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Neural networks have shown immense promise in solving a variety of

challenging problems including computer vision, security, and robotic control.

However these applications often come with substantial risk, and in order to

deploy machine learning systems in the real world, we need tools to analyze

the behavior of these systems. This presents a problem to researchers because

neural networks are generally resistant to traditional approaches to program

analysis. From a formal analysis perspective, networks are high-dimensional

and existing tools simply cannot scale enough to handle them. From a test-

ing perspective, networks are known to be subject to “adversarial examples”,

which are specific, sparse inputs that trigger unsafe behavior. In this work,

we explore two different approaches to analyze systems with neural network

components.

First, we consider the problem of analyzing neural networks directly.

In this portion of the work, we develop an efficient approach to verify the
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robustness of neural networks. In order to do this, we use machine learning

techniques to develop heuristics which drastically improve the efficiency of

existing program analysis approaches to robustness analysis. We show that

this synergystic combination of machine learning and symbolic analysis is able

to outperform existing approaches to robustness verification across a large

suite of benchmarks.

Second, we develop techniques for bypassing the analysis of neural net-

works entirely, instead relying on external structures to enforce safety. The

core idea here is to develop the network together with a shield, a traditional

program which is attempting to achieve the same goal as the network. The

shield is unlikely to reach the same level of performance as a neural network,

but is more amenable to verification. By carefully combining the network and

the shield, we maintain the safety of the shield while incorporating the per-

formance of the neural network. We explore different variations on this idea

in different contexts, and show that we are able to achieve safe policies while

maintaining most of the performance benefits of neural networks.
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Chapter 1

Introduction

Deep neural networks (DNN’s) have show enormous popularity for a

wide spectrum of applications, ranging from image recognition [45,55] and mal-

ware detection [106, 107] to machine translation [101]. Due to their effective-

ness in practice, deep learning has also found numerous uses in safety-critical

systems, including self-driving cars [10,16], unmanned aerial systems [50], and

medical diagnosis [26]. In all of these applications, machine learning allows

us to push past the boundaries of existing algorithmic techniques and solve

previously intractable problems.

At the same time, neural networks come with a significant downside

compared to traditional programs: they are extremely difficult to interpret or

analyze. Both during and after training, the behavior of neural networks is

highly non-smooth, and susceptible to pathological changes when given seem-

ingly random inputs [27, 76]. Because of this, it is difficult to deploy machine

learning in real-world applications where we must trust the system to behave

in some “reasonable” way. In order to make such deployment attractive, new

techniques are needed to analyze and constrain machine learning systems, to

ensure that their behavior is acceptable when they are used in contexts with
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substantial consequences for failure.

In this dissertation, we will consider two different problems in machine

learning safety. The first is to show when neural networks are robust, i.e., their

behavior is not drastically changed by small changes in the input. The second

problem concerns verifying the safety of reinforcement learning systems, which

often need to operate in real-world environments.

1.1 Robustness

Despite their widespread use in a broad range of application domains,

it is well-known that deep neural networks are vulnerable to adversarial coun-

terexamples, which are small perturbations to a network’s input that cause

the network to output incorrect labels [27,76]. For instance, Figure 1.1 shows

two adversarial examples in the context of speech recognition and image clas-

sification. As shown in the top half of Figure 1.1, two sound waves that are

virtually indistinguishable are recognized as “How are you?” and “Open the

door” by a DNN-based speech recognition system [38]. Similarly, as illustrated

in the bottom half of the same figure, applying a tiny perturbation to a panda

image causes a DNN to misclassify the image as that of a gibbon.

It is by now well-understood that such adversarial counterexamples can

pose serious security risks [105]. Prior work [12,35,51,77,78] has advocated the

property of local robustness (or robustness for short) for protecting neural net-

works against attacks that exploit such adversarial examples. To understand

what robustness means, consider a neural network that classifies an input x
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"Panda" "Gibbon"perturbation

perturbation"How are you?" "Open the door"

Figure 1.1: Small perturbations of the input cause the sound wave and the
image to be misclassified.

as having label y. Then, local robustness requires that all inputs x′ that are

“very similar” 1 to x are also classified as having the same label y.

Due to the growing consensus on the desirability of robust neural net-

works, many recent efforts have sought to algorithmically analyze robustness

of networks. Of these, one category of methods seeks to discover adversarial

counterexamples using numerical optimization techniques such as Projected

Gradient Descent (PGD) [68] and Fast Gradient Sign Method (FGSM) [39].

A second category aims to prove network robustness using symbolic methods

ranging from SMT-solving [51] to abstract interpretation [35,100]. These two

categories of methods have complementary advantages. Numerical counterex-

ample search methods can quickly find violations, but are “unsound”, in that

they fail to offer certainty about a network’s robustness. In contrast, proof

search methods are sound, but they are either incomplete [35] (i.e., suffer from

false positives) or do not scale well [51].

1For example, “very similar” may mean x′ is within some ε distance from x, where
distance can be measured using different metrics such as L2 norm.
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In Chapter 2, we will look at a novel algorithm for analyzing the ro-

bustness of neural networks which combines proof-based and optimization-

based approaches to analyzing neural network robustness. This combina-

tion allows our analysis to be faster and/or more precise than other proof-

based approaches to robustness analysis, and more precise and reliable than

optimization-based approaches. Moreover, the technique we develop in Chap-

ter 2 is able to improve its performance by using another set of machine learn-

ing algorithms to analyze the properties it is trying to prove and optimize its

proof strategy accordingly.

1.2 Safe Reinforcement Learning

Aside from robustness, safety is also important in the context of deep

reinforcement learning (RL), in which a neural network is used to control an

agent interacting with the real world. Ensuring safety in this setting is a fun-

damental challenge which must be solved in order to deploy RL in real-world,

safety-critical systems [3, 33]. Additionally, RL introduces a new set of chal-

lenges for verification compared to the supervised learning setting considered

in Chapter 2. First, because an RL agent interacts with an environment over

time, we must consider the long-term effects of network behavior. Second, be-

cause RL agents are usually trained by using a neural network to gather data

from the environment, we must not only ensure the safety of one network, but

rather every network which is used to gather data.

Existing work in safe RL can be categorized along two axes, addressing
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different situations that arise from real-world problems. First, we can consider

what kinds of safety guarantees are offered. Some techniques show that a

system is safe with high probability [3, 15, 20, 73] and others give deterministic

guarantees which ensure that the system is safe in all cases [11, 13, 109]. Sec-

ond, different techniques offer these safety guarantees at different times. Some

tools only ensure that the final learned system is safe [109] while others ensure

that a system does not behave unsafely even during training time [5, 20].

In this dissertation, we will consider techniques which aim to achieve

safety during training as well as at convergence. In order to do this efficiently

and precisely, we combine existing RL algorithms with novel ideas in program

analysis and synthesis to develop neurosymbolic learning algorithms. These

algorithms are designed to combine the best aspects of machine learning with

the best aspects of traditional programs in order to achieve both high perfor-

mance and safety. Specifically, our neurosymbolic algorithms combine a neural

agent with a shield which can monitor the actions of the agent and intervene

when those actions may lead to unsafe behavior.

Safety in Known Environments In Chapter 4, we will consider situations

in which the behavior of the environment can be approximated beforehand.

This kind of scenario can arise in a variety of robotics applications where it is

possible to develop a nominal environment model before collecting any data.

In this case, we use ideas from formal verification research to synthesize shields

which are proven to be deterministically safe. Compared to prior work which
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used statistical approaches to measure safety, our neurosymbolic approach is

much more effective at preventing potentially dangerous behavior. Moreover,

by iteratively improving the shield over time, we are able to achieve better

performance than prior shielding approaches based on formal methods. This

combination of machine learning algorithms with ideas from formal analysis

and program synthesis allows us to learn policies which are both safe and

highly effective.

Safety in Unkonwn Environments In Chapter 5, we will consider cases

where the behavior of the environment is a priori unknown. We do this by

learning a model of the environment as we go, and applying formal methods

algorithms to the learned model. Compared to Chapter 4 this allows us to

consider a much broader range of environments. As a tradeoff, the technique

developed in Chapter 5 is not able to guarantee safety. Instead it ensure safe

behavior with high probability. Even so, we find that this approach achieves

better empirical safety than prior work based on neural models of safe behavior

while maintaining comparable performance.

Scalable Safe Exploration The techniques presented in Chapters 4 and 5

both suffer from scalability challenges which make it difficult to apply them to

complex environments. In Chapter 6, we will look at an alternative approach

to safe exploration which addresses these challenges. This approach leaves

behind some of the more structured neurosymbolic ideas of the previous chap-

ters, instead relying on neural networks and gradient-based learning to ensure
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safety. This once again weakens the safety guarantees we are able to provide,

but drastically increases the scope of the technique. Chapters 4, 5, and 6 to-

gether form a spectrum of safe exploration approaches which are applicable to

a broad class of systems with different complexities and different levels of a

priori knowledge.
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Chapter 2

Robustness Verification1

First, we will consider the problem of robustness analysis: how do we

ensure that the behavior of a neural network is stable under small changes in

the input? In this chapter, we present a new technique for robustness analysis

of neural networks that combines the best of proof-based and optimization-

based methods. Our approach combines formal reasoning techniques based on

abstract interpretation with continuous and black-box optimization techniques

from the machine learning community. This tight coupling of optimization and

abstraction has two key advantages: First, optimization-based methods can

efficiently search for counterexamples that prove the violation of the robustness

property, allowing efficient falsification in addition to verification. Second,

optimization-based methods provide a data-driven way to automatically refine

the abstraction when the property can be neither falsified nor proven.

The workflow of our approach is shown schematically in Figure 2.1

and consists of both a training and a deployment phase. During the training

phase, our method uses black-box optimization techniques to learn a so-called

verification policy πθ from a representative set of training problems. Then the

1This chapter is based on [7]. The author of this dissertation was responsible for the
main ideas along with the theoretical analysis and most of the implementation.
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Figure 2.1: Schematic overview of our approach.

deployment phase uses the learned verification policy to guide how gradient-

based counterexample search should be coupled with proof synthesis for solving

previously-unseen verification problems.

The input to the deployment phase of our algorithm consists of a neu-

ral network N as well as a robustness specification (I,K) which states that

all points in the input region I should be classified as having label K. Given

this input, our algorithm first uses gradient-based optimization to search for

an adversarial counterexample, which is a point in the input region I that is

classified as having label K ′ 6= K. If we can find such a counterexample, then

the algorithm terminates with a witness to the violation of the property. How-

ever, even if the optimization procedure fails to find a true counterexample,

the result x∗ of the optimization problem can still convey useful information.

In particular, our method uses the learned verification policy πθ to map all

available information, including x∗, to a promising abstract domain A to use

when attempting to verify the property. If the property can be verified using

domain A, then the algorithm successfully terminates with a robustness proof.
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In cases where the property is neither verified nor refuted, our algorithm

uses the verification policy πθ to split the input region I into two sub-regions

I1, I2 such that I = I1 ∪ I2 and tries to verify/falsify the robustness of each

region separately. This form of refinement is useful for both the abstract

interpreter as well as the counterexample finder. In particular, since gradient-

based optimization methods are not guaranteed to find a global optimum,

splitting the input region into smaller parts makes it more likely that the

optimizer can find an adversarial counterexample. Splitting the input region is

similarly useful for the abstract interpreter because the amount of imprecision

introduced by the abstraction is correlated with the size of the input region.

As illustrated by the discussion above, a key part of our verification

algorithm is the use of a policy πθ to decide (a) which abstract domain to use

for verification, and (b) how to split the input region into two sub-regions.

Since there is no obvious choice for either the abstract domain or the splitting

strategy, our algorithm takes a data-driven approach to learn a suitable veri-

fication policy πθ during a training phase. During this training phase, we use

a black-box optimization technique known as Bayesian optimization to learn

values of θ that lead to strong performance on a representative set of verifi-

cation problems. Once this phase is over, the algorithm can be deployed on

networks and properties that have not been encountered during training.

Our proposed verification algorithm has some appealing theoretical

properties in that it is both sound and δ-complete [32]. That is, if our method

verifies the property (I,K) for network N , this means that N does indeed
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classify all points in the input region I as belonging to class K. Furthermore,

our method is δ-complete in the sense that, if the property is falsified with

counterexample x∗, this means that x∗ is within δ of being a true counterex-

ample.

We have implemented the proposed method in a tool called Charon 2,

and used it to analyze hundreds of robustness properties of ReLU neural

networks, including both fully-connected and convolutional neural networks,

trained on the MNIST [59] and CIFAR [54] datasets. We have also compared

our method against state-of-the-art network verification tools (namely, Relu-

plex, ReluVal, and AI2) and shown that our method outperforms all prior

verification techniques, either in terms of accuracy or performance or both.

In addition, our experimental results reveal the benefits of learning to couple

proof search and optimization.

In all, this chapter makes the following key contributions:

• We present a new sound and δ-complete decision procedure that com-

bines abstract interpretation and gradient-based counterexample search

to prove robustness of deep neural networks.

• We describe a method for automatically learning verification policies that

direct counterexample search and abstract interpretation steps carried

out during the analysis.

2Complete Hybrid Abstraction Refinement and Optimization for Neural Networks.
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• We conduct an extensive experimental evaluation on hundreds of bench-

marks and show that our method significantly outperforms state-of-the-

art tools for verifying neural networks. For example, our method solves

2.6× and 16.6× more benchmarks compared to ReluVal and Relu-

plex respectively.

2.1 Background

In this section, we provide some background on neural networks and

robustness.

2.1.1 Neural Networks

For the purposes of this chapter, we will define a neural network as

a function N : Rn → Rm of the form L1 ◦ σ1 ◦ · · · ◦ σk−1 ◦ Lk, where each

Li is a differentiable layer and each σi is a non-linear, almost-everywhere

differentiable activation function. While there are many types of activation

functions, the most popular choice in modern neural networks is the rectified

linear unit (ReLU), defined as ReLU(x) = max(x, 0). This function is applied

element-wise to the output of each layer except the last. In this work, we

consider feed-forward and convolutional networks, which have the additional

property of being Lipschitz-continuous.

We think of each layer Li as an affine transformation (W , b) where W

is a weight matrix and b is a bias vector. Thus, the output of the i’th layer

is computed as y = Wx + b. We note that both fully-connected as well as
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Figure 2.2: A feedforward network implementing XOR

convolutional layers can be expressed as affine transformations [35]. While our

approach can also handle other types of layers (e.g., max pooling), we only

focus on affine transformations to simplify presentation.

