checking equivalence between Cypher and SQL queries
1: procedure CheckEqivalence(Ψ𝐺 , 𝑄𝐺 ,Ψ𝑅, 𝑄𝑅,Φ)

Input: Graph and relational schemas Ψ𝐺 ,Ψ𝑅 , Cypher query 𝑄𝐺 , SQL query 𝑄𝑅 , transformer Φ
Output: ⊤ for equivalence or ⊥ indicating failure

2: (Φsdt,Ψ
′
𝑅
) ← InferSDT(Ψ𝐺)

3: 𝑄𝑅′ ← Transpile(𝑄𝐺 ,Φsdt,Ψ
′
𝑅
)

4: return ReduceToSQL(Ψ𝑅, 𝑄𝑅,Ψ′𝑅, 𝑄 ′𝑅,Φ,Φsdt)

Definition 4.3 (Database equivalence). Let 𝐷,𝐷 ′ be database instances over schemas Ψ,Ψ′
respectively and let Φ be a database transformer that can be used to convert instances of Ψ to
instances of Ψ′. Then, 𝐷 is said to be equivalent to 𝐷 ′ modulo Φ, denoted 𝐷 ∼Φ 𝐷 ′, if Φ(𝐷) = 𝐷 ′.

According to the above definition, a graph database instance 𝐺 is equivalent to a relational
database instance 𝑅 if the contents of 𝑅 can be obtained from𝐺 by applying the transformer Φ to𝐺 .
Next, to define equivalence between graph and relational queries, we need to define what it means
for the query outputs to be the same. Since queries in both Cypher and SQL return tables, we need
a notion of equivalence between tables.

Definition 4.4 (Table equivalence). Two tables 𝑇 and 𝑇 ′ are said to be equivalent, denoted
𝑇 ≡ 𝑇 ′, if there exists a bijective mapping 𝜋 from columns of 𝑇 to those of 𝑇 ′ such that, for each
tuple 𝑟 ∈ 𝑇 with multiplicity 𝑛, there exists a unique tuple 𝑟 ′ ∈ 𝑇 ′ with multiplicity 𝑛 where
∀𝑎 ∈ Attrs(𝑟). 𝑟 .𝑎 = 𝑟 ′ .𝜋 (𝑎).

In other words, our notion of table equivalence disregards the order of attributes as well as their
names, which allows for a more robust notion of query equivalence.4

Definition 4.5 (Graph-relational query equivalence). Let Ψ𝐺 and Ψ𝑅 be graph and relational
schemas respectively, and Φ be a transformer from Ψ𝐺 to Ψ𝑅 . A query 𝑄 over Ψ𝐺 is equivalent to
𝑄 ′ over Ψ𝑅 modulo Φ, denoted 𝑄 ≃Φ 𝑄 ′, iff:

∀𝐺, 𝑅. (𝐺 ⊲ Ψ𝐺 ∧ 𝑅 ⊲ Ψ𝑅 ∧𝐺 ∼Φ 𝑅) ⇒ ⟦𝑄⟧𝐺 ≡ ⟦𝑄 ′⟧𝑅
In otherwords,𝑄,𝑄 ′ are considered equivalent if they produce the same tables (modulo renaming/

re-ordering of columns) when executed on a pair of database instances 𝐺, 𝑅 satisfying 𝐺 ∼Φ 𝑅.
Figure 12 visualizes this definition of equivalence between graph databases and relational databases.

Definition 4.6 (Equivalence checking problem). Given graph and relational queries 𝑄,𝑄 ′ and
a transformer Φ from graph schema Ψ𝐺 to relational schema Ψ𝑅 , the equivalence checking problem
is to decide whether 𝑄 ≃Φ 𝑄 ′.

5 Equivalence Checking Algorithm

In this section, we present our algorithm, summarized in Algorithm 1, for checking equivalence
between Cypher and SQL queries. As shown in Algorithm 1, our algorithm consists of three steps:
(1) Schema and transformer inference: Given the graph database schema Ψ𝐺 , our algorithm

first invokes the InferSDT function to infer both the induced relational schema Ψ′
𝑅
= (𝑆, 𝜉) as

well as the standard database transformer Φsdt.
4If a query includes an OrderBy clause, list semantics will be applied, where the result is an ordered list of tuples. In this
case, the equivalence of two tables𝑇 and𝑇 ′ is defined such that there exists a bijective mapping 𝜋 between their attributes,
and for each pair of tuples 𝑟 ∈ 𝑇 and 𝑟 ′ ∈ 𝑇 ′ at the same index, it holds that ∀𝑎 ∈ Attrs(𝑟) . 𝑟 .𝑎 = 𝑟 ′ .𝜋 (𝑎) .

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 216. Publication date: June 2025.

216:12 Yang He, Ruijie Fang, Işıl Dillig, and Yuepeng Wang

𝑡node = (𝑙, 𝐾1, . . . , 𝐾𝑛) 𝜉 = (PK(𝑅𝑙) = 𝐾1) Φ = {𝑙 (𝐾1, . . . , 𝐾𝑛) → 𝑅𝑙 (𝐾1, . . . , 𝐾𝑛)}
𝑡node ↩→ ({𝑅𝑙 ↦→ (𝐾1, . . . , 𝐾𝑛)}, 𝜉,Φ)

(Node)

𝑡edge = (𝑙, 𝑡src, 𝑡tgt, 𝐾1, . . . , 𝐾𝑚) label(𝑡src) = 𝑠 label(𝑡tgt) = 𝑡
𝜉 = PK(𝑅𝑙) = 𝑅𝑙 .𝐾1 ∧ FK(𝑅𝑙 .fk𝑠) = PK(𝑅𝑠) ∧ FK(𝑅𝑙 .fk𝑡) = PK(𝑅𝑡)

Φ = {𝑙 (𝐾1, . . . , 𝐾𝑚, fk𝑠 , fk𝑡) → 𝑅𝑙 (𝐾1, . . . , 𝐾𝑚, fk𝑠 , fk𝑡)}
𝑡edge ↩→ ({𝑅𝑙 ↦→ (𝐾1, . . . , 𝐾𝑚, fk𝑠 , fk𝑡)}, 𝜉,Φ)

(Edge)

𝑇1 ↩→ (𝑆1, 𝜉1,Φ1) 𝑇1 ↩→ (𝑆2, 𝜉2,Φ2)
𝑇1 ⊎𝑇2 ↩→ (𝑆1 ⊎ 𝑆2, 𝜉1 ∧ 𝜉2,Φ1 ∪ Φ2)

(Set)
(𝑇𝑁 ⊎𝑇𝐸) ↩→ (𝑆, 𝜉,Φ)
(𝑇𝑁 ,𝑇𝐸) ↩→ (𝑆, 𝜉,Φ)

(Schema)

Fig. 13. Rules for the InferSDT procedure. 𝑅′
𝑙
denotes the table name of 𝑅𝑙 in the induced relational schema.

(2) Syntax-directed transpilation: Next, our algorithm uses the inferred database transformer
and integrity constraints to transpile the Cypher query into an SQL query𝑄 ′

𝑅
that is guaranteed

to be equivalent to 𝑄𝐺 modulo the standard Φsdt.
(3) Checking SQL equivalence: Finally, the algorithm computes a residual database transformer

Φrdt that can be used to convert instances of Ψ′
𝑅
into instances of Ψ𝑅 and checks equivalence

between SQL queries 𝑄𝑅 and 𝑄 ′
𝑅
modulo the residual database transformer Φrdt relating a pair

of database schemas.

Discussion. An alternative approach to solving the equivalence checking problem would be to
directly reason about equivalence between the graph query 𝑄𝐺 and the relational query 𝑄𝑅 . While
such an approach would be more direct, we adopt the methodology illustrated in Figure 1 for
several reasons. First, in order to directly verify equivalence between graph and relational database
queries, we need suitable SMT encodings of both graphs and relations, which makes the resulting
constraint solving problem harder compared to the alternative. Second, the reduction to relational
equivalence checking allows us to leverage a variety of existing tools that have been developed for
SQL, including testing tools [6], bounded model checkers [26], and deductive verifiers [57].

5.1 Induced Relational Schema and Standard Transformer Inference

We first discuss the InferSDT procedure for inferring the induced relational schema as well as
the standard database transformer. This procedure is formalized in Figure 13 using inference rules
of the form: Ψ𝐺 ↩→ (𝑆, 𝜉,Φsdt) where Ψ𝐺 corresponds to elements of the graph schema (nodes,
edges, and subgraphs), Ψ𝑅 = (𝑆, 𝜉) is the induced relational schema for Ψ𝐺 , and Φsdt is the standard
database transformer that can be used to convert instances of Ψ𝐺 into instances of Ψ𝑅 .