In this chapter, we consider networks used for classification tasks. That

is, given some input x ∈ Rn, we wish to put x into one ofm classes. The output

of the network y ∈ Rm is interpreted as a vector of scores, one for each class.

Then x is put into the class with the highest score. More formally, given some

input x, we say the network N assigns x to a class K if (N (x))K > (N (x))j

for all j 6= K.

Example Figure 2.2 shows a 2-layer feedforward neural network implement-

ing the XOR function. To see why this network “implements” XOR, consider

the vector [0 0]>. After applying the affine transformation from the first layer,

we obtain [0 − 1]>. After applying ReLU, we get [0 0]>. Finally, after apply-

ing the affine transform in the second layer, we get [1 0]>. Because the output

at index zero is greater than the output at index one, the network will classify

[0 0]> as a zero. Similarly, this network classifies both [0 1]> and [1 0]> as 1

and [1 1]> as 0.
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2.1.2 Robustness

(Local) robustness [12] is a key correctness property of neural networks

which requires that all inputs within some region of the input space fall within

the same region of the output space. Since we focus on networks designed

for classification tasks, we will define “the same region of the output space”

to mean the region which assigns the same class to the input. That is, a

robustness property asserts that a small change in the input cannot change

the class assigned to that input.

More formally, a robustness property is a pair (I,K) with I ⊆ Rn

and 0 ≤ K ≤ m − 1. Here, I defines some region of the input that we are

interested in and K is the class into which all the inputs in I should be placed.

A network N is said to satisfy a robustness property (I,K) if for all x ∈ I,

we have (N (x))K > (N (x))j for all j 6= K.

Example Consider the following network with two layers:

N (x) =

[
2 1
−1 1

]
ReLU

([
1
2

]
x +

[
−1
1

])
+

[
1
2

]
.

For the input x = 0, we have N (0) = [2 3]>; thus, the network outputs label 1

for input 0. Let I = [−1, 1] and K = 1. Then for all x ∈ I, the output of N is

of the form [a+ 1 a+ 2]> for some a ∈ [0, 3]. Therefore, the network classifies

every point in I as belonging to class 1, meaning that the network is robust

in [−1, 1]. On the other hand, suppose we extend this interval to I ′ = [−1, 2].

Then N (2) = [8 6]>, so N assigns input 2 as belonging to class 0. Therefore

N is not robust in the input region [−1, 2].
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Figure 2.3: Zonotope analysis of a neural network.

2.1.3 Abstract Interpretation for Neural Networks

In this chapter, we build on the prior AI2 work [35] for analyzing neu-

ral networks using the framework of abstract interpretation [22]. AI2 allows

analyzing neural networks using a variety of numeric abstract domains, in-

cluding intervals (boxes) [22], polyhedra [90], and zonotopes [36]. In addition,

AI2 also supports bounded powerset domains [22], which essentially allow a

bounded number of disjunctions in the abstraction. Since the user can spec-

ify any number of disjunctions, there are many different abstract domains to

choose from, and the precision and scalability of the analysis crucially depend

on one’s choice of the abstract domain.

The following example illustrates a robustness property that can be

verified using the bounded powersets of zonotopes domain with two disjuncts

but not with intervals or plain zonotopes:
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Example Consider a network defined as:

N (x) =

[
1 1.1
−1 1

]
ReLU

([
1 −3
0 3

]
x +

[
1
1

])
+

[
−3
1.2

]
Now, suppose we want to verify that for all x ∈ [0, 1]2, the network assigns

class 1 to x.

Let us now analyze this network using the zonotope abstract domain,

which overapproximates a given region using a zonotope (i.e., center-symmetric

polytope). The analysis of this network using the zonotope domain is illus-

trated in Figure 2.3. At first, the initial region is propagated through the

affine transformation as a single zonotope. Then, this zonotope is split into

two pieces, the blue (crosshatched) one for which x1 ≥ 0 and the red (diago-

nally striped) one for which x1 ≤ 0. The ReLU transforms the red piece into

a line. (We omit the ReLU over x2 because it does not change the zonotopes

in this case.) After the ReLU, we show two cases: on top is the plain zonotope

domain, and on the bottom is a powerset of zonotopes domain. In the plain

zonotope domain, the abstraction after the ReLU is the join of the blue and

red zonotopes, while in the powerset domain we keep the blue and red zono-

topes separate. The final images show how the second affine transformation

affects all three zonotopes.

This example illustrates that the propery cannot be verified using the

plain zonotope domain, but it can be verified using the powerset of zonotopes

domain. Specifically, observe that the green (vertically striped) zonotope at

the top includes the point [1.2 1.2]> (marked by a dot), where the robustness
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specification is violated. On the other hand, the blue and red zonotopes ob-

tained using the powerset domain do not contain any unsafe points, so the

property is verified using this more precise abstraction.

2.2 Algorithm for Checking Robustness

In this section, we describe our algorithm for checking robustness prop-

erties of neural networks. Our algorithm interleaves optimization-based coun-

terexample search with proof synthesis using abstraction refinement. At a high

level, abstract interpretation provides an efficient way to verify properties but

is subject to false positives. Conversely, optimization based techniques for

finding counterexamples are efficient for finding adversarial inputs, but suffer

from false negatives. Our algorithm combines the strengths of these two tech-

niques by searching for both proofs and counterexamples at the same time and

using information from the counterexample search to guide proof search.

Before we describe our algorithm in detail, we need to define our opti-

mization problem more formally. Given a network N and a robustness prop-

erty (I,K), we can view the search for an adversarial counterexample as the

following optimization problem:

x∗ = arg min
x∈I

(F(x)) (2.1)

where our objective function F is defined as follows:

F(x) = (N (x))K −max
j 6=K

(N (x))j (2.2)
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Intuitively, the objective function F measures the difference between

the score for class K and the maximum score among classes other than K.

Note that if the value of this objective function is not positive at some point

x, then there exists some class which has a greater (or equal) score than the

target class, so point x constitutes a true adversarial counterexample.

The optimization problem from Equation 2.1 is clearly useful for search-

ing for counterexamples to the robustness property. However, even if the so-

lution x∗ is not a true counterexample (i.e., F(x∗) > 0), we can still use the

result of the optimization problem to guide proof search.

Based on this intuition, we now explain our decision procedure, shown

in Algorithm 2.1, in more detail. The Verify procedure takes as input a net-

workN , a robustness property (I,K) to be verified, and a so-called verification

policy πθ. The verification policy is used to decide what kind of abstraction

to use and how to split the input region when attempting to verify the prop-

erty. In more detail, the verification policy πθ, parameterized by θ, is a pair

(παθ , π
I
θ), where παθ is a (parameterized) function known as the domain policy

and πIθ is a function known as the partition policy. The domain policy is used

to decide which abstract domain to use, while the partition policy determines

how to split the input region I into two partitions to be analyzed separately.

In general, it is quite difficult to write a good verification policy by hand be-

cause there are many different parameters to tune and neural networks are

quite opaque and difficult to interpret. In Section 2.3, we explain how the

parameters of these policy functions are learned from data.
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Algorithm 2.1 The main algorithm

procedure Verify(N , I,K, πθ)
Input: Network N , robustness property (I,K), policy πθ = (παθ , π

I
θ)

Output: Counterexample if N is not robust, or Verified.

x∗ ←Minimize(I,F)
if F(x∗) ≤ 0 then

return x∗
A ← παθ (N , I,K,x∗)
if Analyze(N , I,K,A) = Verified then

return Verified
(I1, I2)← πIθ(N , I,K,x∗)
r1 ← Verify(N , I1, K, πθ)
if r1 6= Verified then

return r1
return Verify(N , I2, K, πθ)

At a high-level, the Verify procedure works as follows: First, we try

to find a counterexample to the given robustness property by solving the op-

timization problem from Equation 2.1 using the well-known projected gradient

descent (PGD) technique. If F(x∗) is non-positive, we have found a true coun-

terexample, so the algorithm produces x∗ as a witness to the violation of the

property. Otherwise, we try to verify the property using abstract interpreta-

tion.

As mentioned in Section 2.1, there are many different abstract domains

that can be used to verify the property, and the choice of the abstract domain

has a huge impact on the success and efficiency of verification. Thus, our

approach leverages the domain policy παθ to choose a sensible abstract domain

to use when attempting to verify the property. Specifically, the domain policy
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παθ takes as input the network N , the robustness specification (I,K), and the

solution x∗ to the optimization problem and chooses an abstract domain A

that should be used for attempting to prove the property. If the property

can be verified using domain A, the algorithm terminates with a proof of

robustness.

In cases where the property is neither verified nor refuted in the current

iteration, the algorithm makes progress by splitting the input region I into two

disjoint partitions I1, I2 such that I = I1 ∪ I2. The intuition is that, even if

we cannot prove robustness for the whole input region I, we may be able to

increase analysis precision by performing a case split. That is, as long as all

points in both I1 and I2 are classified as having label K, this means that all

points in I are also assigned label K since we have I = I1 ∪ I2. In cases where

the property is false, splitting the input region into two partition can similarly

help adversarial counterexample search because gradient-based optimization

methods do not always converge to a global optimum.

Based on the above discussion, the key question is how to partition the

input region I into two regions I1, I2 so that each of I1, I2 has a good chance of

being verified or falsified. Since this question again does not have an obvious

answer, we use our partition policy πIθ to make this decision. Similar to the

domain policy, πIθ takes as input the network, the property, and the solution

x∗ to the optimization problem and “cuts” I into two sub-regions I1 and I2

using a hyper-plane. Then, the property is verified if and only if the recursive

call to Verify is succsessful on both regions.

34



Figure 2.4: The splits chosen for the XOR example.

Example Consider the XOR network from Figure 2.2 and the robustness

property ([0.3, 0.7]2, 1). That is, for all inputs x with 0.3 ≤ x1, x2 ≤ 0.7,

x should be assigned to class 1 (assume classes are zero-indexed). We now

illustrate how Algorithm 2.1 verifies this property using the plain interval and

zonotope abstract domains. The process is illustrated in Figure 2.4, which

shows the splits made in each iteration as well as the domain used to analyze

each region (Z denotes zonotopes, and I stands for intervals).

Algorithm 2.1 starts by searching for an adversarial counterexample,

but fails to find one since the property actually holds. Now, suppose that

our domain policy παθ chooses zonotopes to try to verify the property. Since

the property cannot be verified using zonotopes, the call to Analyze will fail.

Thus, we now consult the partition policy πIθ to split this region into two pieces

I1 = [0.3, 0.5]× [0.3, 0.7] and I2 = [0.5, 0.7]× [0.3, 0.7].

Next, we recursively invoke Algorithm 2.1 on both sub-regions I1 and

I2. Again, there is no counterexample for either region, so we use the domain

policy to choose an abstract domain for each of I1 and I2. Suppose that παθ

yields the zonotope domain for both I1 and I2. Using this domain, we can
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verify robustness in I1 but not in I2. Thus, for the second sub-problem, we

again consult πIθ to obtain two sub-regions I2,1 = [0.5, 0.7] × [0.3, 0.42] and

I2,2 = [0.5, 0.7] × [0.42, 0.7] and determine using παθ that I2,1, I2,2 should be

analyzed using intervals and zonotopes respectively. Since robustness can be

verified using these domains, the algorithm successfully terminates. Notice

that the three verified subregions cover the entire initial region.

2.3 Learning a Verification Policy

As described in Section 2.2, our decision procedure for checking ro-

bustness uses a verification policy πθ = (παθ , π
I
θ) to choose a suitable abstract

domain and an input partitioning strategy. In this section, we discuss our pol-

icy representation and how to learn values of θ that lead to good performance.

2.3.1 Policy Representation

In this work, we implement verification policies παθ and πIθ using a func-

tion of the following shape:

ϕ(θ ρ(N , I,K,x∗)) (2.3)

where ρ is a featurization function that extracts a feature vector from the

input, ϕ is a selection function that converts a real-valued vector to a suitable

output (i.e., an abstract domain for παθ and the two subregions for πIθ), and

θ corresponds to a parameter matrix that is automatically learned from a

representative set of training data. We discuss our featurization and selection
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functions in this sub-section and explain how to learn parameters θ in the next

sub-section.

Featurization As standard in machine learning, we need to convert the

input ι = (N , I,K,x∗) to a feature vector. Our choice of features is influenced

by our insights about the verification problem, and we deliberately use a small

number of features for two reasons: First, a large number of dimensions can

lead to overfitting and poor generalization (which is especially an issue when

training data is fairly small). Second, a high-dimensional feature vector leads

to a more difficult learning problem, and contemporary Bayesian optimization

engines only scale to a few tens of dimensions.

Concretely, our featurization function considers several kinds of infor-

mation, including: (a) the behavior of the network near x∗, (b) where x∗ falls

in the input space, and (c) the size of the input space. Intuitively, we expect

that (a) is useful because as x∗ comes closer to violating the specification, we

should need a more precise abstraction, while (b) and (c) inform how we should

split the input region during refinement. Since the precision of the analysis is

correlated with how the split is performed, we found the same featurization

function to work well for both policies παθ and πIθ . In Section 2.5, we discuss

the exact features used in our implementation.

Selection function Recall that the purpose of the selection function ϕ is to

convert θρ(ι) to a “strategy”, which is an abstract domain for πα and a hyper-
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plane for πI . Since the strategies for these two functions are quite different,

we use two different selection functions, denoted ϕα, ϕI for the domain and

partition policies respectively.

The selection function ϕα is quite simple and maps θρ(ι) to a tuple

(d, k) where d denotes the base abstract domain (either intervals I or zono-

topes Z in our implementation) and k denotes the number of disjuncts. Thus,

(Z, 2) denotes the powerset of zonotopes abstract domain, where the maximum

number of disjuncts is restricted to 2, and (I, 1) corresponds to the standard

interval domain.

In the case of the partition policy πI , the selection function ϕI is also

a tuple (d, c) where d is the dimension along which we split the input region

and c is the point at which to split. In other words, if ϕI(θρ(ι)) = (d, c),

this means that we split the input region I using the hyperplane xd = c.

Our selection function ϕI does not consider arbitrary hyperplanes of the form

c1x1+ . . . cnxn = c because splitting the input region along an arbitrary hyper-

plane may result in sub-regions that are not expressible in the chosen abstract

domain. In particular, this is true for both the interval and zonotope domains

used in our implementation.

2.3.2 Learning using Bayesian Optimization

As made evident by Equation 2.3, the parameter matrix θ has a huge

impact on the choices made by our verification algorithm. However, manually

coming up with these parameters is very difficult because (a) the search space
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is huge, (b) neural networks lack an easily-interpretable structure, and (c) the

right choice of coefficients depends on both the property, the network, and

the underlying abstract interpretation engine. In this work, we take a data-

driven approach to solve this problem and use Bayesian optimization to learn

a parameter matrix θ that leads to optimal performance by the verifier on a

set of training problems.