Induced relational schema. Intuitively, the induced relational schema is the “closest” relational
representation of the graph database schema Ψ𝐺 = (𝑇𝑁 ,𝑇𝐸) that represents each node and edge type
as a relational table. As shown in the Node rule, for each node type 𝑡node = (𝑙, 𝐾1, . . . , 𝐾𝑛) ∈ 𝑇𝑁 with
label 𝑙 and default property key 𝐾1, we introduce a table 𝑅𝑙 with attributes 𝐾1, . . . , 𝐾𝑛 in the induced
relational schema. We also use the default property key 𝐾1 as the primary key of the corresponding
table and generate an integrity constraint PK(𝑅𝑙) = 𝐾1. Similarly, as shown in the Edge rule, for each
edge type 𝑡edge = (𝑙, 𝑡src, 𝑡tgt, 𝐾1, . . . , 𝐾𝑚) ∈ 𝑇𝐸 with default property key 𝐾1, we introduce a table 𝑅𝑙
with attributes𝐾1, ..., 𝐾𝑚, fk𝑠 , fk𝑡 . Here,𝐾1 is also the primary key of table 𝑅𝑙 , and fk𝑠 , fk𝑡 are foreign
keys which reference to primary keys of the tables corresponding to source and target nodes. Thus,
the integrity constraint is PK(𝑅𝑙) = 𝑅𝑙 .𝐾1 ∧ FK(𝑅𝑙 .fk𝑠) = PK(𝑅𝑠) ∧ FK(𝑅𝑙 .fk𝑡) = PK(𝑅𝑡), where
𝑅𝑠 , 𝑅𝑡 are the tables corresponding to the source and target nodes.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 216. Publication date: June 2025.

Graphiti: Bridging Graph and Relational DatabaseQueries 216:13

EMP DEPT
WORK_AT

(a) Graph schema. Node labels are inside the nodes.
Edge labels are above the arrows. EMP has property
keys: id, name.DEPT has property keys: dnum, dname.
WORK_AT has a property key: wid. The default prop-
erty keys are in bold.

emp work_at dept

id name wid SRC TGT dnum dname

(b) Induced relational schema. Primary keys
are in bold. Foreign keys are underlined and
connected to references with arrows.

Fig. 14. Example of a graph schema and its induced relational schema.

A

B

CS

EE

:WORK_AT

:WORK
_AT

(a) A graph database instance.

emp
id name
1 A
2 B

work_at
wid SRC TGT
10 1 1
11 2 1

dept
dnum dname
1 CS
2 EE

(b) The relational tables.

Fig. 15. Example graph database and its corresponding relational database over the induced relational schema.

Example 5.1. Consider the graph schema Ψ𝐺 shown in Figure 14a. Its induced relational schema
Ψ𝑅 is visualized in Figure 14b.

Standard database transformer. The standard database transformer (SDT) is expressed in the
same language as a general database transformer from Section 4.1, which transforms instances of a
graph schema Ψ𝐺 to instances of a relational schema Ψ𝑅 . Intuitively, the standard database trans-
former for a graph schema Ψ𝐺 converts each node and edge type to a separate table, and all occur-
rences of that element type in a graph database𝐺 become tuples in the corresponding table of the re-
lational database. Specifically, as shown in the Node rule, for each node of type 𝑡node = (𝑙, 𝐾1, . . . , 𝐾𝑛),
we generate a formula 𝑙 (𝐾1, . . . , 𝐾𝑛) → 𝑅𝑙 (𝐾1, . . . , 𝐾𝑛) which transforms a predicate 𝑅𝑙 (𝑣1, . . . , 𝑣𝑛)
representing a graph element to a predicate 𝑅′

𝑙
(𝑣1, . . . , 𝑣𝑛) representing a tuple in the relational

database. Similarly, we generate a formula 𝑙 (𝐾1, . . . , 𝐾𝑚, fk𝑠 , fk𝑡) → 𝑅𝑙 (𝐾1, . . . , 𝐾𝑚, fk𝑠 , fk𝑡) for each
edge type in the graph schema.

Example 5.2. Consider the graph database𝐺 visualized in Figure 15a. The SDT Φsdt transforms
𝐺 to the relational database shown in Figure 15b.

5.2 Syntax-Directed Transpilation

Building upon the standard database transformer (SDT) introduced earlier, we now turn to the
core task of translating Cypher queries into corresponding SQL queries over the induced schema.
This process presents several challenges, as it involves mapping graph-based operations in Cypher
to the relational model in SQL, while ensuring that the original query semantics are preserved.
Specifically, Cypher includes features like pattern matching over subgraphs and optional matches,
which do not have direct equivalents in SQL. Additionally, Cypher aggregates data over matched
subgraphs, whereas SQL aggregates over grouped tuples. Finally, ensuring consistent mappings
of graph nodes and edges across the query is critical to maintaining the integrity of references
throughout the process. Our syntax-directed transpilation approach addresses these challenges by
converting Cypher queries into SQL queries over the induced relational schema. The key idea is that
path patterns in Cypher can be represented by relational joins in SQL. For instance, Cypher’s match
clauses are translated into SQL inner joins, and optional match clauses map to outer joins. This
approach ensures that the pattern matching semantics of Cypher queries are faithfully represented
within the relational model, maintaining the integrity of the original graph-based operations. We

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 216. Publication date: June 2025.

216:14 Yang He, Ruijie Fang, Işıl Dillig, and Yuepeng Wang

¬hasAgg(𝐸) Φsdt,Ψ𝑅 ⊢ 𝐶
clause−→ X,𝑄

Φsdt,Ψ𝑅 ⊢ 𝐸𝑖
expr
−→ 𝐸′𝑖 1 ≤ 𝑖 ≤ |𝐸 |

Φsdt,Ψ𝑅 ⊢ Return(𝐶, 𝐸, 𝑘)
query
−→ Π

𝜌
𝑘
(𝐸′) (𝑄)

(Q-Ret)

hasAgg(𝐸) Φsdt,Ψ𝑅 ⊢ 𝐸𝑖
expr
−→ 𝐸′𝑖 1 ≤ 𝑖 ≤ |𝐸 |

Φsdt,Ψ𝑅 ⊢ 𝐶
clause−→ X,𝑄 𝐴 = filter(𝜆𝑥.¬IsAgg(𝑥), 𝐸′)

Φsdt,Ψ𝑅 ⊢ Return(𝐶, 𝐸, 𝑘)
query
−→ GroupBy(𝑄,𝐴, 𝜌

𝑘
(𝐸′),⊤)

(Q-Agg)

Φsdt,Ψ𝑅 ⊢ 𝑄
query
−→ 𝑄 ′ Φsdt,Ψ𝑅 ⊢ 𝑘

expr
−→ 𝑎

Φsdt,Ψ𝑅 ⊢ OrderBy(𝑄,𝑘,𝑏)
query
−→ OrderBy(𝑄 ′, 𝑎,𝑏)

(Q-OrderBy)

Φsdt,Ψ𝑅 ⊢ 𝑄1
query
−→ 𝑄 ′1 Φsdt,Ψ𝑅 ⊢ 𝑄2

query
−→ 𝑄 ′2

Φsdt,Ψ𝑅 ⊢ Union(𝑄1,𝑄2)
query
−→ 𝑄 ′1 ∪𝑄 ′2

(Q-Union)
Φsdt,Ψ𝑅 ⊢ 𝑄1

query
−→ 𝑄 ′1 Φsdt,Ψ𝑅 ⊢ 𝑄2

query
−→ 𝑄 ′2

Φsdt,Ψ𝑅 ⊢ UnionAll(𝑄1,𝑄2)
query
−→ 𝑄 ′1 ⊎𝑄 ′2

(Q-UnionAll)

Fig. 16. Translation rules for queries.

now describe a core subset of our syntax-directed transpilation rules, with further details available
in the Appendix of the extended version [25].

Translating queries. The translation rules for queries, illustrated in Figure 16, use judgments
of the form Φsdt,Ψ𝑅 ⊢ 𝑄

query
−→ 𝑄 ′, where a Cypher query 𝑄 maps to an SQL query 𝑄 ′ given SDT

Φsdt and induced database transformer Ψ𝑅 . Among these rules, handling Return requires particular
attention, as it involves distinguishing between cases with and without aggregate functions. If
there are no aggregation functions in 𝐸, the Q-Ret rule produces a straightforward translation:
the Cypher query Return(𝐶, 𝐸, 𝑘) becomes a simple SQL projection Π

𝜌
𝑘
(𝐸′) (𝑄). Here, 𝑄 is the

translated result of the Cypher clause 𝐶 , and 𝐸′ represents the translated expressions of 𝐸, with all
attributes renamed to 𝑘 . In contrast, when aggregation functions appear in 𝐸, the translation shifts
to the Q-Agg rule, which requires generating a GroupBy query. This is necessary because SQL uses
GroupBy to manage aggregation by partitioning rows based on non-aggregated columns. In the
Cypher query Return(𝐶, 𝐸, 𝑘), the non-aggregation expressions 𝐴 act as grouping keys, while the
aggregated expressions ensure the correct computation of results for each group.

Example 5.3. Consider the following Cypher query and the SDT from Example 5.2:

Return(Match([(n, EMP), (e, WORK_AT,→), (m, DEPT)],⊤), [m.dname,Count(n.id)], [name, num])
Since there is a Count aggregation in the return query, we apply the Q-Agg rule to translate it to a
GroupBy query in SQL. Specifically, we first apply the C-Match1 rule to translate the match clause
Match([(n, EMP), (e, WORK_AT,→), (m, DEPT)],⊤) into a SQL query 𝑄 (explained in Example 5.4).
Then we translate the returned Cypher expressions m.dname and Count(n.id) to their correspond-
ing SQL expressions m.dname and Count(n.id). Among these expressions, we find the one that does
not contain aggregations, namely m.dname, and use it as the grouping key for GroupBy. Since there is
no filtering based on the aggregated results, the Having clause for GroupBy is not generated. There-
fore, the translated SQL query is GroupBy(𝑄, [m.dname], 𝜌 [name,num] ([m.dname, Count(n.id)]),⊤).

Translating Clauses. Unlike translating entire queries, translating individual clauses requires
tracking additional information about the node and edge variables used within the clauses. This
is necessary to ensure that multiple occurrences of the same variable across different clauses are
translated to refer to the same tuple in SQL. As shown in Figure 17, our translation judgments are
of the form Φsdt,Ψ𝑅 ⊢ 𝐶

clause−→ X, 𝑄 ′, meaning a Cypher clause 𝐶 is translated into a SQL query 𝑄 ′,
and X is the set of all used node and edge variables.
Our translation rules for the Match and OptMatch clauses are based on the observation that

graph pattern matching in Cypher can be emulated using sequences of join operations in SQL.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 216. Publication date: June 2025.

Graphiti: Bridging Graph and Relational DatabaseQueries 216:15

Φsdt,Ψ𝑅 ⊢ 𝑃𝑃
pattern
−→ X,𝑄 Φsdt,Ψ𝑅 ⊢ 𝜙

pred
−→ 𝜙 ′

Φsdt,Ψ𝑅 ⊢ Match(𝑃𝑃,𝜙) clause−→ X, 𝜎𝜙′ (𝑄)
(C-Match1)

Φsdt,Ψ𝑅 ⊢ 𝐶
clause−→ X,Π𝐿 (𝑄) X′ = X \𝑌 ∪ 𝑍

Φsdt,Ψ𝑅 ⊢With(𝐶,𝑌,𝑍) clause−→ X′,Π𝜌
𝐿 [𝑍 /𝑌] (𝐿)

(𝑄)
(C-With)

Φsdt,Ψ𝑅 ⊢ 𝐶
clause−→ X1,𝑄1 Φsdt,Ψ𝑅 ⊢ 𝑃𝑃

pattern
−→ X2,𝑄2 Φsdt,Ψ𝑅 ⊢ 𝜙

pred
−→ 𝜙 ′ fresh𝑇1,𝑇2

𝜙 ′′ = 𝜙 ′ ∧ ∧(𝑋 :𝑙) ∈X1∩X2𝑇1 .PK(𝑅𝑙) = 𝑇2 .PK(𝑅𝑙) where 𝑙 (. . .) → 𝑅𝑙 (. . .) ∈ Φsdt

Φsdt,Ψ𝑅 ⊢ Match(𝐶, 𝑃𝑃,𝜙) clause−→ X1 ∪ X2, 𝜌𝑇1 (𝑄1) ⊲⊳𝜙′′ 𝜌𝑇2 (𝑄2)
(C-Match2)

Φsdt,Ψ𝑅 ⊢ 𝐶
clause−→ X1,𝑄1 Φsdt,Ψ𝑅 ⊢ 𝑃𝑃

pattern
−→ X2,𝑄2 Φsdt,Ψ𝑅 ⊢ 𝜙

pred
−→ 𝜙 ′ fresh𝑇1,𝑇2

𝜙 ′′ = 𝜙 ′ ∧ ∧(𝑋 :𝑙) ∈X1∩X2𝑇1 .PK(𝑅𝑙) = 𝑇2 .PK(𝑅𝑙) where 𝑙 (. . . ,) → 𝑅𝑙 (. . .) ∈ Φsdt

Φsdt,Ψ𝑅 ⊢ OptMatch(𝐶, 𝑃𝑃,𝜙) clause−→ X1 ∪ X2, 𝜌𝑇1 (𝑄1) ⊲⊳𝜙′′ 𝜌𝑇2 (𝑄2)
(C-OptMatch)

Fig. 17. Translation rules for clauses.

𝑙 (𝐾1, . . . , 𝐾𝑛) → 𝑅𝑙 (𝐾1, . . . , 𝐾𝑛) ∈ Φsdt

Φsdt,Ψ𝑅 ⊢ (𝑋, 𝑙)
pattern
−→ {(𝑋 : 𝑙) }, 𝜌𝑋 (𝑅𝑙)

(PT-Node)

Φsdt,Ψ𝑅 ⊢ 𝑃𝑃
pattern
−→ X,𝑄 ′ (𝑋3, 𝑙3) = head(𝑃𝑃) 𝑙1 (. . .) → 𝑅𝑙1 (. . .) ∈ Φsdt

𝑙2 (. . . , fk𝑠 , fk𝑡) → 𝑅𝑙2 (. . . , fk𝑠 , fk𝑡) ∈ Φsdt 𝑙3 (. . .) → 𝑅𝑙3 (. . .) ∈ Φsdt
𝜙 = (𝑅𝑙2 .fk𝑠 = PK(𝑅𝑙1)) 𝜙 ′ = (𝑅𝑙2 .fk𝑡 = PK(𝑅𝑙3)) 𝜉 (Ψ𝑅) ⇒ 𝜙 ∧ 𝜙 ′

Φsdt,Ψ𝑅 ⊢ (𝑋1, 𝑙1), (𝑋2, 𝑙2, 𝑑2), 𝑃𝑃
pattern
−→ {(𝑋1 : 𝑙1), (𝑋2 : 𝑙2) } ∪ X, 𝜌𝑋1 (𝑅𝑙1) ⊲⊳𝜙 𝜌𝑋2 (𝑅𝑙2) ⊲⊳𝜙′ 𝑄 ′

(PT-Path)

Fig. 18. Translation rules for path patterns.

Specifically, the join operations forMatch are inner joins, while those for OptionalMatch are left
outer joins. Intuitively, aMatch clause returns no results if there is no matching pattern, mirroring
the behavior of inner joins where unmatched tuples are discarded. In contrast, an OptionalMatch
clause returns null for missing matches, similar to how outer joins include unmatched rows with
null values.

For example, consider the clause Match(𝐶, 𝑃𝑃, 𝜙). The translation rule C-Match2 first translates
the preceding clause𝐶 into a subquery𝑄1 and the path pattern 𝑃𝑃 into another subquery𝑄2. It also
collects the sets of node and edge variables used in𝐶 and 𝑃𝑃 , denoted asX1 andX2, respectively. For
each common variable 𝑋 with label 𝑙 , the translation generates a join predicate 𝑇1.𝐾1 = 𝑇2.𝐾1. This
ensures that occurrences of the same variable in different parts of the clause are correctly matched
by joining on their primary keys, effectively referring to the same tuple in the SQL translation.

The C-With rule handles theWith clause by translatingWith(𝐶,𝑌, 𝑍) into a renaming operation
in SQL. It generates a query Π𝜌

𝐿 [𝑍 /𝑌] (𝐿) (𝑄), which projects and renames columns, replacing the
old names 𝑌 with the new names 𝑍 .

Example 5.4. Consider the Cypher clauseMatch([(n, EMP), (e, WORK_AT,→), (m, DEPT)],⊤) and
the Φsdt from Example 5.2. Based on C-Match1, we use the PT-Path rule to collect all node and
edge variables in the pattern, namely X = {(n : EMP), (e : WORK_AT), (m : DEPT)}, and translate it to
a SQL query 𝜌n (emp) ⊲⊳n.id=e.SRC 𝜌e (work_at) ⊲⊳e.TGT=m.dnum 𝜌m (dept). Thus, the Cypher clause is
translated to 𝜎⊤ (𝜌n (emp) ⊲⊳n.id=e.SRC 𝜌e (work_at) ⊲⊳e.TGT=m.dnum 𝜌m (dept)).

Example 5.5. Consider the Cypher clause OptMatch(𝐶, 𝑃𝑃, 𝜙) where 𝐶 is the Match clause
in Example 5.4, 𝑃𝑃 = [(m, DEPT)] and the Φsdt from Example 5.2. Based on C-Match1 and C-
OptMatch, we know X1 = {(n : EMP), (e : WORK_AT), (m : DEPT)} and X2 = {(m : DEPT)}. 𝐶
and 𝑃𝑃 are translated to 𝑄1 = 𝜎⊤ (𝜌n (emp) ⊲⊳n.id=e.SRC 𝜌e (work_at) ⊲⊳e.TGT=m.dnum 𝜌m (dept)) and
𝑄2 = 𝜎𝜙 (𝜌m (dept)), respectively. Since there is a shared node (m, DEPT) between𝐶 and 𝑃𝑃 , and the
primary key of dept is dnum, the Cypher clause is translated to 𝜌𝑇1 (𝑄1) ⊲⊳𝑇1 .dnum=𝑇2 .dnum 𝜌𝑇2 (𝑄2).

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 216. Publication date: June 2025.

216:16 Yang He, Ruijie Fang, Işıl Dillig, and Yuepeng Wang

Algorithm 2 Algorithm for inferring the residual of database transformers and SDT’s
1: procedure ReduceToSQL(Ψ𝑅, 𝑄𝑅,Ψ′𝑅, 𝑄

′
𝑅
,Φ,Φsdt)

Input: Database transformer Φ, standard database transformer Φsdt
Output: ⊤ for equivalence or ⊥ indicating failure

2: 𝜎 ← {𝑃1 ↦→ 𝑃0 | 𝑃1 (. . .) → 𝑃0 (. . .) ∈ Φsdt}
3: Φrdt ← Φ[𝜎]
4: return CheckSQL(Ψ𝑅, 𝑄𝑅,Ψ′𝑅, 𝑄 ′𝑅,Φrdt)

Translating patterns. Figure 18 illustrates the rules for translating patterns, using judgments of
the form Φsdt,Ψ𝑅 ⊢ 𝑃𝑃

pattern
−→ X, 𝑄 ′. This notation indicates that a Cypher pattern 𝑃𝑃 translates to

an SQL query 𝑄 ′, with all node and edge variables in the pattern represented by X.
The translation of patterns follows an inductive structure, with two key rules. The base case

handles a single node pattern using the PT-Node rule, which maps the node variable 𝑋 to its
corresponding table 𝑅′

𝑙
in the relational schema derived from SDT Φsdt, renaming it to 𝑋 . The

inductive case, represented by the PT-Path rule, addresses more complex patterns where a new
node (𝑋2, 𝑙2) expands an existing sub-pattern 𝑃𝑃 . The rule identifies the connecting node (𝑋3, 𝑙3) in
𝑃𝑃 and determines the appropriate joins. It locates the tables 𝑅′

𝑙1
, 𝑅′
𝑙2
, 𝑅′
𝑙3
corresponding to nodes 𝑋1,

𝑋2, and 𝑋3, and constructs join predicates to connect the foreign keys fk𝑠 and fk𝑡 in the edge table
𝑅′
𝑙2
to the primary keys in the source and target node tables, respectively. This approach aligns

with the observation that Cypher’s pattern matching naturally corresponds to a series of SQL join
operations.