Background on Bayesian optimization Given a function F : Rn → R,

the goal of Bayesian optimization is to find a vector x∗ ∈ Rn that maximizes

F . Importantly, Bayesian optimization does not assume that F is differen-

tiable; also, in practice, it can achieve reasonable performance without having

to evaluate F very many times. In our setting, the function F represents the

performance of a verification policy. This function is not necessarily differ-

entiable in the parameters of the verification policy, as a small perturbation

to the policy parameters can lead to the choice of a different domain. Also,

evaluating the function requires an expensive round of abstract interpretation.

For these reasons, Bayesian optimization is a good fit to our learning problem.

At a high level, Bayesian optimization repeatedly samples inputs until a

time limit is reached and returns the best input found so far. However, rather

than sampling inputs at random, the key part of Bayesian optimization is to

predict what input is useful to sample next. Towards this goal, the algorithm

uses (1) a surrogate model M that expresses our current belief about F , and

(b) an acquisition function A that employs M to decide the most promising
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input to sample in the next iteration. The surrogate model M is initialized

to capture prior beliefs about F and is updated based on observations on the

sampled points. The acquisition function A is chosen to trade off exploration

and exploitation where “exploration” involves sampling points with high un-

certainty, and “exploitation” involves sampling points whereM predicts a high

value of F . Given model M and function A, Bayesian optimization samples

the most promising input ~x according to A, evaluates F at x, and updates the

statistical model M based on the observation F (x). This process is repeated

until a time limit is reached, and the best input sampled so far is returned

as the optimum. We refer the reader to [72] for a more detailed overview of

Bayesian optimization.

Using Bayesian optimization In order to apply Bayesian optimization to

our setting, we first need to define what function we want to optimize. In-

tuitively, our objective function should estimate the quality of the analysis

results based on decisions made by verification policy πθ. Towards this goal,

we fix a set S of representative training problems that can be used to estimate

the quality of πθ. Then, given a parameters matrix θ, our objective function

F calculates a score based on (a) how many benchmarks in S can be success-

fully solved within a given time limit, and (b) how long it takes to solve the

benchmarks in S. More specifically, our objective function F is parameterized

by a time limit t ∈ R and penalty p ∈ R and calculates the score for a matrix
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θ as follows:

F (θ) = −
∑
s∈S

costθ(s)

where:

costθ(s) =

{
Time(Verifyθ(s)) if s solved within t
p · t otherwise

Intuitively, p controls how much we want to penalize failed verification

attempts — i.e., the higher the value of p, the more biased the learning algo-

rithm is towards more precise (but potentially slow) strategies. On the other

hand, small values of p bias learning towards strategies that yield fast results

on the solved benchmarks, even if some of the benchmarks cannot be solved

within the given time limit. 3

In order to apply Bayesian optimization to our problem, we also need to

choose a suitable acquisition function and surrogate mode. Following standard

practice, we adopt a Gaussian process [81] as our surrogate model and use

expected improvement [17] for the acquisition function.

2.4 Termination and Delta Completeness

In this section, we discuss some theoretical properties of our verification

algorithm, including soundness, termination, and completeness. To start with,

it is easy to see that Algorithm 2.1 is sound, as it only returns “Verified” once

it establishes that every point in the input space is classified as K. This is

the case because every time we split the input region I into two sub-regions

3In our implementation, we choose p = 2, t = 700s.
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I1, I2, we ensure that I = I1 ∪ I2, and the underlying abstract interpreter is

assumed to be sound. However, it is less clear whether Algorithm 2.1 always

terminates or whether it has any completeness guarantees.

Our first observation is that the Verify procedure, exactly as pre-

sented in Algorithm 2.1, does not have termination guarantees under realistic

assumptions about the optimization procedure used for finding adversarial

counterexamples. Specifically, if the procedure Minimize invoked in Algo-

rithm 2.1 returned a global minimum, then we could indeed guarantee ter-

mination. 4 However, since gradient-based optimization procedures do not

have this property, Algorithm 2.1 may not be able to find a true adversarial

counterexample even as we make the input region infinitesimally small. For-

tunately, we can guarantee termination and a form of completeness (known as

δ-completeness) by making a very small change to Algorithm 2.1.

To guarantee termination, we will make the following slight change to

Algorithm 2.1: Rather than checking F(x∗) ≤ 0 (for F as defined in Equa-

tion 2.2) we will instead check:

F(x∗) ≤ δ (2.4)

for some chosen δ > 0. While this modification can cause our verification

algorithm to produce false positives under certain pathological conditions, the

analysis can be made as precise as necessary by picking a value of δ that

4However, if we make this assumption, the optimization procedure itself would be a
sound and complete decision procedure for verifying robustness!
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is arbitrarily close to 0. Furthermore, under this change, we can now prove

termination under some mild and realistic assumptions. In order to formally

state these assumptions, we first introduce the following notion of the diameter

of a region:

Definition 2.1. For any set X ⊆ Rn, its diameter D(X) is defined as

D(X) = sup{‖x1 − x2‖2 | x1,x2 ∈ X}

if this value exists. Otherwise the set is said to have infinite diameter.

We now use this notion of diameter to state two key assumptions that

are needed to prove termination:

Assumption 2.1. There exists some λ ∈ (0, 1) such that for any network N ,

input region I, and point x∗ ∈ I, if πI(N, I,x∗) = (I1, I2), then D(I1) < λD(I)

and D(I2) < λD(I).

Intuitively, this assumption states that the two resulting subregions

after splitting are smaller than the original region by some factor λ. It is easy

to enforce this condition on any partition policy by choosing a hyper-plane

xd = c where c is not at the boundary of the input region.

Our second assumption concerns the abstract domain:

Assumption 2.2. Let N# be the abstract transformer representing a network

N . For a given input region I, we assume there exists some KN ∈ R such that

D(γ(N#(α(I)))) < KND(I).
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This assumption asserts that the Lipschitz continuity of the network

extends to its abstract behavior. Note that this assumption holds in several

numerical domains including intervals, zonotopes, and powersets thereof.

Theorem 2.1. Consider the variant of Algorithm 2.1 where the predicate is

replaced with Eq. 2.4 as described above. Then, if the input region has finite

diameter, the verification algorithm always terminates under Assumptions 2.1

and 2.2.

Proof. To improve readibility, we define F (Ik) = γ(N#(α(Ik))).

By Assumption 2.1 there exists some λ ∈ R with 0 < λ < 1 such

that for any input region I ′, splitting I ′ with Refine yields regions I ′1 and

I ′2 with D(I ′1) < λD(I ′) and D(I ′2) < λD(I ′). Because there is one split for

each node in the recursion tree, at a recursion depth of k, the region Ik under

consideration has diameter D(Ik) < λkD(I). By Assumption 2.2, there exists

some KN such that D(F (Ik)) < KND(Ik). Notice that when

k > logλ

(
δ

2KND(I)

)
we must have D(F (Ik)) < δ/2.

We will now show that when k satisfies the preceding condition, Algo-

rithm 2.1 must terminate without recurring. In this case, suppose x∗ is the

point returned by the call to Minimize and the algorithm does not terminate.

Then F(x∗) > δ and in particular, (N (x∗))K− (N (x∗))i > δ. Since Analyze

is sound, we must have N (x∗) ∈ F (Ik). Then since D(F (Ik)) < δ/2, we must
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have that for any point y′ ∈ F (Ik), ‖N (x∗) − y′‖2 < δ/2. In particular, for

all i, |(N (x∗))i − y′i| < δ/2, so y′i > (N (x∗))i − δ/2 and y′i < (N (x∗))i + δ/2.

Then, for all i,

yK − yi > ((N (x∗))K − δ/2)− ((N (x∗))i + δ/2)

= ((N (x∗))K − (N (x∗))i)− δ

> 0

Thus, for each point y′ ∈ F (Ik), we have y′K > y′i. Since y′ ranges over

the overapproximated output produced by the abstract interpreter, this ex-

actly satisfies the condition which Analyze is checking, so Analyze must

return Verified. Therefore, the maximum recursion depth of Algorithm 2.1 is

bounded, so it must terminate.

In addition to termination, our small modification to Algorithm 2.1

also ensures a property called δ-completeness [32]. In the context of satis-

fiability over real numbers, δ-completeness means that, when the algorithm

returns a satisfying assignment σ, the formula is either indeed satisfiable or a

δ-perturbation on its numeric terms would make it satisfiable. To adapt this

notion of δ-completeness to our context, we introduce the folowing concept

δ-counterexamples:

Definition 2.2. For a given network N , input region I, target class K, and

δ > 0, a δ-counterexample is a point x ∈ I such that for some j with 1 ≤ j ≤ m

and j 6= K, (N (x))K − (N (x))j ≤ δ.
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Intuitively, a δ-counterexample is a point in the input space for which

the output almost violates the given specification. We can view δ as a param-

eter which controls how close to violating the specification a point must be to

be considered “almost” a counterexample.

Theorem 2.2. Consider the variant of Algorithm 2.1 where the predicate at

replaced with Equation 2.4. Then, the verification algorithm is δ-complete —

i.e., if the property is not verified, it returns a δ-counterexample.

Proof. First note that by Theorem 2.1, Algorithm 2.1 must terminate. There-

fore the algorithm must return some value, and we can prove this theorem

by analyzing the possible return values. We only care about the case where

the algorithm does not return “Verified” so we can ignore the case where the

property is verified by abstract interpretation. The return in the first if state-

ment is only reached after checking that x∗ is a δ-counterexample, so clearly if

that return statement is used then the algorithm returns a δ-counterexample.

This leaves the two recursive calls. We suppose by induction that the recursive

calls are δ-complete. Then if r1 is not Verified, it must be a δ-counterexample.

Thus the return statement which returns r1 also returns a δ-counterexample.

Similarly, if r2 is not Verified, then it is a δ-counterexample, so the last return

statement returns a δ-counterexample.
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2.5 Implementation

We have implemented the ideas proposed in this paper in a tool called

Charon, written in C++. Internally, Charon uses the ELINA abstract

interpretation library [1] to implement the Analyze procedure from Algo-

rithm 2.1, and it uses the BayesOpt library [69] to perform Bayesian optimiza-

tion.

Parallelization Our proposed verification algorithm is easily parallelizable,

as different calls to the abstract interpreter can be run on different threads.

Our implementation takes advantage of this observation and utilizes as many

threads as the host machine can provide by running different calls to ELINA

in parallel.

Training We trained our verification policy on 12 different robustness prop-

erties of a neural network used in the ACAS Xu collision avoidance system [50].

However, since even verifying even a single benchmark can take a very long

time, our implementation uses two tactics to reduce training time. First, we

parallelize the training phase of the algorithm using the MPI framework [29]

and solve each benchmark at the same time. Second, we set a time limit of

700 seconds (per-process cputime) per benchmark. Contrary to what we may

expect from machine learning systems, a small set of benchmarks is sufficient

to learn a good strategy for our setting. We conjecture that this is because the

relatively small number of features allowed by Bayesian optimization helps to
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regularize the learned policy.

Featurization Recall that our verification policy uses a featurization func-

tion to convert its input to a feature vector. As mentioned in Section 2.3,

this featurization function should select a compact set of features so that our

training is efficient and avoids overfitting our policy to the training set. These

features should also capture revalant information about the network and the

property so that our learned policy can generalize across networks. With this

in mind, we used the following features in our implementation:

• the distance between the center of the input region I and the solution

x∗ to the optimization problem,

• the value of the objective function F (Equation 2.2) at x∗,

• the magnitude of the gradient of the network at x∗, and

• average length of the input space along each dimension.

Selection Recall from Section 2.3 that our verification policy π uses two

different selection functions ϕα and ϕI for choosing an abstract domain and

splitting plane respectively.

The selection function ϕI takes a vector of three inputs. The first two

are real-valued numbers that decide which dimension to split on. Rather than

considering all possible dimensions, our implementation chooses between two
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dimensions to make training more manageable. The first one is the longest

dimension (i.e., input dimension with the largest length), and the second one is

the dimension that has the largest influence [100] on (N (x))K . The last input

to the selection function is the offset at which to split the region. This value is

clipped to [0, 1] and then interpreted as a ratio of the distance from the center

of the input region I to the solution x∗ of Equation 2.1. For example, if the

value is 0, the region will be bisected, and if the value is 1, then the splitting

plane will intersect x∗. Finally, if the splitting plane is at the boundary of I,

it is offset slightly so that the strategy satisfies Assumption 2.1.

The selection function ϕα for choosing an abstract domain takes a vec-

tor of two inputs. The first controls the base abstract domain (intervals or

zonotopes) and the second controls the number of disjuncts to use. In both

cases, the output is extracted by first clipping the input to a fixed range and

then discretizing the resulting value.

2.6 Evaluation

To evaluate the ideas proposed in this paper, we conduct an experimen-

tal evaluation that is designed to answer the following three research questions:

(RQ1) How does Charon compare against state-of-the-art tools for proving

neural network robustness?

(RQ2) How does counterexample search impact the performance of Charon?
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Figure 2.5: Summary of results for AI2 and Charon.

(RQ3) What is the impact of learning a verification policy on the performance

of Charon?

Benchmarks To answer these research questions, we collected a benchmark

suite of 602 verification problems across 7 deep neural networks, including

one convolutional network and several fully connected networks. The fully

connected networks have sizes 3×100, 6×100, 9×100, and 9×200, where N×M

means there are N fully connected layers and each interior layer has size M .

The convolutional network has a LeNet architecture [59] consisting of two

convolutional layers, followed by a max pooling layer, two more convolutional

layers, another max pooling layer, and finally three fully connected layers. All

of these networks were trained on the MNIST [59] and CIFAR [54] datasets.

2.6.1 Comparison with AI2 (RQ1)

For each network, we attempt to verify around 100 robustness prop-

erties. Following prior work [35], the evaluated robustness properties are so-

called brightening attacks [77]. For an input point x and a threshold τ , a
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Figure 2.6: Comparison on a 3×100 MNIST network.

brightening attack consists of the input region

I = {x′ ∈ Rn | ∀i.(xi ≥ τ ∧ xi ≤ x′i ≤ 1) ∨ x′i = xi} .

That is, for each pixel in the input image, if the value of that pixel is greater

than τ , then the corresponding pixel in the perturbed image may be anywhere

between the initial value and one, and all other pixels remain unchanged.