Example 5.6. Given the standard database transformer Φ in Example 5.2, let us focus on the
path pattern [(n, EMP), (e, WORK_AT,→), (m, DEPT)]. According to the PT-Path rule, we first need
to apply the PT-Node rule to get the variables {(m : DEPT)} and query 𝜌m (DEPT) from the node
pattern (m, DEPT). Based on these results, we can use the PT-Path rule to collect all variables
X = {(n : EMP), (e : WORK_AT), (m : DEPT)} and obtain the SQL query 𝜌n (emp) ⊲⊳n.id=e.SRC
𝜌e (work_at) ⊲⊳e.TGT=m.dnum 𝜌m (dept).

Theorem 5.7 (Soundness of translation). Let Ψ𝐺 be a graph schema and 𝑄 be a Cypher query

over Ψ𝐺 . Let Ψ𝑅 be the induced relational schema of Ψ𝐺 , and Φsdt be the standard database transformer

from Ψ𝐺 to Ψ𝑅 . If Φsdt,Ψ𝑅 ⊢ 𝑄
query
−→ 𝑄 ′, then 𝑄 ′ is equivalent to 𝑄 modulo Φsdt, i.e., 𝑄 ≃Φsdt 𝑄

′
.

Theorem 5.8 (Completeness of translation). Let Ψ𝐺 be a graph schema and Ψ𝑅 be the induced

relational schema of Ψ𝐺 . Given any Cypher query 𝑄 over Ψ𝐺 accepted by the grammar shown in

Figure 9, there exists a SQL query 𝑄 ′ over Ψ𝑅 such that Φsdt,Ψ𝑅 ⊢ 𝑄
query
−→ 𝑄 ′.

5.3 Reduction to SQL Equivalence Checking

The final step of our algorithm utilizes the transpiled query to reduce our original problem to
checking equivalence between a pair of SQL queries. As shown in Algorithm 2, the ReduceToSQL
procedure first infers the residual database transformer Φrdt through a simple syntactic substitu-
tion: Since every clause of the SDT is of the form 𝑃1 (. . .) → 𝑃0 (. . .), we can obtain the residual
transformer simply by substituting every occurrence of 𝑃1 in Φ by 𝑃0. Finally, since the residual
transformer Φrdt specifies how to convert instances of the induced schema to those of the desired
schema, we can use an existing tool for checking SQL equivalence by utilizing Φrdt. As stated by
the following theorems, the original Cypher query is equivalent to the given SQL query if and only
if 𝑄𝑅 and 𝑄 ′

𝑅
are equivalent modulo Φrdt.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 216. Publication date: June 2025.

Graphiti: Bridging Graph and Relational DatabaseQueries 216:17

Table 1. Statistics of Cypher and SQL queries in the benchmarks. Sizes are the number of AST nodes.

Dataset # SQL Size Cypher Size Transformer Size
Min Max Avg Med Min Max Avg Med Min Max Avg Med

StackOverflow 12 15 74 32.5 28 20 149 54.9 41 1 6 3.3 4
Tutorial 26 5 76 25.8 22 12 77 31.2 28 1 17 8.3 5
Academic 7 27 59 46.9 54 45 121 75.0 66 5 7 6.7 7
VeriEQL 60 15 143 42.2 39 29 174 65.8 61 1 10 6.7 10
Mediator 100 9 63 18.6 13 20 114 33.8 28 1 11 5.1 4

GPT-Translate 205 5 143 28.2 25 12 171 46.0 38 1 17 5.9 5
Total 410 5 143 28.2 25 12 174 45.7 38 1 17 5.9 5

Theorem 5.9 (Soundness). LetCheckSQL(Ψ𝑅, 𝑄,Ψ′𝑅, 𝑄 ′,Φrdt) be a sound procedure for equivalence
checking of SQL queries 𝑄,𝑄 ′ over relational schemas Ψ𝑅,Ψ

′
𝑅
connected by RDT Φrdt. Given a Cypher

query 𝑄𝐺 over graph schema Ψ𝐺 , a SQL query 𝑄𝑅 over relational schema Ψ𝑅 , and their database

transformer Φ, if CheckEquivalence(Ψ𝐺 , 𝑄𝐺 ,Ψ𝑅, 𝑄𝑅,Φ) returns ⊤, it holds that 𝑄𝐺 ≃Φ 𝑄𝑅 .

Theorem 5.10 (Completeness). Let CheckSQL(Ψ𝑅, 𝑄,Ψ′𝑅, 𝑄 ′,Φrdt) be a complete procedure for

equivalence checking of SQL queries𝑄,𝑄 ′ over schemas Ψ𝑅,Ψ
′
𝑅
connected by RDT Φrdt. Given a Cypher

query 𝑄𝐺 over graph schema Ψ𝐺 , a SQL query 𝑄𝑅 over relational schema Ψ𝑅 , and their database

transformer Φ, if 𝑄𝐺 ≃Φ 𝑄𝑅 , then CheckEquivalence(Ψ𝐺 , 𝑄𝐺 ,Ψ𝑅, 𝑄𝑅,Φ) returns ⊤.

6 Evaluation

In this section, we describe three experiments to evaluateGraphiti. BecauseGraphiti’s verification
methodology reduces the Cypher-SQL equivalence checking problem to pure SQL, our results
depend on what backend is used for SQL equivalence checking. Thus, in our first experiment, we
evaluate Graphiti using the VeriEQL [26] bounded model checker as its backend, and in our
second experiment, we use a deductive verifier calledMediator [57] as the backend. Finally, we
also evaluate the quality of Graphiti’s transpilation results.
Benchmarks.We evaluate Graphiti on 410 pairs of SQL and Cypher queries (see Table 1) from
the following sources:
• StackOverflow: We identified 12 StackOverflow posts where users inquire about translating a
SQL query to Cypher or vice versa. All of these posts contain a description of the schemas and
SQL/Cypher queries that are intended to be semantically equivalent.
• Tutorial. We identified 26 tutorial examples, including from the official Neo4j guide [38], that
explain how a SQL query can be implemented using the Cypher query language.
• Academic. We identified 7 examples from academic papers [4, 32] that contain relational queries
and their corresponding version in Cypher.
• VeriEQL. We collected 60 benchmarks from the VeriEQL paper [26] by randomly sampling 20
queries from each of its three datasets and asking various people with at least 3 months of Cypher
experience to write an equivalent Cypher query.
• Mediator. We collected 100 benchmarks from theMediator evaluation set [57]. EachMediator
benchmark, consisting of an SQL query pair (𝑄1, 𝑄2) over schemas Ψ1and Ψ2, was translated
into pairs (𝐺1, 𝑄2) and (𝐺2, 𝑄1) where 𝐺1,𝐺2 are Cypher queries over graph schemas Ψ′1 and Ψ′2,
and Ψ1 and Ψ2 are the induced relational schemas for Ψ′1 and Ψ′2.
• GPT-Translate. Given that large language models like GPT are increasingly used by people for
coding and transpilation tasks, we included GPT-generated Cypher queries to assess Graphiti’s
ability to detect errors in automated translations. Specifically, we used GPT to transpile SQL
queries from the previous five categories, yielding an additional 205 benchmarks.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 216. Publication date: June 2025.

216:18 Yang He, Ruijie Fang, Işıl Dillig, and Yuepeng Wang

Table 2. Results of bounded equivalence checking.

Dataset # # Non-Equiv Avg Checked Bound Avg Refutation Time (s)

StackOverflow 12 1 9.2 0.6
Tutorial 26 1 7.7 56.2
Academic 7 1 2.5 5.4
VeriEQL 60 4 7.2 8.5
Mediator 100 0 33.2 N/A

GPT-Translate 205 27 18.7 25.9
Total 410 34 19.6 23.4

Database transformers. Since the induced schema of graph databases may differ from the schema
of relational databases, Graphiti requires a database transformer to describe the relationship
between the graph and relational schemas. To evaluate Graphiti across all pairs of SQL and Cypher
queries, one of the authors constructed a database transformer for each query pair based on their
schema descriptions. We observe that writing these database transformers is not difficult. As shown
in Table 1, each database transformer consists of an average of 5.9 rules, which takes approximately
one minute to write.

Machine configuration. All of the experiments are conducted on a laptop with an Intel Core
i7-8750H processor and 32GB physical memory running the Debian 12 operating system.