Setup All experiments described in this section were performed on the Google

Compute Engine (GCE) [2] using an 8 vcpu instance with 10.5 GB of mem-

ory. All time measurements report the total CPU time (rather than wall clock

time) in order to avoid biasing the results because of Charon’s parallel na-

ture. For the purposes of this experiment, we set a time limit of 1000 seconds

per benchmark.

In this section we compare Charon with AI2 5, a state-of-the-art tool

5Because we did not have access to the original AI2, we reimplemented it. However, to
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Figure 2.7: Comparison on a 6×100 MNIST network.

Figure 2.8: Comparison on a 9×200 MNIST network.
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Figure 2.9: Comparison on a 3×100 CIFAR network.

for verifying network robustness [35]. As discussed in Section 2.1, AI2 is in-

complete and requires the user to specify which abstract domain to use. Fol-

lowing their evaluation strategy from the IEEE S&P paper [35], we instantiate

AI2 with two different domains, namely zonotopes and bounded powersets of

zonotopes of size 64. We refer to these two variants as AI2-Zonotope and

AI2-Bounded64.

The results of this comparison are summarized in Figure 2.5. This

graph shows the percentage of benchmarks each tool was able to verify or

falsify, as well as the percentage of benchmarks where the tool timed out and

the percentage where the tool was unable to conclude either true or false. Note

that, because Charon is δ-complete, there are no “unknown” results for it,

and because AI2 cannot find counterexamples, AI2 has no “falsified” results.

allow for a fair comparison, we use the same underlying abstract interpretation library, and
we implement the transformers exactly as described in [35].

53



Figure 2.10: Comparison on a 6×100 CIFAR network.

The details for each network are shown in Figures 2.6 - 2.12. Each chart

shows the cumulative time taken on the y-axis and the number of benchmarks

solved on the x-axis (so lower is better). The results for each tool include only

those benchmarks that the tool could solve correctly within the time limit of

1000 seconds. Thus, a line extending further to the right indicates that the

tool could solve more benchmarks. Since AI2-Bounded64 times out on every

benchmark for the convolutional network, it does not appear in Figure 2.12.

The key take-away lesson from this experiment is that Charon is able

to both solve more benchmarks compared to AI2-Bounded64 on most net-

works, and it is able to solve them much faster. In particular, Charon solves

59.7% (resp. 84.7%) more benchmarks compared to AI2-Bounded64 (resp.

AI2-Zonotope). Furthermore, among the benchmarks that can be solved by

both tools, Charon is 6.15× (resp. 1.12×) faster compared to AI2-Bounded64

(resp. AI2-Zonotope). Thus, we believe these results demonstrate the advan-
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Figure 2.11: Comparison on a 9×100 CIFAR network.

Figure 2.12: Comparison on a convolutional network.
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Figure 2.13: Comparison with ReluVal.

tages of our approach compared to AI2.

2.6.2 Comparison with Complete Tools (RQ1)

In this section we compare Charon with other complete tools for ro-

bustness analysis, namely ReluVal [100] and Reluplex [51]. Among these

tools, Reluplex implements a variant of Simplex with built-in support for

the ReLU activation function [51], and ReluVal is an abstraction refinement

approach without learning or counterexample search.

To perform this experiment, we evaluate all three tools on the same

benchmarks from Section 2.6.1. However, since ReluVal and Reluplex do

not support convolutional layers, we exclude the convolutional network from

this evaluation.

The results of this comparison are summarized in Figure 2.13. Across

all benchmarks, Charon is able to solve 2.6× (resp. 16.6×) more problems
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compared to ReluVal (resp. Reluplex). Furthermore, it is worth noting

that the set of benchmarks that can be solved by Charon is a strict superset

of the benchmarks solved by ReluVal.

2.6.3 Impact of Counterexample Search (RQ2)

To understand the benefit of using optimization to search for counterex-

amples, we now compare the number of properties that can be falsified using

Charon vs. Reluplex and ReluVal. (Recall that AI2 is incomplete and

cannot be used for falsification.) Among the 585 benchmarks used in the eval-

uation from Section 2.6.2, Charon can falsify robustness of 123 benchmarks.

In contrast, Reluplex can only falsify robustness of one benchmark, and Re-

luVal cannot falsify any of them. Thus, we believe these results demonstrate

the usefulness of incorporating optimization-based counterexample search into

the decision procedure.

2.6.4 Impact of Learning a Verification Policy (RQ3)

Recall that a key feature of our algorithm is the use of a machine-learnt

verification policy π to choose a refinement strategy. To explore the impact of

this design choice, we compare our technique against ReluVal on the subset

of the 585 benchmarks for which the robustness property holds. In particular,

as mentioned earlier, ReluVal is also based on a form of abstraction refine-

ment but uses a static, hand-crafted strategy rather than one that is learned

from data. Thus, comparing against ReluVal on the verifiably-robust bench-
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Figure 2.14: Comparison with ReluVal on verified benchmarks.

marks allows us to evaluate the benefits of learning a verification policy from

data. 6

The results of this comparison are shown in Figure 2.14. As we can

see from this figure, ReluVal is still only able to solve between 35% and

70% of the benchmarks that can be successfully solved by Charon. Thus,

these results demonstrate that our data-driven approach to learning verifica-

tion policies is useful for verifying network robustness.

6We compare with ReluVal directly rather than reimplementing the ReluVal strategy
inside Charon because our abstract interpretation engine does not support the domain used
by ReluVal. Given this, we believe the comparison to ReluVal is the most fair available
option.
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Chapter 3

Safe RL Background and Notation

In this chapter, we will present some background material which is

common to the techniques discussed in the rest of the dissertation.

3.1 Reinforcement Learning

Throughout this dissertation, we will be developing techniques to con-

trol systems which have both safety constraints and performance objectives,

formalized as constrained Markov decision processes (CMDP’s). A CMDP is

a tuple M = (S,A, P, p0, r, c). Here S is a set of states, A is a set of actions,

P (s′ | s,a) is a transition distribution, p0 is a distribution of initial states,

r : S ×A → R is an immediate reward signal, and c : S ×A → R is an imme-

diate cost function. We will often refer to the CMDPM as the “environment”

in which an agent is operating. For the purposes of this dissertation, we will

assume c is a boolean indicator depending only on states. That is, there exists

a distinguished set SU ⊂ S such that c(s,a) is 1 if taking action a from s

leads to a state s′ ∈ SU and 0 otherwise. In general, we assume that S, A, and

SU are known, where P , p0, and r are not. However in subsequent chapters

we will look at settings where we have different amounts of prior knowledge
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about P and p0.

We will also need a number of other definitions to state the safe learning

and safe exploration problems:

• A policy, π(a | s) for a ∈ A and s ∈ S is a function which takes a state

and yields a distribution over actions.

• A policy π can be used to generate trajectories, which are sequences of

states and actions s0,a0, . . . , sn,an such that s0 ∼ p0, ai ∼ π(· | si),

and si+1 ∼ P (· | si,ai).

• A policy π induces a distribution Pπ over trajectories.

• We will choose a discount factor γ < 1.

• The return of a trajectory τ = s0,a0, . . . , sn,an is

R(τ) =
n∑
i=0

γir(si,ai).

• The (undiscounted) cost of a trajectory τ = s0,a0, . . . , sn,an is

C(τ) =
n∑
i=0

c(si,ai).

• The expected return of a policy π is R(π) = Eτ∼Pπ [R(τ)].

• The expected cost of a policy π is C(π) = Eτ∼Pπ [C(τ)].

For the purposes of this work, we will assume the cost signal indicates

catastrophic failure, meaning that a trajectory ends as soon as an unsafe state is
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encountered. This implies that C(τ) is itself a boolean indication of safety over

entire trajectories. As a result, C(π) gives the probability that a trajectory

samplied according to π will result in unsafe behavior.

With all this in place, we can define the goal of reinforcement learning:

find a policy π∗ which maximizes the expected return. That is, solve

π∗ = arg max
π

R(π). (3.1)

However, this definition does not consider safety at all. The goal of safe

reinforcement learning is to find

π∗ = arg max
π

R(π) (3.2)

s.t. C(π) ≤ δ

for some predefined safety level δ. Intuitively, the cost constraint in Equa-

tion 3.2 requires that the probability of safety violations under the policy π is

below some chosen threshold. If δ = 0, so that no possibility of safety violation

is allowed at all, then we call this verified RL.

All of these problems so far have only dealt with the safety of the

final policy. In practice, however, reinforcement learning algorithms work by

executing a sequence of policies in the environment in order to collect reward

data and generate future policies. In many cases, we need to consider the

safety of not only the final policy, but also every policy which is executed

in the environment during training. This gives rise to the problem of safe

exploration. We formalize this problem in terms of a learning process which is
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a sequence of policies L = π0, . . . , πn which holds all of the policies executed

during training by a reinforcement learning algorithm. The safe exploration

problem is to solve Equation 3.2 while additionally ensuring that each policy

in L is safe, i.e., C(πi) ≤ δ for all i.

3.2 Model-Based RL

At a high-level, all of the techniques presented in this dissertation are

built on top of model-based RL [21, 49, 92, 93]. Model-based RL is a class of

approaches to the reinforcement learning problem in which we explicit de-

velop (or are given) a model of the environment. Recall from Section 3.1 that

we usually assume the transition distribution P , the initial distribution p0,

and the reward function r are unknown. In model-based RL, the high-level

technique is to collect data from the environment and use that data to learn

approximations P̂ , p̂0, and r̂. These approximations are then used to support

policy optimization.

3.3 Shielding and Neurosymbolic Learning

All of the techniques discussed in this dissertation are based on shield-

ing. Shielding is an approach to ensuring the safety of a controlled dynamical

system via the use of a shield, which can be thought of as a fallback controller.

The basic idea is to develop two separate controllers. One is known to be safe,

but may not achieve particularly high performance, while the other is perfor-

mant but may not always be safe. In addition to these two controllers, we also
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develop a monitor which can analyze the action proposed by the performance

controller and determine whether that action is safe. Then, every time we

need to choose an action, we first ask the performant controller to generate

one. We then use the monitor to check whether the proposed action is safe. If

it is, we can use that action in order to get the highest possible performance.

Otherwise, we get an action from the shield which will guarantee safety.

Formally, let πS be a safe (resp. verified) policy and let πN but a perfor-

mant, but potentially unsafe, policy. (We use the subscript N because in this

dissertation the performant policies are neural networks.) Now we also need

a monitor. The monitor is a boolean function M : S × A → {0, 1}. The key

property of monitors is M(s,a) is true if, when we take action a in state s and

then always use πS in future time steps the resulting trajectory will be safe

(resp. verified). Intuitively, the monitor determines whether, after taking the

proposed action, the safe policy πS can be used to recover to a safe trajectory.

How exactly this is accomplished varies in the different techniques presented

in the rest of this dissertation.

In this dissertation, the performant policy will always be a neural net-

work, while the shield policy may be either a neural network or a “symbolic”

policy. In this context, the term “symbolic” indicates that the policy has some

interpretable internal structure which can be used to support anlysis and ver-

ification. Concretely, these symbolic polices take the form of a traditional

program with traditional programming constructs (conditionals, loops, etc.).

Given a neural policy, a shield, and a monitor, we will often consider them
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together as a single neurosymbolic policy.

3.4 Mirror Descent

The safe exploration techniques described in this dissertation are all

based on a form of mirror descent in the policy space, an idea first pioneered

in [99]. In our context, mirror descent can be thought of as a way to solve

optimization problems when gradients are difficult to compute directly. It

relies on two related classes of policies: G which contains shield policies and H

which consists of neurosymbolic policies. To formalize these classes, let F be

a predefined class of neural policies (i.e., F consists of the set of all possible

neural networks with some fixed architecture). We then assume policies in H

consist of some combination of a shield from G with a neural network from F .

The goal of mirror descent is to find the optimal symbolic policy π∗S ∈ G.

In order to do this, we repeatedly apply three steps:

1. Lift: Given a symbolic policy πS generate a neurosymbolic policy π

which has the same behavior.

2. Update: Use approximate gradient descent in the neurosymbolic policy

space to train π to a higher-performance policy π′.

3. Project: Find a symbolic policy π′S which is as similar as possible to

π′ under a given distance metric D.

The exact process for each of these three steps varies between the differnt
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techniques outlined in this dissertation. Once we have defined these three

procedures, under certain assumptions we can prove that mirror descent will

converge to the optimal symbolic policy.
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Chapter 4

Safe Exploration in Known Environments1

In this chapter, we improve the state of the art in safe exploration

through an RL framework, called Revel2, that allows learning over continu-

ous state and action spaces, supports (partially) neural policy representations

and contemporary policy gradient methods for learning, while also ensuring

that every intermediate policy that the learner constructs during exploration

is safe on worst-case inputs. Like previous efforts, Revel uses monitoring

and shielding. However, unlike in prior work, the monitor and the shield are

updated as learning progresses.

A key feature of our approach is that we repeatedly invoke a formal

verifier from within the learning loop. Doing this is challenging because of

the high computational cost of verifying neural networks. We overcome this

challenge using a neurosymbolic policy representation in which the shield and

the monitor are expressed in an easily-verifiable symbolic form, whereas the

normal-mode policy is given by a neural network. Overall, this representation

1This chapter is based on [8]. The author of this dissertation was responsible for main
idea along with the majority of the theoretical analysis and implementation.

2Revel stands for Reinforcement learning with verified exploration. The current im-
plementation is available at https://github.com/gavlegoat/safe-learning.
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admits efficient gradient-based learning as well as efficient updates to both the

shield and monitor.

To learn such neurosymbolic policies, we build on Propel [99], a re-

cent RL framework in which policies are represented in compact symbolic

forms (albeit without consideration of safety), and design a learning algorithm

that performs a functional mirror descent in the space of neurosymbolic poli-

cies. The algorithm views the set of shields as being obtained by imposing a

constraint on the general policy space. Starting with a safe but suboptimal

shield, it alternates between: (i) safely lifting the current shield into the un-

constrained policy space by adding a neural component; (ii) safely updating

this neurosymbolic policy using approximate gradients; and (iii) using a form

of imitation learning to project the updated policy back into the constrained

space of shields. Importantly, none of these steps requires direct verification

of neural networks.

Our empirical evaluation, on a suite of continuous control problems,

shows that Revel enforces safe exploration in many scenarios where estab-

lished RL algorithms (including CPO [3], which is motivated by safe RL) do

not, while discovering policies that outperform policies based on static shields.

Also, building on results for Propel, we develop a theoretical analysis of

Revel.

In summary, this chapter presents the following contributions:

• We introduce the first RL approach to use deep policy representations
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and policy gradient methods while guaranteeing formally verified explo-

ration.

• We propose a new solution to this problem which combines ideas from

RL and formal methods, and we show that our method has convergence

guarantees.

• We present promising experimental results for our method in the con-

tinuous control setting.

4.1 Preliminaries

4.1.1 Formally Verified Exploration

Formally, we represent our knowledge of the environment with an ap-

proximate transition function P# : S×A → 2S along with a set of initial states

S0. The transition function satisfies P#(s,a) ⊇ supp(P (· | s,a)). Intuively,

this means that any possible behavior of the environment is captured by the

approximate transition. Additionally, the initial states satisfy S0 ⊇ supp(p0).

That is, the set of initial states is includes every possible initial state that

might be chosen for the real environment.

Taken together, the two approximations P# and S0 effectively “forget”

the probabilistic nature of the environment and convert it to an unspecified

nondeterminism. This is appropriate in the context of verified exporation

because we are concerned with whether or not the system can ever behave

unsafely regardless of how likely or unlikely that behavior is.
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Given these approximate dynamics, we will inductively define finite-

horizon reachability for a given policy π and starting set S ⊆ S:

reach1(π, S) =
⋃

s∈S,a∈supp(π(·|s))

P#(s,a)

reachi+1(π, S) = reach1(π, reachi(π, S))

We can now present an equivalent definition of verified learning which will be

easier to work with in this section: a policy π is verified if SU∩
⋃
i reachi(π,S0) =

∅. We use the notation Verf(π) to indicate that π is verified. Then the verified

exploration problem over a learning process L = π0, . . . , πn can be restated as:

πn = arg max
π s.t. Verf(π)

R(π) (4.1)

s.t. ∀0 ≤ i ≤ n : Verf(πi) (4.2)

4.1.2 Inductive Invariants and Abstract Interpretation

The learning algorithm presented in Section 4.2 relies on an oracle for

the formal verification of policies. Given a policy π, this oracle attempts to

construct a proof of the property Verf(π). This proof takes the form of an

inductive invariant, defined as a set of states φ such that:

1. φ includes the initial states, S0 ⊆ φ;

2. φ is closed under the approximate transition relation, reach1(π, φ) ⊆ φ;

and

3. φ does not include any unsafe states, φ ∩ SU = ∅.
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The second condition here is critical: it ensures that once the system is within

φ, it can never leave under any possible behavior of the environment. Com-

bined with the first condition (which ensures that we start in φ) and the third

condition (which ensures that no states in φ are unsafe), this gives a proof

that the system cannot encounter any unsafe states.

There are many ways to construct inductive invariants. In this work,

we use abstract interpretation [22], which maintains an abstract state that ap-

proximates the concrete states which the system can reach. An abstract state

is essentially a set of states which has some kind of structure to make computa-

tions over the entire set feasible. For example, an abstract state might consist

of hyperinterval in the state space, which defines independent bounds on each

state variable. Critically, the abstract state is an overapproximation, meaning

that every reachable state is represented in the abstract state. However, the

abstract state may also include some states which are not reachable in real-

ity because we need to make approximations in order to make the analysis

tractable.

In order to apply abstract interpretation to the verified exploration

problem, we start with an abstract state representing the initial states S0.

This abstract state is then propagated through the approximated environ-

ment transition P# in order to build up approximations of reachi(π,S0) for

increasing i. Then, if the abstract state does not include any unsafe states, we

can conclude that all possible concrete states will be safe as well.
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4.2 Learning Algorithm

Algorithm 4.1 Reinforcement Learning with Formally Verified Exploration
(Revel)

Input: Symbolic Policy Class G & Neural Policy Class F .
Input: Initial π

(0)
S ∈ G, with the guarantee φ0 ` Verf(π

(0)
S ) for some φ0

Define class H = {π(s) ≡ if P#(s, πN(s)) ⊆ φ then πN(s) else πS(s)}
for t = 1, . . . , T do

π(t) ← Lift(π
(t)
S , φt) . lifting symbolic policy into the blended space

π(t) ← Update(π(t)) . policy gradient in neural policy space

(π
(t+1)
S , φt+1)← Project(π(t)) . synthesize shield and invariant

return Policy π(T )

The main Revel procedure is presented in Algorithm 4.1. This al-

gorithm presents a particular instance of mirror descent, in which the neu-

rosymbolic policy class H consists of neural networks (from the neural class

F) wrapped with shields (from the programmatic policy class G). These poli-

cies are combined using a monitor in the form of an inductive invariant φ.

Formally, given a neural network πN ∈ F , a shield πS ∈ G, and an invariant φ

which proves Verf(πS), we construct a neurosymbolic policy:

π(s) = if P#(s, πN(s)) ⊆ φ then πN(s) else πS(s).

We will use the notation π = (πS, φ, πN) to denote the above neurosymbolic

policy.

The “true” branch of this definition represents the normal mode of

the policy. That is, we prefer to use the neural policy πN whenever possible

because this policy generally has higher performance than πS. The conditional
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P#(s, πN(s)) ⊆ φ ensures the safety of the overall neurosymbolic policy using

the same invariant which proves the safety of the shield. If this condition holds,

then the action πN(s) is guaranteed to be safe because it can only ever lead to

states which are in φ (and φ does not overlap with the unsafe states). If the

condition does not hold, there may be a transition from state s under action

πN(s) which leads to a state outside of φ. At that point, we can no longer be

sure the policy will behave safely. Therefore, if the condition does not hold,

we use the shield πS rather than the network. Because φ is an invariant of the

shield, we know that P#(s, πS(s)) is always going to be in φ. Therefore, for

either value of the conditional, the overall neurosymbolic policy is safe.

Algorithm 4.1 starts with a (manually constructed) initial shield π
(0)
S ∈

G and a corresponding invariant φ0, then iteratively applies the three steps of

mirror descent:

1. Lift takes a shield πS ∈ G along with an invariant φ and constructs

a policy (πS, φ, πS) ∈ H. The neural component of this policy is just

the initial shield, but represented as a neural network. In practice, this

can be constructed by training a randomly initialized neural network

to imitate πS using any appropriate imitation learning algorithm (e.g.,

Dagger). Because the safety of the mixed policy only depends on

πS and φ, this lifted policy is still safe even if the imitation learning

algorithm doesn’t converge perfectly.

2. Update performs a series of approximate gradient updates to the neu-
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rosymbolic policy π. Specifically, because gradients are not generally

available for the programmatic policy class G, we approximate gradients

on the neurosymbolic policy by applying gradient updates in the neural

component only. That is, after a gradient update, the policy (πS, φ, πN)

becomes (πS, φ, πN + η∇FR(π)) for a learning rate η. Because the up-

date step does not change πS or φ, safety is always maintained in this

step.

3. Project takes a neurosymbolic policy π = (πS, φ, πN) and finds the

nearest symbolic policy

π′S = arg min
π′′S∈G,Verf(π

′′
S)

D(π′′S, π)

where D is a predetermined Bregman divergence. Along with π′S, we

also compute a new invariant φ′ which is used to prove Verf(π′S). The

exact algorithm used for this projection depends on the chosen class

of symbolic shields. One instantiation (used in our implementation) is

described in Section 4.2.1.

4.2.1 Instantiation with Piecewise Linear Shields

In order to implement Revel, we must choose a class G of shields. Poli-

cies in G must be expressive enough to allow high performance, but structured

enough to support verification. For this implementation, we use deterministic,

73



piecewise-linear policies of the form:

πS(s) =


g1(s) if χ1(s)

g2(s) if χ2(s) ∧ ¬χ1(s)

· · ·
gn(s) if χn(s) ∧

(∧n−1
i=1 ¬χi(s)

)
where χ1, . . . , χn are linear predicates partition the state space and each gi is

an affine function. For brevity, we will write the shield policy πS as a list of

pairs (gi, χi). We refer to the part of the state space defined by χi ∧
∧i−1
j=1 ¬χj

as the region for the linear function gi and denote it by Region(gi).

Now we discuss the implementation of Algotirhm 4.1. Becuse the Lift

and Update operations are agnostic to the choice of shield, we will only focus

on Project. Recall that the goal of this projection is to find a shield πS

which minimizes the imitation distances D(πS, π) for a given neurosymbolic

policy π.

Algorithm 4.2 Implementation of projection

Input: A policy π = (πS, φ, πN) where πS = [(g1, χ1), . . . , (gn, χn)]
π∗S ← πS
for t = 1, . . . , T do

ψ ← CuttingPlane(χi) for heuristically selected i
g1i ← ImitateSafely(πN , gi, χi ∧ ψ)
g2i ← ImitateSafely(πN , gi, χi ∧ ¬ψ)
π′S ← Split(πS, i, (g

1
i , χi ∧ ψ), (g2i , χi ∧ ¬ψ))

if D(π′S, π) < D(π∗S, π) then
π∗S ← π′S

φ∗ ← SafeSpace(π∗S)
return (π∗S, φ

∗)

The projection operation is described in Algorithm 4.2. We start with
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an initial neurosymbolic policy π = (πS, φ, πN) and iteratively refine the shield

πS. In each iteration of the algorithm, we heuristically identify one component

gi with region χi, then perform the following steps:

(i) Sample a cuttting plane which creates a more fine-grained partitioning

of the state space by splitting the region χi into two new regions χ1
i and

χ2
i .

(ii) For each new region χji , call ImitateSafely to construct a safe linear

policy gji along with a corresponding invariant. The new policy minimizes

D(gji , π) within the region χji .

(iii) Replace (gi, χi) with the two new components, resulting in a new, refined

shield π′S.

After repeating this process for a fixed number of iterations, we return the the

most optimal shield which was constructed during the procedure, along with

a corresponding invariant.

Algorithm 4.3 Safely Imitating a policy using a given starting point and
partition

Input: A neural policy πN , a region χ, and a linear policy g.
g∗ ← g.
while ∗ do

S ← ComputeSafeRegion(g∗, χ)
g∗ ← g∗ − α∇D(g∗, πN)
g∗ ← projS g

∗

return g∗
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Algorithm 4.2 relies on a subroutine ImitateSafely in order to find

the safe linear policy which best imitates a given neurosymbolic policy within

a particular region of the state space. This procedure is further detailed in

Algorithm 4.3. In each iteration of this algorithm, we first compute a safe

hyperinterval S in the parameter space of g∗ over the region χ. In order to

compute this safe region, we start with with a region which contains every pos-

sible gradient step from g∗. This region might contain some unsafe policies,

so we then search for unsafe controllers in the region S. When an unsafe con-

troller is found, we trim S in order to remove that controller. This trimming

process continues until the region S can be verified using abstract interpreta-

tion. Once the region has been computed, we take a gradient step according

to the imitation loss D, which is computed using Dagger in order to gather

data for a supervised learning algorithm. Finally, the resulting g∗ after the

gradient step is projected back into the safe hyperinterval S. Since the final

policy g∗ is projected into the provably safe region S, we can be sure that the

policy returned by ImitateSafely is safe on χ.

Intuitively, recomputing the safe region S at each iteration in Imitate-

Safely allows the controller to move farther fromt eh starting point g than

would otherwise be possible. This is because it is intractable to compute the

entire set of safe policies in advance, so our safe region computation can only

contain a relatively small subset of the safe policies. However, by recomputing

the safe region in each step we effectively “move” the safe region together with

the current value of the policy. That is, we only need to verify a thin tube of
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policies which surrounds the actual trajectory taken by the gradient descent

process through the policy space. For example, if we can verify a region which

is at least as large as one gradient step at a particular time step, then the gra-

dient descent process becomes unconstrained for that time step even though

we cannot verify the entire state space at once.

4.3 Theoretical Analysis

Compared to standard mirror descent, Revel introduces two new

sources of error. First, because gradients are not available for the neurosym-

bolic policy class, we approximate the true gradient ∇H by the gradient on the

neural component ∇F . Second, the projection step can be inexact due to the

abstraction used to compute the safe region to project into. Prior work [99]

has studied methods for implementing the projection step with bounded error.

Here, we bound the bias in the gradient approximation under some simplifying

assumptions and use this result ot prove a regret bound in the final shield that

our method converges on. We define a safety indicator Z which is zero when-

ver the shield is invoked and one otherwise. In order to more closely align this

analysis with prior work, we will present the theory in terms of a cost function

we want to minimize as opposed to a reward we want to maximize. We will

denote this cost as J(π) = −R(π). Then we assume:

1. H is a finite-dimensional vector space equipped with an inner product

〈·, ·〉 and an induced norm ‖π‖ =
√
〈π, π〉;
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2. J is convex in H and ∇J is LJ -Lipschitz continuous on H;

3. H is bounded (i.e., sup {‖π − π′‖ | π, π′ ∈ H} <∞);

4. E[1 − Z] ≤ ζ, i.e., the probability that the shield is invoked at any

particular time step is bounded above by ζ;

5. the bias introduced in the sampling process is bounded by β, i.e.,∥∥∥E[∇̂F | π]−∇FJ(π)
∥∥∥ ≤ β

where ∇̂F is the estimated gradient; and

6. for s ∈ S, a ∈ A, and π ∈ H, if π(a | s) > 0 then π(a | s) > δ for some

fixed δ > 0.

The last assumption requries some explanation: intuitively, it amounts to

cutting off the tails of the policy distribution so that no action can be possible

but arbitrarily unlikely. This is necessary to bound the gradient of the policy.

We will need several standard notions from functional analysis:

Definition 4.1. A differentiable function R is α-strongly convex w.r.t. a norm

‖ · ‖ if R(y) ≥ R(x) + 〈∇R(x), y − x〉+ α
2
‖y − x‖2.

Definition 4.2. A differentiable function R is LR-strongly smooth w.r.t. a

norm ‖ · ‖ if ‖∇R(x)−∇R(y)‖∗ ≤ LR‖x− y‖.

Definition 4.3. For a strongly-convex regularizerR, DR(x, y) = R(x)−R(y)−

〈∇R(y), x− y〉 is the Bregman divergence between x and y. Note that DR is

not necessarily symmetric.
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With these preliminaries, we can now examine Algorithm 4.1. The

high-level structure of our analysis will be to first prove a bound on the bias

induced by approximating ∇H with ∇F . We will then combine this bound

with a more general theorem to develop a regret bound on the policies learned

with Algorithm 4.1.

For the rest of this section, let R be an α-stronly convex and LR-smooth

functional w.r.t. the norm ‖·‖ onH. Additionally, let∇H be a Fréchet gradient

on H. Then the algorithm can be described as follows: start with π
(0)
S ∈ G

(provided by the user) then for each iteration t:

1. Compute a noisy estimate of the gradient ∇̂J(π
(t−1)
S ) ≈ ∇J(π

(t−1)
S ).