6.1 Evaluation of Graphiti with BMC Backend

In this section, we present the results of the evaluation in which we use theVeriEQL bounded model
checker as Graphiti’s SQL equivalence checking backend. VeriEQL is a bounded model checker
that requires a hyperparameter specifying the size bound of symbolic tables. However, since it is
difficult to estimate a suitable bound a priori, we set a 10-minute time limit and gradually increase
the bound until either a counterexample is found or the time-limit is reached. For each refuted
benchmark, Graphiti uses the relational counterexamples produced by VeriEQL to construct a
counterexample over the graph schema.

The results of this evaluation are presented in Table 2. Here, the column labeled “# Non-Equiv”
shows the number of benchmarks proven to be not equivalent, and the last column shows the
average time to find a counterexample. The column labeled “Avg Checked Bound” shows the average
size of symbolic tables (measured in terms of the number of rows) when the 10 minute time limit
is reached. As shown in Table 2, Graphiti refutes equivalence for 34 out of the 410 benchmarks,
taking an average of 23.4 seconds to find a counterexample. For the remaining 376 benchmarks,
Graphiti performs bounded verification, demonstrating that there is no counterexample for
database instances with symbolic tables of average size 19.6.

Uncovered bugs. We have manually inspected all 34 bugs uncovered by Graphiti and confirmed
that all counterexamples produced by the tool correspond to true positives. As expected, GPT-
generated queries have a higher probability of being incorrect compared to the human-written
queries. In particular, Graphiti finds a counterexample to equivalence for 13% of the queries
transpiled by GPT. This experiment shows that GPT may introduce semantic bugs when converting
SQL to Cypher, and Graphiti can effectively identify these bugs. As developers increasingly rely
on large language models for assistance with coding-related tasks, we believe this demonstrates
Graphiti ’s practical value for developers relying on LLM-generated queries.
Perhaps more surprisingly, Graphiti also finds incorrect translations among benchmarks in

the StackOverflow, Tutorial, Academic, and VeriEQL categories, all of which involve queries

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 216. Publication date: June 2025.

Graphiti: Bridging Graph and Relational DatabaseQueries 216:19

Table 3. Results of full equivalence verification.

Dataset # # Supported # Verified # Unknown Avg Time (s)

StackOverflow 12 1 1 0 1.0
Tutorial 26 1 1 0 0.2
Academic 7 0 0 0 N/A
VeriEQL 60 0 0 0 N/A
Mediator 100 100 77 23 20.5

GPT-Translate 205 94 73 21 23.5
Total 410 196 152 44 16.8

transpiled by experts. Most surprisingly, Graphiti uncovers a bug in an example from a Neo4j
tutorial [38] that is intended to help developers familiar with SQL to learn Cypher. This tutorial
contains several pairs of SQL and Cypher queries that are intended to be equivalent, but, for
one of these examples, Graphiti finds a counterexample on which the query results are actually
different. We refer the interested reader to the Appendix of the extended version [25] for a case
study explaining some of the uncovered bugs, including the example from the Neo4j tutorial.

False negatives. Since VeriEQL is a bounded model checker, benchmarks that are not refuted by
Graphiti within the 10-minute time limit may still contain bugs. To assess how frequently this
occurs, we sampled 50 pairs of queries that were not refuted by Graphiti and manually inspected
whether the translation was correct. For 48 of the 50 manually-inspected benchmarks, we found that
the translation is indeed correct, but for 2 benchmarks (both from the GPT-Translate category),
the translation is incorrect but Graphiti fails to find a counterexample within the 10 minute time
limit. Thus, while Graphiti with the VeriEQL backend does not provide theoretical soundness
guarantees, we find that it is useful for finding bugs and has a low chance of missing incorrect
translations (4% according to our manual inspection results).

Key finding: Using a bounded model checker backend, Graphiti identifies 27 bugs among
205 SQL queries transpiled to Cypher using GPT. More surprisingly, among the 205 manually-
written query pairs that are meant to be equivalent, Graphiti also identifies 7 inconsistencies,
including 3 benchmarks from the wild and 4 benchmarks from manual translations.

6.2 Evaluation of Graphiti with Deductive Verifier

In this section, we present the results of a second experiment wherein we evaluate Graphiti with
Mediator as its backend. As mentioned earlier,Mediator is an SMT-based deductive verifier for
reasoning about SQL applications over different schemas. Unlike VeriEQL, Mediator can perform
full-fledged verification; however, it supports a limited subset of SQL without aggregations or
outer joins. Additionally, unlike VeriEQL,Mediator cannot disprove equivalence by generating
counterexamples. Hence, when using GraphitiwithMediator as its backend, Graphiti can either
prove equivalence or it returns “Unknown”. For performing this experiment, we also use a time
limit of 10 minutes per benchmark.

The results of this experiment are summarized in Table 3. As shown in the “# Supported” column,
about half of the benchmarks (196 out of 410) fall inside the fragment of SQL supported byMediator,
so we conduct our evaluation on this subset. Overall, Graphiti can verify 77.6% of these 196
benchmarks, with an average running time of 16.8 seconds. Since the syntax-directed transpilation
performed by Graphiti takes negligible time, most of the verification time is dominated by SMT
queries for discharging the generated verification conditions.

Qualitative analysis.We manually inspected 44 benchmarks that cannot be verified by Graphiti
with the Mediator backend. Among these 44 benchmarks, two of them are in fact refuted by

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 216. Publication date: June 2025.

216:20 Yang He, Ruijie Fang, Işıl Dillig, and Yuepeng Wang

Table 4. Execution time of transpiled and manually-written SQL queries.

Dataset # Avg Exec Time (s) % Transpiled % Trans Slower % Trans Slower % Trans Slower
Transpiled Manual Faster (1x, 1.1x] (1.1x, 1.2x] (1.2x, +∞)

StackOverflow 12 1.9 1.8 41.7% 8.3% 50.0% 0.0%
Tutorial 26 2.3 1.7 19.2% 11.5% 46.2% 23.1%
Academic 7 2.4 3.2 71.4% 0.0% 14.3% 14.3%
Total 45 2.2 2.0 33.3% 8.9% 42.2% 15.6%

Graphiti with VeriEQL, so they should not be verified. Among the 42 remaining benchmarks,
Mediator fails to complete verification within the 10 minute time limit for 14 of these, and, for the
final 28 benchmarks, it terminates but returns “Unknown”. To gain insight about failure cases, note
that Mediator needs to infer an inductive bisimulation invariant between the two queries [57].
However, for queries involving long join chains, the corresponding bisimulation invariant can be
complex. This can either lead to expensive SMT queries, thereby causing time-outs, or the required
invariant might fall outside the inference capabilities of Mediator.

Key finding: Among the 196 SQL queries supported by Mediator, Graphiti can prove
equivalence between roughly 80% of (Cypher, SQL) query pairs using the Mediator backend.

6.3 Evaluation of Transpilation

While the primary goal of this work is to enable checking equivalence between graph and relational
queries, an additional benefit of our method is that it can transpile graph database queries to
relational queries over the induced schema. To assess the practical effectiveness, we conduct an
experiment to evaluate how well our method transpiles graph queries into efficient SQL queries.

Efficiency of transpilation. First, we evaluate how long Graphiti takes to transpile each Cypher
query to a SQL query over the induced schema. Graphiti can successfully transpile all 410 queries,
and the average, median, and maximum transpilation times are 6.3, 3.0, and 180.2 milliseconds
respectively. Hence, we can conclude that transpilation is very fast in practice.

Quality of transpiled queries.Next, we also set out to evaluate the quality of the transpiled queries
by comparing the execution time of manually written SQL queries against Graphiti’s transpilation
result. However, performing this evaluation is challenging for two reasons: First, we only have
access to the “ground truth” Cypher and SQL queries for some benchmark categories. Second, we
do not have database instances that these queries are meant to be executed on. To deal with the
first challenge, we conduct this evaluation only on those benchmarks from the StackOverflow,
Tutorial, and Academic categories for which we are given the original Cypher query and its SQL
equivalent (or vice versa). To deal with the second challenge, we generate mock database instances
and assess query efficiency on them. For each benchmark with SQL query 𝑄𝑅 over schema Ψ𝑅 and
Cypher query 𝑄𝐺 , we use Graphiti to transpile 𝑄𝐺 into SQL query 𝑄 ′

𝑅
over the induced schema

Ψ′
𝑅
. We then create databases 𝑅 and 𝑅′ over Ψ𝑅 and Ψ′

𝑅
, respectively, ensuring Φrdt (𝑅′) = 𝑅. To

account for execution time variability, we start with 10,000 tuples in each table of 𝑅 and iteratively
increase the table size by 10x, up to 1 million, choosing the largest size where manually written
SQL queries run within 10 seconds. This approach results in 1 million tuples for 36 benchmarks and
between 10,000 and 1 million for the remaining 9 benchmarks. Finally, we measure the execution
times of 𝑄 ′

𝑅
on 𝑅′ and 𝑄𝑅 on 𝑅. Table 4 summarizes the results: for 33.3% of the benchmarks, the

transpiled queries are faster than the manually written queries. For the remaining benchmarks, 8.9%
exhibit a slowdown of no more than 1.1x, 42.2% exhibit a slowdown between 1.1x and 1.2x, and
15.6% exceed 1.2x. These results indicate that using Graphiti to perform automated transpilation

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 216. Publication date: June 2025.

Graphiti: Bridging Graph and Relational DatabaseQueries 216:21

could be useful in real-world scenarios that necessitate graph-to-relational query conversion, such
as for legacy systems, resource-constrained environments, or data integration.

Key finding: Graphiti can transpile Cypher queries to SQL queries in milliseconds. The
execution time of transpiled SQL queries is faster than manually-written queries on 33.3% of
benchmarks and within 1.2x slowdown on 51.1% of benchmarks.