2. Update in H: ∇R(π(t)) = ∇R(π(t−1))− η∇̂J(π
(t−1)
S ).

3. Perform an approximate projection

π
(t)
S = projRG (π(t)) ≈ arg min

πS∈G
DR(πS, π

(t)).

This procedure is approximate functional mirror descent under bandit feed-

back. We let DG be the diameter of G, i.e., DG = sup {‖πS − π′S‖ | πS, π′S ∈ G}.

Let β and σ2 be bounds on the bias and variance of the gradient estimate in

each iteration. Finally, let ε be the bound on the projection error with respect

to ‖ · ‖. We will make use of the following general theorem:

Theorem 4.1. (General regret bound for mirror-descent-based RL) [99] Let

π
(1)
S , . . . , π

(T )
S be a sequence of programmatic policies returned by Revel and
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π∗S be the optimal safe programmatic policy. We have the expected regret bound

E

[
1

T

T∑
i=1

J
(
π
(t)
S

)]
− J (π∗S) ≤

LRD
2
G

ηT
+
εLRDG
η

+
η (σ2 + L2

J)

α
+ βDG.

In particular, choosing η =
√

(1/T + ε)/σ2, this simplifies to

E

[
1

T

T∑
i=1

J
(
π
(t)
S

)]
− J (π∗S) = O

(
σ

√
1

T
+ ε+ β

)
.

Now we will prove a bound on the bias induced by the gradient approx-

imation:

Lemma 4.2. (Bound on gradient approximation bias) Let DH be the diameter

of H, i.e., D = sup{‖π − π′‖ | π, π′ ∈ H} and let β0 be the sampling bias in

the gradient estimation procedure. Then the bias incurred by approximation

∇HJ(π) with ∇FJ(π) and sampling is bounded by∥∥∥E [∇̂F | π]−∇HJ(π)
∥∥∥ = O(β0 + LJζ).

Proof. First, we note that∥∥∥E [∇̂F | π]−∇HJ(π)
∥∥∥ ≤ ∥∥∥E [∇̂F | π]−∇FJ(π)

∥∥∥+ ‖∇FJ(π)−∇HJ(π)‖ .

We already assume the first term is bounded by β0, so we will proceed to

bound the second term.

Let π = (πS, φ, πN) be a policy in H. By the policy gradient theo-

rem [94], we have that

∇FJ(π) = Es∼ρπ ,a∼π [∇F log π(a | s)Qπ(s,a)] (4.3)
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where ρπ is the state distribution induced by π and Qπ is the long-term ex-

pected reward from a state s and action a. We will omit the distribution

subscript in the remainder of the proof for convenience. Now note that if Z is

one then π(a | s) = πN(a | s), so that in particular

∇F log π(a | s)Qπ(s,a) = ∇H log π(s | a)Qπ(s,a).

On the other hand, if Z is zero then π(s | a) is independent of πN so that

∇F log π(a | s)Qπ(s,a) = 0.

Since Z is an indicator and can only take the values zero or one, this means

∇F log π(a | s)Qπ(s,a) = Z∇H log π(s | a)Qπ(s,a)

Thus, we can rewrite Equation 4.3 as

∇FJ(π) = E [Z∇H log π(a | s)Qπ(s,a)]

= E [Z]E [∇H log π(a | s)Qπ(s,a)] + Cov (Z,∇H log π(a, s)Qπ(s,a))

= E [Z]∇HJ(π) + Cov (Z,∇H log π(a | s)Qπ(s,a)) (4.4)

Note that the covariance term is a vector where the i’th component is the

covariance between Z and the i’th component of the gradient ∇i
H. Then for

each i, by Cuachy-Schwarz we have

∣∣Cov
(
Z,∇i

H log π(a | s)Qπ(s,a)
)∣∣ ≤√Var (Z) Var (∇i

H log π(a | s)Qπ(s,a)).

Since Z ∈ {0, 1} we must have 0 ≤ Var(Z) ≤ 1 so that in particular

∣∣Cov
(
Z,∇i

H log π(a | s)Qπ(s,a)
)∣∣ ≤√Var (∇i

H log π(a | s)Qπ(s,a)).
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By assumption, for every state-action pair (s,a), if (s,a) is in the support of ρπ

then π(a | s) > δ. We also have that Qπ(s,a) is bounded (because J is Lips-

chitz onH andH is bounded). Then because the gradient of the log is bounded

above by one and because ∇H is bounded by definition, we have ‖∇i
H log π(a |

s)Qπ(s,a)‖ is bounded. Therefore by Popoviciu’s inequality, Var(∇i
H log π(a |

s)Qπ(s,a)) is bounded as well. Choose B > Var(∇i
H log π(a | s)Qπ(s,a)) for

all i. Then we have ‖Var(∇H log π(a | s)Qπ(s,a))‖∞ <
√
B, and because H is

finite-dimensional, ‖Var(∇H log π(a | s)Qπ(s,a))‖ < c
√
B for some constant

c for any norm ‖ · ‖.

Substituting this into Equation 4.4, we have

‖∇FJ(π)− E[Z]∇HJ(π)‖ < c
√
B.

Then

‖∇FJ(π)−∇HJ(π)‖ ≤ ‖∇FJ(π)− E[Z]∇HJ(π)‖+ ‖E[Z]∇HJ(π)−∇HJ(π)‖

< c
√
B + ‖E[Z]∇HJ(π)−∇HJ(π)‖

By assumption ∇HJ(π) is Lipschitz and H is bounded. Let DH be the diam-

eter of H and recall the LJ is the Lipschitz constant of ∇HJ(π). Choose an

arbitrary π(0) ∈ H and let J0 = ∇HJ(π(0)). Then for any policy π ∈ H we

have ‖∇HJ(π)‖ ≤ J0 +DHLJ . Then

‖E[Z]∇HJ(π)−∇HJ(π)‖ = ‖(E[Z]− 1)∇HJ(π)‖

= |E[Z]− 1| ‖∇HJ(π)‖

≤ |E[Z]− 1| (J0 +DHLJ) .
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Since Z is an indicator variable, we have 0 ≤ E[Z] ≤ 1 so that |E[Z] − 1| =

1 − E[Z]. Then finally we assume DH is a known constant to simplify the

presentation and arrive at

‖∇FJ(π)−∇HJ(π)‖ < c
√
B + (1− E[Z]) (J0 +DHLJ) = O(LJζ)

and plugging this back into the original triangle inequality we have∥∥∥E [∇̂F | π]−∇HJ(π)
∥∥∥ = O(β0 + LJζ).

Now by plugging this bound into Theorem 4.1, we achieve a regret

bound on Algorithm 4.1.

Theorem 4.3. Let π
(1)
S , . . . , π

(T )
S be a sequence of policies in G returned by

Revel and let π∗S be the optimal programmatic policy. Let β0 be the sampling

bias in the gradient estimation. Choosing a learning rate η =
√

1
σ2

(
1
T

+ ε
)

we

have the expected regret over T iterations:

E

[
1

T

T∑
i=1

J
(
π
(i)
S

)]
− J (π∗S) = O

(
σ

√
1

T
+ ε+ β + LJζ

)

Proof. By Lemma 4.2, the overall bound on the bias of the gradient estimate

in Algorithm 4.1 is O(β0 +LJζ). Plugging this bound in for β in Theorem 4.1

yields the desired bound.

This theorem matches the expectation that when a blended policy π =

(πS, φ, πN) is allowed to take more actions without the shield intervening (i.e.,
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ζ decreases), the regret bound is decreased. Intuitively, this is because when

we use the shield, the action we take does not depend on the neural network

πN , so the network does not learn anything useful. However if π is using πN

to choose actions, then we have unbiased gradient information as in standard

RL.

4.4 Evaluation

Now we turn to our empirical evaluation of Revel. Our goal is to

answer two questions:

1. How do Revel policies compare to state-of-the-art RL techniques with-

out formal guarantees of safety? How much safer are they and how much

of a performance penalty is incurred?

2. Does Revel offer benefits compared to prior work in verified exploration

which uses static shields [5, 30]?

To answer these questions, we compare Revel against three baselines:

(1) Deep Deterministic Policy Gradients (DDPG) [63], (2) Constrained Policy

Optimization (CPO) [3], and (3) a variant of Revel which never updates

the user-provided initial shield. DDPG is a well-known RL algorithm which

does not account for safety considerations, so we augment the reward with a

penalty for safety violations. CPO is designed for safe exploration, but does

not guarantee safety.
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4.4.1 Benchmarks

We use 10 benchmarks to evaluate the safety and performance each

algorithm. These benchmarks include classic control problems, robotics ap-

plications, and benchmarks from prior work. For each environment, we hand-

constructed a worst-case, piecewise-linear model of the dynamics. These mod-

els are based on the pysics of the environment and use non-determinism to

approximate nonlinear functions. For example, some of our benchmarks in-

clude trigonometric functions which cannot be represented linearly. In these

cases, we define piecewise-linear upper and llower bounds to the trigonomet-

ric functions. These linear approximations are necessary to make verification

feasible. Each benchmark also includes a bounded-time safety property which

should hold at all times during training.

The benchmarks are:

1. mountain-car: A continuous version of the classic mountain car problem.

In this environment, the goal is to move an underpowered vehicle up a

hill (on the right side) by rocking back and forth in a valley to build up

momentum. The safety property asserts that the car does not go oer the

crest of the hill on the left.

2. road, road-2d, noisy-road, noiys-road-2d: Four variants of an autonomous

car control problem. In each case, the car’s goal is to move to a speci-

fied end position while obeying a given speed limit. The noisy variants

introduce noise in the environment, while the 2d variants need to move
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through two dimensions to reach the goal (the non-2d variants are one-

dimensional).

3. obstacle, ostacle2: A robot moving in 2D space much reach a goal po-

sition while avoiding an unsafe region. In obstacle, the unsafe region is

placed off to the side so that the agent must avoid it during exploration,

but even an unsafe algorithm should converge to safe path. In obstacle2,

the unsafe region is between the starting state and the goal, so the policy

must learn to move around it.

4. pendulum: A classic pendulum environment. The pendulum starts hang-

ing downward and the system must swing it up so that it is vertical. The

safety property in this case is a bound on the angular velocity of the pen-

dulum.

5. acc: An adaptive cruise control benchmark taken from [30] and modified

to use a continuous action space. Here the goal is to follow a lead car as

closely as possible without crashing into it. At each time step the lead car

choose an acceleration at random from a truncated normal distribution.

6. car-racing is similar to obstacle2 except that in this case the agent must

reach the goal state and then return to the start, completing one lap

around the obstacle.

For each benchmark, we consider a bounded-time variant of the desired safety

property. That is, for a fixed T , we guarantee that a policy π = (πS, φ, πN)
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cannot violate the safety property within T time steps starting from any state

satisfying φ.

4.4.2 Training Details

For most benchmarks, we train for 100,000 environment interactions

with a maximum episode length of 100. For mountain-car we use a maximum

episode length of 200 and 200,000 total environment interactions. For obsta-

cle, obstacle2, and car-racing we use an episode length of 200 and 400,000

total environment interactions. For every benchmark, we synthesize five new

shields at even intervals throughout training. To evaluate CPO we use the

implementation provided with the Safety Gym repository [82]. To account for

our safety critical benchmarks, we reduce the tolerance for safety violations

in this implementation by lowering the corresponding hyperparameter from

25 to 1. For DDPG, we use an implementation from prior work [109], which

is also what we base the code for Revel on. We ran each experiment with

five independent, randomly chosen seeds. Note that the chosen number of

training episodes was enough for the baselines to converge, in the sense that

over the last 25 training episodes we see less than a 2% improvement in policy

performance.

4.4.3 Performance

First, we compare the policies learned using Revel against policies

learned using the baselines in terms of the cost incurred by the policies (that
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(a) mountain-car (b) road (c) road-2d

(d) noisy-road (e) noisy-road-2d (f) obstacle

(g) obstacle2 (h) pendulum (i) acc

(j) car-racing

Figure 4.1: Training performance comparison between different RL techniques.
Note that the y-axis is the cost, so lower is better.
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is, the negative of the reward). Figure 4.1 shows the cost over time for each of

the policies during training. For each color, the solid line indicates the mean

performance while the shaded envelope shows the upper and lower bounds on

performance. The horizontal line on each figure represents the performance of

the initial shield. The results suggest that:

• The performance of Revel is competitive with (or even better than)

DDPG for 7 of the 10 benchmarks. Revel achieves significantly better

reward than DDPG in the “car-racing” benchmark, and the reward is

only slightly worse for 2 benchmarks.

• Revel has better performance than CPO on 4 of the 10 benchmarks

and only performs slightly worse on 2. Furthermore, the cost incurred

by CPO is significantly worse on 2 benchmarks (“noisy-road” and “car-

racing”).

• Revel outperforms the static shielding approach on 4 of the 10 bench-

marks. Furthermore, the difference is substantial on 2 of these bench-

marks (“noisy-road” and “mountain-car”).

4.4.4 Safety

In order to validate whether the safety guarantee provided by Revel is

useful, we consider how DDPG and CPO behave during training. Specifically,

Table 4.1 shows the average number of safety violations per run for DDPG

and CPO. As we can see from this table, DDPG and CPO both exhibit safety
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(a) mountain-car (b) road (c) road-2d

(d) noisy-road (e) noisy-road-2d (f) obstacle

(g) obstacle2 (h) pendulum (i) acc

(j) car-racing

Figure 4.2: Cumulative safety violations during training.
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Table 4.1: Safety violations.

Benchmark DDPG CPO

mountain-car 0.0 3.6
road 0.0 0.0

road-2d 113.4 70.8
noisy-road 1130.4 8526.4

noisy-road-2d 107.4 0.0
obstacle 12.4 1.0
obstacle2 96.0 118.6
pendulum 92.4 9906.0

acc 4.0 673.0
car-racing 4956.2 22.4

violations in 8 out of the 10 benchmarks. Recall that Revel policies are

proven to have zero safety violations in any of the benchmarks. Figure 4.2

shows how the number of violations caries throughout the training process.

4.4.5 Training cost

Revel does incur a substantial overhead in terms of computational

cost. Table 4.2 shows the time spent in network updates and shield updates

for each benchmark, along with the percentage of the total time spent in

shield synthesis. The “acc” and “pendulum” benchmarks stand out as having

very fast shield updates. For these two benchmarks, the safety properties are

relatively simple, so the verificaiton engine is able to come up with the safe

shields more quickly. Otherwise, Revel spends the majority of its time (87%

on average) in shield synthesis.
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Table 4.2: Training time in seconds for network and shield updates

Benchmark Network update (s) Shield update (s) Shield percentage

mountain-car 1900 5315 73.7%
road 954 9401 90.8%

road-2d 1015 19492 95.1%
noisy-road 962 12793 93.0%

noisy-road-2d 935 25514 96.5%
obstacle 4332 27818 86.5%
obstacle2 4365 21661 83.2%
pendulum 1292 113 8.0%

acc 1097 56 4.9%
car-racing 4361 15892 78.5%

Figure 4.3: Trajectories for obstacle2. Figure 4.4: Trajectories for acc.

4.4.6 Qualitative Evaluation

In order to provide some intuitive description of the results, we consider

some sample trajectories from the trained policies for two of our benchmarks.

Figure 4.3 shows the trajectories taken by each of the policies for the obstacle2

benchmark. In this environment, the agent starts in the lower left corner, and

the goal is to move to the green circle in the upper right. However the red box
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in the middle is unsafe, and the agent must always stay outside of that box.

As we can see from Figure 4.3, all of the policies have learned to go around the

unsafe region in the center. However DDPG has not reinforced this behavior

enough, and due to the lack of safety guarantees, it still enters the corner of

the unsafe region. By contrast, the statically shielded policy avoids the unsafe

region, but there is a clean bend in the policy where the shield must step in.

The policy learned with Revel avoids the unsafe region while maintaining

smoother behavior. In this case, CPO also learns to avoid the unsafe region

and reach the goal. (Because the environment is symmetrical, there is no

significance to the fact that the CPO curve goes up first and then right as

opposed to right first and then up.)

Figure 4.4 shows trajectories for the acc benchmark, which models an

adaptive cruise control system. In this environment, the agent is a car whose

goal is to follow another car as closely as possible without crashing. The

lead car may accelerate or brake at any time with bounded magnitude. In

Figure 4.4, the x-axis shows the distance between the controled car and the

lead car while the y-axis shows the relatively velocity between the two cars.

Here, all of the trajectories start by accelerating to close the gap to the lead

car before slowing down again. The statically shielded policy is the first to

slow down, thus achieving lower rewards than the other policies. Both the

DDPG and CPO policies fail to slow down early enough or quickly enough

and they crash into the lead car (represented by the red region on the right of

the figure). In contrast, the Revel policy can more quickly close the gap to
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the lead car and is able to slow down later than the statically-shielded policy

while still avoiding a crash.
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Chapter 5

Safe Exploration in Unknown Environments1

While Revel is able to maintain safety in many cases, it requires a

predefined approximation of the environment to do so. In some cases, such

environment approximations are not readily available, which makes it impos-

sible to apply Revel in these environments. In this chapter, we will address

this problem by developing a new algorithm which works without a predefined

environment approximation.

Our approach, called Spice 2, is similar to [15] in that we use a learned

model to filter out unsafe actions. However, the novel idea in Spice is to use

the symbolic method of weakest preconditions [24] to compute, from a single-

time-step environment model, a predicate that decides if a given sequence

of future actions is safe. Using this predicate, we symbolically compute a

safety shield [5] that intervenes whenever the current policy proposes an unsafe

action. The environment model is repeatedly updated during the learning

process using data safely collected using the shield. The computation of the

weakest precondition and the shield is repeated, leading to a more refined

1This chapter is based on [6]. The author of this dissertation was responsible for the
ideas, analysis, and implementation of this technique.

2Spice is available at https://github.com/gavlegoat/spice.
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shield, on each such update.

The benefit of this approach is sample-efficiency: to construct a safety

shield for the next k time steps, Spice only needs enough data to learn a

single-step environment model. We show this benefit using an implementation

of the method in which the environment model is given by a piecewise linear

function and the shield is computed through quadratic programming (QP). On

a suite of challenging continuous control benchmarks from prior work, Spice

has comparable performance as fully neural approaches to safe exploration and

incurs far fewer safety violations on average.

This chapter makes the following contributions

• We present the first neurosymbolic framework for safe exploration with

learned models of safety.

• We present a theoretical analysis of the safety and performance of our

approach.

• We develop an efficient, QP-based instantiation of the approach and show

that it offers greater safety than end-to-end neural approaches without

a significant performance penalty.

5.1 Background: Weakest Precondition

Our approach to the safe exploration problem is built on weakest pre-

conditions [24]. At a high level, weakest preconditions allow us to “translate”
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constraints on a program’s output to constraints on its input. As a very sim-

ple example, consider the function x 7→ x + 1. The weakest precondition for

this function with respect to the constraint ret > 0 (where ret indicates the

return value) would be x > −1. In this work, the “program” will be a model

of the environment dynamics, with the inputs being state-action pairs and the

outputs being states.

For the purposes of this chapter, we present a simplified weakest pre-

condition definition that is tailored towards our setting. Let f : S × A → 2S

be a nondeterministic transition function. As we will see in Section 5.3, f

represents a PAC-style bound on the environment dynamics. We define an

alphabet Σ which consists of a set of symbolic actions ω0, . . . , ωH−1 and states

χ0, . . . , χH . Each symbolic state and action can be thought of as a variable

representing an a priori unkonwn state and action. Let φ be a first order

formula over Σ. The symbolic states and actions represent a trajectory in the

environment defined by f , so they are linked by the relation χi+1 ∈ f(χi, ωi)

for 0 ≤ i < H. Then, for a given i, the weakest precondition of φ is a formula ψ

over Σ \ {χi+1} such that (1) for all e ∈ f(χi, ωi), we have ψ =⇒ φ[χi+1 7→ e]

and (2) for all ψ′ satisfying condition (1), ψ′ =⇒ ψ. Here, the notation

φ[χi+1 7→ e] represents the formula φ with all instances of χi+1 replaced by

the expression e. Intuitively, the first condition ensures that, after taking one

environment step from χi under action ωi, the system will always satisfy φ,

no matter how the nondeterminism of f is resolved. The second condition

ensures that φ is as permissive as possible, which prevents us from ruling out
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states and actions that are safe in reality.

5.2 Symbolic Preconditions in Constrained Exploration

Algorithm 5.1 The main learning algorithm

procedure Spice
Initialize an empty dataset D and random policy π

for epoch in 1 . . . N do
if epoch = 1 then

πS ← π
else

πS ← λs.WpShield(M, s, π(a))

Unroll real trajectores {(si,ai, s′i, ri)} under πS
D = D ∪ {(si,ai, s′i, ri)}
M ← LearnEnvModel(D)
Optimize π using the simulated environment M

Our approach, Symbolic Preconditions in Constrained Exploration (ab-

breviated Spice), uses a learned environment model to both improve sample

efficiency and support safety analysis at training time. To do this, we build on

top of model-based policy optimization (MBPO) [49]. Similar to MBPO, the

model in our approach is used to generate synthetic policy rollout data which

can be fed into a model-free learning algorithm to train a policy. In contrast

to MBPO, we reuse the environment model to ensure the safety of the system.

This dual use of the environment allows for both efficient optimization and

safe exploration.

The main training procedure is shown in Algorithm 5.1 and simulta-

neously learns an environment model M and the policy π. The algorithm
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maintains a dataset D of observed environment transitions, which is obtained

by executing the current policy π in the environment. Spice then uses this

dataset to learn an environment M , which is used to optimize the current pol-

icy π, as done in model-based RL. The key difference of our technique from

standard model-based RL is the use of a shielded policy πS when unrolling

trajectories to construct dataset D. This is necessary for safe exploration be-

cause executing π in the real environment could result in safety violations. In

contrast to prior work, the shielded policy πS in our approach is defined by

an online weakest precondition computation which finds a constraint over the

action space which symbolically represents all safe actions. This procedure is

described in detail in Section 5.3.

5.3 Shielding with Polyhedral Weakest Preconditions

5.3.1 Overview of Shielding Approach

Algorithm 5.2 Shielding a proposed action

procedure WpShield(M, s0,a
∗
0)

f ← Approximate(M, s0,a
∗
0)

φH ←
∧H
i=1 χi ∈ S \ SU

for t from H − 1 down to 0 do
φt ← wp(φt+1, f)

φ← φ0[χ0 7→ s0]
(a0, . . . ,aH−1) = arg min

a′0,...,a
′
H−1�φ

‖a′0 − a∗0‖2

return a0

Our high-level online intervention approach is presented in Algorithm 5.2.

Given an environment model M , the current state x0 and a proposed action
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a∗0, the WpShield procedure chooses a modified action a0 which is as simi-

lar as possible to a∗0 while ensuring safety. We consider an action to be safe

if, after executing that action in the environment, there exists a sequence of

follow-up actions a1, . . . ,aH−1 which keeps the system away from the unsafe

states over a finite time horizon H. In more detail, our intervention technique

works in three steps:

Approximating the environment. Because computing the weakest

precondition of a constraint with respect to a complex environment model (e.g.,

deep neural network) is intractable, Algorithm 5.2 calls the Approximate

procedure to obtain a simpler first-order local Taylor approximation to the

environment model centered at (s0,a
∗
0). That is, given the environment model

M , it computes matrices A and B, a vector c, and an error ε such that

f(s,a) = As + Ba + c + ∆ where ∆ is an unknown vector with elements in

[−ε, ε]. The error term is computed based on a normal Taylor series analysis

such that with high probability, M(s,a) ∈ f(s,a) in a region close to s0 and

a∗0.

Computation of safety constraint. Given a linear approximation f

of the environment, Algorithm 5.2 iterates backwards in time, starting with the

safety constraint φH at the end of the time horizon H. In particular, the initial

constraint φH asserts that all (symbolic) states χ1, . . . , χH reached within the

time horizon are inside the safe region. Then, the loop inside Algorithm 5.2

uses the wp procedure (described in the next two subsections) to eliminate

one symbolic state at a time from the formula φi. After the loop terminates,
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all of the state variables except for χ0 have been eliminated from φ0, so φ0 is a

formula over χ0, ω0, . . . , ωH−1. The next line of Algorithm 5.2 simply replaces

the symbolic variable χ0 with the current state s0 in order to find a constraint

over only the actions.

Projection onto safe space. The final step of the shielding procedure

is to find a sequence a0, . . . ,aH−1 of actions such that (1) φ is satisfied and

(2) the distance ‖a0 − a∗0‖ is minimized. Here, the first condition enforces

the safety of the shielded policy, while the second condition ensures that the

shielded policy is as similar as possible to the original one. The notation

a0, . . . ,aH−1 � φ indicates that φ is true when the concrete values a0, . . . ,aH−1

are substituted for the symbolic values ω0, . . . , ωH−1 in φ. Thus, the arg min

in Algorithm 5.2 is effectively a projection on the set of action sequences

satisfying φ. We discuss this optimization problem in Section 5.3.4.

5.3.2 Weakest Preconditions for Polyhedra

In this section, we describe the wp procedure used in Algorithm 5.2 for

computing the weakest precondition of a safety constraint φ with respect to

a linear environment model f . To simplify presentation, we assume that the

safe space is given as a convex polyhedron — i.e., all safe states satisfy the

linear constraint Ps + q ≤ 0. We will show how to relax this restriction in

Section 5.3.3.

Recall that our environment approximation f is a linear function with

bounded error, so we have constraints over the symbolic states and actions:
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Figure 5.1: Weakest precondition example.

χi+1 = Aχi + Bωi + c + ∆ where ∆ is an unknown vector with elements in

[−ε, ε]. In order to compute the weakest precondition of a linear constraint φ

with respect to f , we simply replace each instance of χi+1 in φ with Aχi +

Bωi + c + ∆∗ where ∆∗ is the most pessimistic possibility for ∆. Because

the safety constraints are linear and the expression for χi+1 is also linear,

this substitution results in a new linear formula which is a conjunction of

constraints of the form wTν + vT∆∗ ≤ y. For each element ∆i of ∆, if the

coefficient of ∆∗i is positive in v, then we choose ∆∗i = ε. Otherwise, we

choose ∆∗i = −ε. This substitution yields the maximum value of vT∆∗ and is

therefore the most pessimistic possibility for ∆∗i .

Example. We illustrate the weakest precondition computation through

simple example: Consider a car driving down a (one-dimensional) road whose

goal is to reach the other end of the road as quickly as possible while obeying

a speed limit. The state of the car is a position x and velocity v. The action

space consists of an acceleration a. Assume there is bounded noise in the ve-
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locity updates so the dynamics are x′ = x+ 0.1v and v′ = v + 0.1a+ ε where

−0.01 ≤ ε ≤ 0.01 and the safety constraint is v ≤ 1. Suppose the current ve-

locity is v0 = 0.9 and the safety horizon is two. Then, starting with the safety

constraint v1 ≤ 1∧v2 ≤ 1 and stepping back through the environment dynam-

ics, we get the precondition v1 ≤ 1∧v1+0.1a1+ε1 ≤ 1. Stepping back one more

time, we find the condition v0 +0.1a0 +ε2 ≤ 1∧v0 +0.1a0 +0.1a1 +ε1 +ε2 ≤ 1.

Picking the most pessimistic values for ε1 and ε2 to reach v0 + 0.1a0 + 0.01 ≤

1 ∧ v0 + 0.1a0 + 0.1a1 + 0.02 ≤ 1. Since v0 is specified, we can replace v0 with

0.9 to simplify this to a constraint over the two actions a0 and a1, namely

0.91 + 0.1a0 ≤ 1∧ 0.92 + 0.1a0 + 0.1a1 ≤ 1. Figure 5.1 shows this region as the

shaded triangle on the left. Any pair of actions (a0, a1) which lies inside the

shaded triangle is guaranteed to satisfy the safety condition for any possible

values of ε1 and ε2.

5.3.3 Extension to More Complex Safety Constraints

In this section, we extend our weakest precondition computation tech-

nique to the setting where the safe region consists of unions of convex polyhe-

dra. That is, the state space is represented as a set of matrices Pi and a set of

vectors qi such that S \ SU =
⋃N
i=1 {s ∈ S | Pix+ qi ≤ 0}. Note that, while

individual polyhedra are limited in their expressive power, unions of polyhedra

can approximate reasonable spaces with arbitrary precision. This is because

a single polyhedron can approximate a convex set arbitrarily precisely [18], so

unions of polyhedra can approximate unions of convex sets.
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In this case, the formula φH in Algorithm 5.2 has the form

φH =
H∧
j=1

N∨
i=1

Piχj + qi ≤ 0.