7 Related Work

In this section, we discuss prior work that is mostly related to our techniques for equivalence
verification between Cypher and SQL queries.

Automated reasoning for SQL. Despite the undecidability of checking equivalence between SQL
queries [51], there has been much prior work on automated reasoning for relational queries. We
can categorize existing work into three classes. The first class targets a decidable subset of SQL and
proposes decision procedures for that subset. Examples of work in this category include [2, 5, 21].
Approaches in the second category propose sound but incomplete algorithms for an undecidable
subset of SQL; examples of work in this space include [10, 12, 63, 64]. The third category performs
bounded verification to find bugs in SQL queries; examples include Cosette [11], Qex [53], and
VeriEQL [26]. There is also prior work on verifying relational database applications that involve
both queries and updates [57]. Our proposed approach reduces the verification problem between
graph and relational queries to checking equivalence between a pair of relational queries; as such,
it can leverage any future advances in this area.

Migration between database instances. There is prior work on migrating data between different
schemas, including [18, 29, 34, 55, 59–61]. The most related to this paper is Dynamite [59], which
automates data migration between graph and relational databases. However, Dynamite is only
useful for migrating the contents of the database and cannot be used for transpiling queries. There
are also prior papers that address the query transpilation problem in the context of SQL [13, 14, 58].
While our notion of database transformer is inspired by prior work [37, 59], to the best of our
knowledge, this paper is the first to formalize the transpilation procedure from Cypher to SQL
queries and leverage it for formal equivalence checking.

Data representation refactoring. There is a related line of work on data representation refactoring,
which aims to refactor programs or specifications from one data representation to another [8,
9, 15, 20, 30, 43–45, 56]. For instance, Solidare [43] refactors smart contracts between different
ADTs. QBS [8] converts Java programs operating over collections to SQL queries. Since graph
and relational schemas can be viewed as different data representations, the query transpilation
problem in this work can be viewed as a form of data representation refactoring. However, none of
the existing techniques addresses the query transpilation problem between graph and relational
data. Additionally, this work can be viewed as presenting a novel methodology for verifying data
representation refactoring: Rather than directly going from representation 𝑅 to representation 𝑅′,
our idea is to introduce an auxiliary representation 𝑅′′ that simplifies the problem by enabling
syntax-directed translation. To the best of our knowledge, such a methodology based on a layer of
indirection has not previously been explored in this context.

Graph database query languages. There has been a long line of prior work on graph databases and
semantic foundations of graph query languages [1, 16, 19, 22, 23, 48, 52]. The unifying insight behind
many of such works is that a graph database schema may be viewed as a graphical representation
of the Entity-Relationship Diagram (ER Diagram) of a relational database schema. In part due to
this unifying insight, these graph query languages are both semantically and syntactically similar

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 216. Publication date: June 2025.

216:22 Yang He, Ruijie Fang, Işıl Dillig, and Yuepeng Wang

to Cypher. Because of this similarity, we believe our proposed methodology can be adapted fairly
easily to graph database query languages other than Cypher.

Testing database queries. Another related line of related work focuses on testing database queries.
Work in this space includes differential testing [27, 35, 62] and metamorphic testing [7, 28, 33, 46]
to detect bugs in database management systems, mutation-based testing to grade programming
assignments involving SQL queries [6], and provenance-based techniques for explaining wrong
SQL queries [36]. In contrast, Graphiti transpiles graph database queries into equivalent SQL
queries and uses existing automated reasoning tools for SQL equivalence checking. Thus, Graphiti
is complementary and can benefit from advances in testing SQL queries.

Transpiling Cypher queries. There are a few existing tools that can translate Cypher queries
to queries in SQL-like languages [31, 50]. The most relevant to this paper is OpenCypherTran-
spiler [31], which first transforms a Cypher query into a logical plan and renders it as a relational
query. However, it supports only a limited subset of Cypher and lacks soundness guarantees for
translated queries.5 In contrast, Graphiti ensures soundness during transpilation and supports a
broader subset of Cypher queries. Another tool, Kuzu [50], can execute graph queries on relational
databases with a Cypher interface. It compiles Cypher queries into an intermediate representation
similar to a relational database’s logical plan. However, Kuzu does not transpile Cypher into SQL
but instead directly executes the intermediate representation on the database.

8 Limitation

The current version of Graphiti is focused on a specific subset of SQL and Cypher, which does
not yet cover all modern features, such as variable-length pattern matching in Cypher. However,
considering the lack of prior research on reasoning about equivalence between graph and relational
database queries, we believe our selected fragments offer a strong foundation for advancing this
area of study. While some SQL and Cypher queries lie outside the scope of our current subset,
evaluations on a diverse set of benchmarks, including real-world queries, demonstrate that this
subset is expressive enough for practical use cases. Future work can further extend the transpilation
rules and backend equivalence verifiers to support additional features.

9 Conclusion and Future Work

In this paper, we proposed automated reasoning techniques between graph and relational database
queries. Specifically, we first proposed a formal definition of equivalence between graph and
relational queries and used it as the basis of a correct-by-construction transpilation strategy for
converting Cypher queries to SQL queries over a so-called induced relational schema. We then
showed how our translation approach can be used to check equivalence between graph and SQL
queries over arbitrary schema by leveraging existing automated reasoning techniques for SQL.
We have also evaluated our implementation, Graphiti, on equivalence checking tasks involving
real-world Cypher and SQL queries and showed that Graphiti can be useful for (a) uncovering
subtle bugs in Cypher queries that are meant to be equivalent to a reference SQL implementation,
and (b) verifying full equivalence between Cypher and SQL queries.
Looking ahead, we plan to explore the development of a graphical interface for specifying

database transformers between graph and relational databases, inspired by prior work on schema
mapping visualization [47]. This interface would aim to further reduce the manual effort required
by users to verify equivalence between graph and relational queries, providing a more intuitive
and user-friendly approach. We see this as a promising avenue for future research.

5The detailed evaluation of OpenCypherTranspiler can be found in the Appendix of the extended version [25].

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 216. Publication date: June 2025.

Graphiti: Bridging Graph and Relational DatabaseQueries 216:23

Acknowledgments

Wewould like to thank the anonymous reviewers for their insightful comments and feedback on this
paper. This work was conducted in research groups supported by Natural Sciences and Engineering
Research Council of Canada (NSERC) Discovery Grant and National Science Foundation (NSF)
awards CCF-1762299, CCF-1918889, CNS-1908304, CCF-1901376, CNS-2120696, CCF-2210831, and
CCF-2319471.

Data-Availability Statement

The software that implements the techniques described in Section 5 and supports the evaluation
results reported in Section 6 is available on Zenodo [24].

References

[1] AGE. 2024. Apache AGE. https://age.apache.org.
[2] Alfred V. Aho, Yehoshua Sagiv, and Jeffrey D. Ullman. 1979. Equivalences Among Relational Expressions. SIAM J.

Comput. 8, 2 (1979), 218–246. doi:10.1137/0208017
[3] Amazon. 2024. What’s the Difference Between a Graph Database and a Relational Database? https://aws.amazon.com/

compare/the-difference-between-graph-and-relational-database/?nc1=h_ls.
[4] Abdelkrim Boudaoud, Houari Mahfoud, and Azeddine Chikh. 2022. Towards a Complete Direct Mapping from

Relational Databases to Property Graphs. In Proceedings of the International Conference on Model and Data Engineering

(MEDI). 222–235. doi:10.1007/978-3-031-21595-7_16
[5] Ashok K. Chandra and Philip M. Merlin. 1977. Optimal Implementation of Conjunctive Queries in Relational Data

Bases. In Proceedings of the ACM Symposium on Theory of Computing (STOC). 77–90. doi:10.1145/800105.803397
[6] Bikash Chandra, Bhupesh Chawda, Biplab Kar, K. V. Maheshwara Reddy, Shetal Shah, and S. Sudarshan. 2015. Data

generation for testing and grading SQL queries. VLDB J. 24, 6 (2015), 731–755. doi:10.1007/S00778-015-0395-0
[7] Tsong Yueh Chen, S. C. Cheung, and Siu-Ming Yiu. 2020. Metamorphic testing: a new approach for generating next

test cases. CoRR abs/2002.12543 (2020). arXiv:2002.12543 https://arxiv.org/abs/2002.12543
[8] Yanju Chen, Yuepeng Wang, Maruth Goyal, James Dong, Yu Feng, and Isil Dillig. 2022. Synthesis-powered optimization

of smart contracts via data type refactoring. Proc. ACM Program. Lang. 6, OOPSLA2 (2022), 560–588. doi:10.1145/3563308
[9] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. 2013. Optimizing database-backed applications with

query synthesis. In ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). ACM,
3–14. doi:10.1145/2491956.2462180

[10] Shumo Chu, Brendan Murphy, Jared Roesch, Alvin Cheung, and Dan Suciu. 2018. Axiomatic Foundations and
Algorithms for Deciding Semantic Equivalences of SQL Queries. Proc. VLDB Endow. 11, 11 (2018), 1482–1495. doi:10.
14778/3236187.3236200

[11] Shumo Chu, Chenglong Wang, Konstantin Weitz, and Alvin Cheung. 2017. Cosette: An Automated Prover for SQL. In
Proceedings of the Biennial Conference on Innovative Data Systems Research (CIDR). http://cidrdb.org/cidr2017/papers/
p51-chu-cidr17.pdf

[12] Shumo Chu, Konstantin Weitz, Alvin Cheung, and Dan Suciu. 2017. HoTTSQL: proving query rewrites with univalent
SQL semantics. In Proceedings of the SIGPLAN Conference on Programming Language Design and Implementation (PLDI).
510–524. doi:10.1145/3062341.3062348

[13] Carlo Curino, Hyun Jin Moon, Alin Deutsch, and Carlo Zaniolo. 2013. Automating the database schema evolution
process. VLDB J. 22, 1 (2013), 73–98. doi:10.1007/s00778-012-0302-x

[14] Carlo Curino, Hyun Jin Moon, and Carlo Zaniolo. 2008. Graceful database schema evolution: the PRISM workbench.
Proc. VLDB Endow. 1, 1 (2008), 761–772. doi:10.14778/1453856.1453939

[15] Benjamin Delaware, Clément Pit-Claudel, Jason Gross, and Adam Chlipala. 2015. Fiat: Deductive Synthesis of Abstract
Data Types in a Proof Assistant. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL). 689–700. doi:10.1145/2676726.2677006
[16] Alin Deutsch, Nadime Francis, Alastair Green, Keith Hare, Bei Li, Leonid Libkin, Tobias Lindaaker, Victor Marsault,

Wim Martens, Jan Michels, Filip Murlak, Stefan Plantikow, Petra Selmer, Oskar van Rest, Hannes Voigt, Domagoj
Vrgoc, Mingxi Wu, and Fred Zemke. 2022. Graph Pattern Matching in GQL and SQL/PGQ. In International Conference

on Management of Data (SIGMOD). 2246–2258. doi:10.1145/3514221.3526057
[17] Ronald Fagin, Laura M. Haas, Mauricio A. Hernández, Renée J. Miller, Lucian Popa, and Yannis Velegrakis. 2009. Clio:

Schema Mapping Creation and Data Exchange. In Conceptual Modeling: Foundations and Applications - Essays in Honor

of John Mylopoulos (Lecture Notes in Computer Science, Vol. 5600). 198–236. doi:10.1007/978-3-642-02463-4_12

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 216. Publication date: June 2025.

https://age.apache.org
https://doi.org/10.1137/0208017
https://aws.amazon.com/compare/the-difference-between-graph-and-relational-database/?nc1=h_ls
https://aws.amazon.com/compare/the-difference-between-graph-and-relational-database/?nc1=h_ls
https://doi.org/10.1007/978-3-031-21595-7_16
https://doi.org/10.1145/800105.803397
https://doi.org/10.1007/S00778-015-0395-0
https://arxiv.org/abs/2002.12543
https://arxiv.org/abs/2002.12543
https://doi.org/10.1145/3563308
https://doi.org/10.1145/2491956.2462180
https://doi.org/10.14778/3236187.3236200
https://doi.org/10.14778/3236187.3236200
http://cidrdb.org/cidr2017/papers/p51-chu-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p51-chu-cidr17.pdf
https://doi.org/10.1145/3062341.3062348
https://doi.org/10.1007/s00778-012-0302-x
https://doi.org/10.14778/1453856.1453939
https://doi.org/10.1145/2676726.2677006
https://doi.org/10.1145/3514221.3526057
https://doi.org/10.1007/978-3-642-02463-4_12

216:24 Yang He, Ruijie Fang, Işıl Dillig, and Yuepeng Wang

[18] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri. 2017. Component-based synthesis
of table consolidation and transformation tasks from examples. In Proceedings of the ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI). 422–436. doi:10.1145/3062341.3062351
[19] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Victor Marsault, Stefan Plantikow,

Mats Rydberg, Petra Selmer, and Andrés Taylor. 2018. Cypher: An Evolving Query Language for Property Graphs. In
Proceedings of the 2018 International Conference on Management of Data (SIGMOD). 1433–1445. doi:10.1145/3183713.
3190657

[20] Xi Ge, Quinton L. DuBose, and Emerson R. Murphy-Hill. 2012. Reconciling manual and automatic refactoring. In
International Conference on Software Engineering (ICSE). 211–221. doi:10.1109/ICSE.2012.6227192

[21] Todd J. Green. 2011. Containment of Conjunctive Queries on Annotated Relations. Theory Comput. Syst. 49, 2 (2011),
429–459. doi:10.1007/S00224-011-9327-6

[22] Harry Halpin and James Cheney. 2011. Dynamic Provenance for SPARQL Updates Using Named Graphs. In Workshop

on the Theory and Practice of Provenance (TaPP). doi:10.1145/2567948.2577357
[23] Olaf Hartig and Jorge Pérez. 2018. Semantics and Complexity of GraphQL. In Proceedings of the World Wide Web

Conference on World Wide Web (WWW). 1155–1164. doi:10.1145/3178876.3186014
[24] Yang He, Ruijie Fang, Işıl Dillig, and Yuepeng Wang. 2025. Artifact Evaluation Graphiti: Bridging Graph and Relational

Database Queries. doi:10.5281/zenodo.15043281
[25] Yang He, Ruijie Fang, Isil Dillig, and Yuepeng Wang. 2025. Graphiti: Bridging Graph and Relational Database Queries.

arXiv:2504.03182
[26] Yang He, Pinhan Zhao, XinyuWang, and YuepengWang. 2024. VeriEQL: Bounded Equivalence Verification for Complex

SQL Queries with Integrity Constraints. Proc. ACM Program. Lang. 8, OOPSLA1 (2024), 1071–1099. doi:10.1145/3649849
[27] Ziyue Hua, Wei Lin, Luyao Ren, Zongyang Li, Lu Zhang, Wenpin Jiao, and Tao Xie. 2023. GDsmith: Detecting Bugs

in Cypher Graph Database Engines. In Proceedings of the SIGSOFT International Symposium on Software Testing and

Analysis (ISSTA). 163–174. doi:10.1145/3597926.3598046
[28] Yuancheng Jiang, Jiahao Liu, Jinsheng Ba, Roland HC Yap, Zhenkai Liang, and Manuel Rigger. 2024. Detecting Logic

Bugs in Graph Database Management Systems via Injective and Surjective Graph Query Transformation. In Proceedings

of the International Conference on Software Engineering (ICSE). doi:10.1145/3597503.3623307
[29] Zhongjun Jin, Michael R. Anderson, Michael J. Cafarella, and H. V. Jagadish. 2017. Foofah: Transforming Data By

Example. In Proceedings of the ACM International Conference on Management of Data (SIGMOD). 683–698. doi:10.1145/
3035918.3064034

[30] Shadaj Laddad, Conor Power, Mae Milano, Alvin Cheung, and Joseph M. Hellerstein. 2022. Katara: synthesizing CRDTs
with verified lifting. Proc. ACM Program. Lang. 6, OOPSLA2 (2022), 1349–1377. doi:10.1145/3563336

[31] Jerry Liang. 2025. openCypher Transpiler. https://github.com/microsoft/openCypherTranspiler.
[32] Chunbin Lin, Benjamin Mandel, Yannis Papakonstantinou, and Matthias Springer. 2016. Fast In-Memory SQL Analytics

on Relationships between Entities. CoRR abs/1602.00033 (2016). arXiv:1602.00033 http://arxiv.org/abs/1602.00033
[33] Qiuyang Mang, Aoyang Fang, Boxi Yu, Hanfei Chen, and Pinjia He. 2024. Testing Graph Database Systems via

Equivalent Query Rewriting. In Proceedings of the International Conference on Software Engineering (ICSE). doi:10.1145/
3597503.3639200

[34] Ruben Martins, Jia Chen, Yanju Chen, Yu Feng, and Isil Dillig. 2019. Trinity: An Extensible Synthesis Framework for
Data Science. Proc. VLDB Endow. 12, 12 (2019), 1914–1917. doi:10.14778/3352063.3352098

[35] William M. McKeeman. 1998. Differential Testing for Software. Digit. Tech. J. 10, 1 (1998), 100–107.
[36] Zhengjie Miao, Sudeepa Roy, and Jun Yang. 2019. Explaining Wrong Queries Using Small Examples. In Proceedings of

the International Conference on Management of Data (SIGMOD). 503–520. doi:10.1145/3299869.3319866
[37] Renée J. Miller, Laura M. Haas, and Mauricio A. Hernández. 2000. Schema Mapping as Query Discovery. In Proceedings

of the International Conference on Very Large Data Bases (VLDB). 77–88. http://www.vldb.org/conf/2000/P077.pdf
[38] Neo4j. 2024. Cypher for SQL Users. https://neo4j.com/docs/getting-started/cypher-intro/cypher-sql/ Accessed:

2024-11-07.
[39] Neo4j. 2024. Neo4j Docs. https://neo4j.com/docs/getting-started/cypher-intro/cypher-sql/#_return_customers_

without_existing_orders.
[40] Neo4j. 2024. Transition from Relational to Graph Database. https://neo4j.com/docs/getting-started/appendix/graphdb-

concepts/graphdb-vs-rdbms.
[41] NLM. 2024. SemMedDB Database Details - Version 2.0. https://lhncbc.nlm.nih.gov/ii/tools/SemRep_SemMedDB_SKR/

dbinfo20.html.
[42] Stack Overflow. 2024. How could i use this SQL on cypher(neo4j). https://stackoverflow.com/questions/43438214/how-

could-i-use-this-sql-on-cypherneo4j.
[43] Shankara Pailoor, Yuepeng Wang, and Isil Dillig. 2024. Semantic Code Refactoring for Abstract Data Types. Proc. ACM

Program. Lang. 8, POPL (2024), 816–847. doi:10.1145/3632870

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 216. Publication date: June 2025.

https://doi.org/10.1145/3062341.3062351
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1109/ICSE.2012.6227192
https://doi.org/10.1007/S00224-011-9327-6
https://doi.org/10.1145/2567948.2577357
https://doi.org/10.1145/3178876.3186014
https://doi.org/10.5281/zenodo.15043281
https://arxiv.org/abs/2504.03182
https://doi.org/10.1145/3649849
https://doi.org/10.1145/3597926.3598046
https://doi.org/10.1145/3597503.3623307
https://doi.org/10.1145/3035918.3064034
https://doi.org/10.1145/3035918.3064034
https://doi.org/10.1145/3563336
https://github.com/microsoft/openCypherTranspiler
https://arxiv.org/abs/1602.00033
http://arxiv.org/abs/1602.00033
https://doi.org/10.1145/3597503.3639200
https://doi.org/10.1145/3597503.3639200
https://doi.org/10.14778/3352063.3352098
https://doi.org/10.1145/3299869.3319866
http://www.vldb.org/conf/2000/P077.pdf
https://neo4j.com/docs/getting-started/cypher-intro/cypher-sql/
https://neo4j.com/docs/getting-started/cypher-intro/cypher-sql/#_return_customers_without_existing_orders
https://neo4j.com/docs/getting-started/cypher-intro/cypher-sql/#_return_customers_without_existing_orders
https://neo4j.com/docs/getting-started/appendix/graphdb-concepts/graphdb-vs-rdbms
https://neo4j.com/docs/getting-started/appendix/graphdb-concepts/graphdb-vs-rdbms
https://lhncbc.nlm.nih.gov/ii/tools/SemRep_SemMedDB_SKR/dbinfo20.html
https://lhncbc.nlm.nih.gov/ii/tools/SemRep_SemMedDB_SKR/dbinfo20.html
https://stackoverflow.com/questions/43438214/how-could-i-use-this-sql-on-cypherneo4j
https://stackoverflow.com/questions/43438214/how-could-i-use-this-sql-on-cypherneo4j
https://doi.org/10.1145/3632870

Graphiti: Bridging Graph and Relational DatabaseQueries 216:25

[44] Shankara Pailoor, Yuepeng Wang, Xinyu Wang, and Isil Dillig. 2021. Synthesizing data structure refinements from
integrity constraints. In Proceedings of the International Conference on Programming Language Design and Implementation

(PLDI). 574–587. doi:10.1145/3453483.3454063
[45] Kia Rahmani, Kartik Nagar, Benjamin Delaware, and Suresh Jagannathan. 2021. Repairing serializability bugs in

distributed database programs via automated schema refactoring. In ACM SIGPLAN International Conference on

Programming Language Design and Implementation (PLDI). 32–47. doi:10.1145/3453483.3454028
[46] Manuel Rigger and Zhendong Su. 2020. Finding bugs in database systems via query partitioning. Proc. ACM Program.

Lang. 4, OOPSLA (2020), 211:1–211:30. doi:10.1145/3428279
[47] George G. Robertson, Mary Czerwinski, and John E. Churchill. 2005. Visualization of mappings between schemas. In

Proceedings of the Conference on Human Factors in Computing Systems (CHI). 431–439. doi:10.1145/1054972.1055032
[48] Marko A. Rodriguez. 2015. The Gremlin graph traversal machine and language (invited talk). In Proceedings of the

Symposium on Database Programming Languages (DBPL). 1–10. doi:10.1145/2815072.2815073
[49] StackOverflow. 2024. Comparison of relational databases and graph databases. https://stackoverflow.com/questions/

13046442/comparison-of-relational-databases-and-graph-databases.
[50] Kuzu Team. 2025. Kuzu. https://kuzudb.com/.
[51] Boris A Trakhtenbrot. 1950. Impossibility of an algorithm for the decision problem in finite classes. In Doklady

Akademii Nauk SSSR 70. 569–572.
[52] Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi. 2016. PGQL: a property graph query

language. In Proceedings of the International Workshop on Graph Data Management Experiences and Systems (GRADES).
7. doi:10.1145/2960414.2960421

[53] Margus Veanes, Nikolai Tillmann, and Jonathan de Halleux. 2010. Qex: Symbolic SQL Query Explorer. In International

Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR). 425–446. doi:10.1007/978-3-642-
17511-4_24

[54] Chad Vicknair, Michael Macias, Zhendong Zhao, Xiaofei Nan, Yixin Chen, and Dawn Wilkins. 2010. A comparison
of a graph database and a relational database: a data provenance perspective. In Proceedings of the Annual Southeast

Regional Conference. 42. doi:10.1145/1900008.1900067
[55] Chenglong Wang, Alvin Cheung, and Rastislav Bodík. 2017. Synthesizing highly expressive SQL queries from input-

output examples. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI). 452–466. doi:10.1145/3062341.3062365
[56] Meng Wang, Jeremy Gibbons, Kazutaka Matsuda, and Zhenjiang Hu. 2013. Refactoring pattern matching. Sci. Comput.

Program. 78, 11 (2013), 2216–2242. doi:10.1016/J.SCICO.2012.07.014
[57] Yuepeng Wang, Isil Dillig, Shuvendu K. Lahiri, and William R. Cook. 2018. Verifying equivalence of database-driven

applications. Proc. ACM Program. Lang. 2, POPL (2018), 56:1–56:29. doi:10.1145/3158144
[58] Yuepeng Wang, James Dong, Rushi Shah, and Isil Dillig. 2019. Synthesizing database programs for schema refactoring.

In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). 286–300.
doi:10.1145/3314221.3314588

[59] Yuepeng Wang, Rushi Shah, Abby Criswell, Rong Pan, and Isil Dillig. 2020. Data Migration using Datalog Program
Synthesis. Proc. VLDB Endow. 13, 7 (2020), 1006–1019. doi:10.14778/3384345.3384350

[60] Navid Yaghmazadeh, Christian Klinger, Isil Dillig, and Swarat Chaudhuri. 2016. Synthesizing transformations on
hierarchically structured data. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI). 508–521. doi:10.1145/2908080.2908088
[61] Navid Yaghmazadeh, Xinyu Wang, and Isil Dillig. 2018. Automated Migration of Hierarchical Data to Relational Tables

using Programming-by-Example. Proc. VLDB Endow. 11, 5 (2018), 580–593. doi:10.1145/3187009.3177735
[62] Yingying Zheng, Wensheng Dou, Yicheng Wang, Zheng Qin, Lei Tang, Yu Gao, Dong Wang, Wei Wang, and Jun Wei.

2022. Finding bugs in Gremlin-based graph database systems via Randomized differential testing. In Proceedings of the

SIGSOFT International Symposium on Software Testing and Analysis (ISSTA). 302–313. doi:10.1145/3533767.3534409
[63] Qi Zhou, Joy Arulraj, Shamkant B. Navathe, William Harris, and Jinpeng Wu. 2022. SPES: A Symbolic Approach to

Proving Query Equivalence Under Bag Semantics. In International Conference on Data Engineering (ICDE). 2735–2748.
doi:10.1109/ICDE53745.2022.00250

[64] Qi Zhou, Joy Arulraj, Shamkant B. Navathe, William Harris, and Dong Xu. 2019. Automated Verification of Query
Equivalence Using Satisfiability Modulo Theories. Proc. VLDB Endow. 12, 11 (2019), 1276–1288. doi:10.14778/3342263.
3342267

Received 2024-11-14; accepted 2025-03-06

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 216. Publication date: June 2025.

https://doi.org/10.1145/3453483.3454063
https://doi.org/10.1145/3453483.3454028
https://doi.org/10.1145/3428279
https://doi.org/10.1145/1054972.1055032
https://doi.org/10.1145/2815072.2815073
https://stackoverflow.com/questions/13046442/comparison-of-relational-databases-and-graph-databases
https://stackoverflow.com/questions/13046442/comparison-of-relational-databases-and-graph-databases
https://kuzudb.com/
https://doi.org/10.1145/2960414.2960421
https://doi.org/10.1007/978-3-642-17511-4_24
https://doi.org/10.1007/978-3-642-17511-4_24
https://doi.org/10.1145/1900008.1900067
https://doi.org/10.1145/3062341.3062365
https://doi.org/10.1016/J.SCICO.2012.07.014
https://doi.org/10.1145/3158144
https://doi.org/10.1145/3314221.3314588
https://doi.org/10.14778/3384345.3384350
https://doi.org/10.1145/2908080.2908088
https://doi.org/10.1145/3187009.3177735
https://doi.org/10.1145/3533767.3534409
https://doi.org/10.1109/ICDE53745.2022.00250
https://doi.org/10.14778/3342263.3342267
https://doi.org/10.14778/3342263.3342267

	Abstract
	1 Introduction
	2 Motivating Example
	3 Preliminaries
	3.1 Background on Graph Databases
	3.2 Query Language for Graph Databases
	3.3 Relational Databases

	4 Problem Statement
	4.1 Language for Database Transformers
	4.2 Equivalence Checking Problem

	5 Equivalence Checking Algorithm
	5.1 Induced Relational Schema and Standard Transformer Inference
	5.2 Syntax-Directed Transpilation
	5.3 Reduction to SQL Equivalence Checking

	6 Evaluation
	6.1 Evaluation of Graphiti with BMC Backend
	6.2 Evaluation of Graphiti with Deductive Verifier
	6.3 Evaluation of Transpilation

	7 Related Work
	8 Limitation
	9 Conclusion and Future Work
	References