However, the weakest precondition of a formula of this kind can be difficult

to compute. Because the system may transition between two different poly-

hedra at each time step, there is a combinatorial explosion in the size of the

constraint formula, and a corresponding exponential slowdown in the weakest

precondition computation. Therefore, we replace φH with an approximation

φ′H =
N∨
i=1

H∧
j=1

Piχj + qi ≤ 0

(that is, we swap the conjunction and the disjunction). Note that φH and φ′H

are not equivalent, but φ′H is a stronger formula (i.e., φ′H =⇒ φH). Thus,

any states satisfying φ′H are also guaranteed to satisfy φH , meaning that they

will be safe. More intuitively, this modification asserts that, not only does

the state stay within the safe region at each time step, but it stays within the

same polyhedron at each step within the time horizon.

With this modified formula, we can pull the disjunction outside the

weakest precondition, i.e.,

wp

(
N∨
i=1

H∧
j=1

Piχj + qi ≤ 0, f

)
=

N∨
i=1

wp

(
H∧
j=1

Piχj + qi ≤ 0, f

)
.

The conjunctive weakest precondition on the right is of the form described in

Section 5.3.2, so this computation can be done efficiently. Moreover, the num-

ber of disjuncts does not grow as we iterate through the loop in Algorithm 5.2.
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This prevents the weakest precondition formula from growing out of control,

allowing for the overall weakest precondition on φ′H to be computed quickly.

Example. Consider an environment which represents a robot moving

in 2D space. The state space is four-dimensional, consisting of two position

elements x and y and two velocity elements vx and vy. The action space

consists of two acceleration terms ax and ay, giving rise to the dynamics

x = x+ 0.1vx y = y + 0.1vy

vx = vx + 0.1ax vy = vy + 0.1ay

In this environment, the safe space is x ≥ 2∨y ≤ 1, so that the upper-left part

of the state space is considered unsafe. Choosing a safety horizon of H = 2,

we start with the initial constraint (x1 ≥ 2 ∨ y1 ≤ 1) ∧ (x1 ≥ 2 ∧ y2 ≤ 1).

We transform this formula to the stronger formua (x1 ≥ 2 ∧ x2 ≥ 2) ∨ (y1 ≤

1 ∧ y2 ≤ 1). By stepping backwards through the weakest precondition twice,

we obtain the following formula over only the current state and future actions:

(x0+0.1vx0 ≥ 2∧x0+0.2vx0+0.01ax0 ≥ 2)∨(y0+0.1vy0 ≤ 1∧y0+0.2vy0+0.01ay0 ≤ 1).

Intuitively, the approximation we make to the formula φH does rule out

some potentially safe action sequences. This is because it requires the system

to stay within a single polyhedron over the entire horizon. However, this im-

precision can be ameliorated in cases where the different polyhedra comprising

the state space overlap one another (and that overlap has non-zero volume).

In that case, the overlap between the polyhedra serves as a “transition point”,
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allowing the system to maintain safety within one polyhedron until it enters

the overlap, and then switch to the other polyhedron in order to continue its

trajectory.

More formally, we say two polyhedra “overlap” if their intersection has

positive volume. That is, polyhedra p1 and p2 overlap if µ(p1∩p2) > 0 where µ

is the Lebesgue measure. Often in practical continuous control environments,

either this property is satisfied, or it is impossible to verify any safe trajectories

at all. This because in continuous control, the system trajectory is a path in

the state space, and this path has to move between the different polyhedra

defining the safe space. To see how this necessitates our overlapping property,

let’s take a look at a few possibilities for how the path can pass from one

polyhedron p1 to a second polyhedron p2. For simplicity, we’ll assume the

polyhedra are closed, but this argument can be extended straightforwardly to

open or partially open polyhedra.

• If the two polyhedra are disconnected, then the system is unable to tran-

sition between them because the system trajectory must define a path

in the safe region of the state space. Since the two sets are disconnected,

the path must pass through the unsafe states, and therefore cannot be

safe.

• Suppose the dimension of the state space is n and the intersection of the

two polyhedra is an n− 1 dimensional surface (for example, if the state

space is 2D then the polyhedra intersect in a line segment). In this case,
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we can add a new polyhedron to the set of safe polyhedra in order to

provide an overlap to both p1 and p2. Specifically, let X be the set of

vertices of p1 ∩ p2. Choose a point x1 in the interior of p1 and a point

x2 in the interior of p2. Now define p′ as the convex hull of X ∪{x1, x2}.

Note that p′ ⊆ p1 ∪ p2, so we can add p′ to the set of safe polyhedra

without changing the safe state space as a whole. However, p′ overlaps

with both p1 and p2, and therefore the modified environment has the

overlapping property.

• Otherwise, p1 ∩ p2 is a lower-dimensional surface. Then for every point

x ∈ p1 ∩ p2 and for every ε > 0 there exists an unsafe point x′ such that

‖x−x′‖ < ε. In order for the system to transition from p1 to p2, it must

pass through a point which is arbitrarily close to unsafe. As a result,

the system must be arbitrarily fragile — any perturbation can result in

unsafe behavior. Because real-world systems are subject to noise and/or

modeling error, it would be impossible to be sure the system would be

safe in this case.

5.3.4 Projection Onto the Weakest Precondition

After applying the ideas from Section 5.3.3, each piece of the safe space

yields a set of linear constraints over the action sequence a0, . . . ,aH−1. That

is, φ from Algorithm 5.2 has the form

φ =
N∨
i=1

H−1∑
j=0

Gi,juj + hi ≤ 0.
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Now, we need to find the action sequence satisfying φ for which the first

action most closely matches the proposed action a∗0. In order to do this, we

can minimize the objective function ‖a0 − a∗0‖2. This function is quadratic,

so we can represent this minimization problem as N quadratic programming

problems. That is, for each polyhedron Pi, qi in the safe region, we solve:

minimize ‖a∗0 − a0‖2

subject to
H−1∑
j=0

Gi,jaj + hi ≤ 0

Such problems can be solved efficiently using existing tools. By applying the

same technique independently to each piece of the safe state space, we reduce

the projection problem to a relatively small number of calls to a quadratic

programming solver. This reduction allows the shielding procedure to be ap-

plied fast enough to generate the amount of data needed for gradient-based

learning.

Example: Consider again Figure 5.1. Suppose the proposed action is

a∗0 = 1, represented by the solid line in Figure 5.1. Since the proposed action

is outside of the safe region, the projection operation will find the point inside

the safe region that minimizes the distance along the a0 axis only. This leads to

the dashed line in Figure 5.1, which is the action a0 that is as close as possible

to a∗0 while still intersecting the safe region represented by the shaded triangle.

Therefore, in this case, WpShield would return 0.8 as the safe action.
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5.4 Theoretical Results

We will now develop theoretical results on the safety and performance of

agents trained with Spice. To do so, we will need to make several assumptions:

Assumption 5.1. The function Approximate returns a sound, nondeterminis-

tic approximation of M in a region reachable from state s0 over a time horizon

H. That is, let SR be the set of all states s for which there exists a sequence

of actions under which the system can transition from s0 to s within H time

steps. Then if f = Approximate(M, s0,a
∗
0) then for all s ∈ SR and a ∈ A,

M(s,a) ∈ f(s,a).

Assumption 5.2. The model learning procedure returns a model which is close

to the actual environment with high probability. That is, if M is a learned

environment model then for all s,a,

Ps′∼P (·|s,a) [‖M(s,a)− s′‖ > ε] < δ.

Definition 5.1. A state s0 is said to have realizable safety over a time horizon

H if there exists a sequence of actions a, . . . ,aH−1 such that, when s0, . . . , sH

is the trajectory unrolled starting from s0 in the true environment, the formula

φ inside WpShield(M, si, π(si)) is satisfiable for all i.

Definition 5.1 formalizes the idea that there exists an intervention at a

particular state which can steer the system to safety. If no intervention exists,

then of course we are not able to guarantee safety.
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Lemma 5.1. (WpShield is safe under bounded error.) Let H be a time

horizon, s0 be a state with realizable safety over H, M be an environment

model, and π be a policy. Choose ε such that for all states s and actions a,

‖M(s,a)− s′‖ ≤ ε where s′ is sampled from the true environment transition

at s and a. For 0 ≤ i < H let ai = WpShield(M, si, π(si)) and let si+1

be sampled from the true environment at si and ai. Then for 0 ≤ i ≤ H,

si 6∈ SU .

Proof. Combining Assumption 5.1 with condition 1 in the definition of weak-

est preconditions, we conclude that for all e ∈ M(si,ai), wp(φi+1, f) =⇒

φi+1[si+1 7→ e]. Stepping backward through the loop in WpShield, we find

that for all ei ∈ M(si−1,ai−1) for 1 ≤ i ≤ H, φ0 =⇒ φH [s1 7→ e1, . . . , sH 7→

eH ]. Because φH asserts the safety of the system, we have that φ0 also implies

that the system is safe. Then because the actions returned by WpShield are

constrained to satisfy φ0, we also have that si for 0 ≤ i ≤ H are safe.

Theorem 5.2. Let s0 be a state with realizable safety and let π be any policy.

For 0 ≤ i < H, let ai = WpShield(M, si, π(si)) and let si+1 be the result

of taking action ai at state si. Then with probability at least (1− δM)i, si is

safe.

Proof. By Lemma 5.1, if ‖M(x,u)−x′‖ ≤ ε then xi is safe for all 1 ≤ i ≤ H.

By Assumption 5.2, ‖M(x,u)−x′‖ ≤ ε with probability at least 1− δ. Then

at each time step, with probability at most δ the assumption of Lemma 5.1 is
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violated. Therefore after i time steps, the probability that Lemma 5.1 can be

applied is at least (1− δ)i, so xi is safe with probability at least (1− δ)i.

This theorem shows why Spice is better able to maintain safety com-

pared to prior work. Intuitively, constraint violations can only occur in Spice

when the environment model is incorrect. In contrast, statistical approaches

to safe exploration are subject to safety violations caused by either model-

ing error or actions which are not safe even with respect to the environment

model. Note that for a safety level δ and horizon H, a modeling error can be

computed as δM < 1− (1− δ)/ exp(H − 1).

The performance analysis is based on treating Algorithm 5.1 as a func-

tional mirror descent in the policy space, similar to [99] and [8]. We as-

sume a class of neural policies F , a class of safe policies G, and a joint class

H of neurosymbolic policies. We proceed by considering the shielded policy

λx.WpShield(M,x, πN(x)) to be a projection of the neural policy πN into

G for a Bregman divergence DF defined by a function F . We define a safety

indicator Z which is one whenever WpShield(M,x, π(i)(x)) = π(i)(x) and

zero otherwise, and we let ζ = E[1− Z]. We additionall assume:

1. H is a vector space equipped with an inner product 〈·, ·〉 and induced

norm ‖π‖ =
√
〈π, π〉;

2. The long-term reward R is LR-Lipschitz;

3. F is a convex function on H, and ∇F is LF -Lipschitz continuous on H;
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4. H is bounded (i.e., sup{‖π − π′‖ | π, π′ ∈ H} <∞);

5. E[1 − Z] ≤ ζ, i.e., the probability that the shield modifies the action is

bounded above by ζ;

6. the bias introduced in the sampling process is bounded by β, i.e., ‖E[∇̂F |

π]−∇FR(π)‖ ≤ β, where ∇̂F is the estimated gradient;

7. for s ∈ S, a ∈ A, and policy π ∈ H, if π(a | s) > 0 then π(a | s) > δ

for some fixed δ > 0;

8. the KL-divergence between the true environment dynamics and the model

dynamics are is bounded by εm; and

9. the TV-divergence between the policy used to gather data and the policy

being trained is bounded by επ.

For the following regret bound, we will need three useful lemmas from

prior work. These lemmas are reproduced below for completeness.

Lemma 5.3. ( [49], Lemma B.3) Let the expected KL-divergence between two

transition distributions be bounded by maxt Es∼pt1(s)DKL(p1(s
′,a | s)‖p2(s′,a |

s)) ≤ εm and maxsDTV (π1(a | s)‖π2(a | s)) < επ. Then the difference in

returns under dynamics p1 with policy π1 and p2 with policy π2 is bounded by

|Rp1(π1)−Rp2(π2)| ≤
2rmaxγ(επ + εm)

(1− γ)2
+

2rmaxεπ
1− γ

= O(επ + εm)

(where rmax = sups∈S,act∈A r(s,a)).
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Lemma 5.4. ( [8], Appendix B) Let D be the diameter of H, i.e., D =

sup{‖π − π′‖ | π, π′ ∈ H}. Then the bias incurred by approximating ∇HR(π)

with ∇Fr(π) is bounded by∥∥∥E [∇̂F | π]−∇Hr(π)
∥∥∥ = O(β + LRζ)

Lemma 5.5. ( [99], Theorem 4.1) Let π1, . . . , πT be a sequence of safe policies

returned by Algorithm 5.1 (i.e., πi is the result of calling WpShield on the

trained policy) and let π∗ be the optimal safe policy. Letting β and σ2 be

bounds on the bias and variance of the gradient estimation and let ε be a

bound on the error incurred due to imprecision in WpShield. Then letting

η =
√

1
σ2

(
1
T

+ ε
)
, we have the expected regret over T iterations:

R(π∗)− E

[
1

T

T∑
i=1

R(πi)

]
= O

(
σ

√
1

T
+ ε+ β

)
.

Now using Lemma 5.3, we will bound the gradient bias incurred by

using model rollouts rather than true-environment rollouts.

Lemma 5.6. For a given policy π, the bias in the gradient estimate incurred

by using the environment model rather than the true environment is bounded

by ∣∣∣∇̂FR(π)−∇HR(π)
∣∣∣ = O(εm + επ).

Proof. Recall from the policy gradient theorem [94] that

∇FR(π) = Es∼ρπ ,a∼π [∇F log π(a | s)Qπ(s,a)]
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where ρπ is the state distribution induced by π and Qπ is the long-term ex-

pected reward starting from state s under action a. By Lemma 5.3, we have

|Qπ(s,a)− Q̂π(s,a)| ≤ O(εm + επ) where Q̂π is the expected return under the

learned environment model. Then because log π(s | a) is the same regardless

of whether we use the environment model or the true environment, we have

∇F log π(s | a) = ∇̂F log π(a | s) and

∣∣∇̂FR(π)−∇FR(π)
∣∣

=
∣∣∣E [∇̂F log π(a | s)Q̂π(s,a)

]
− E [∇F log π(a | s)Qπ(s,a)]

∣∣∣
=
∣∣∣E [∇F log π(a | s)Q̂π(s,a)

]
− E [∇F log π(a | s)Qπ(s,a)]

∣∣∣
=
∣∣∣E [∇F log π(a | s)Q̂π(s,a)−∇F log π(a | s)Qπ(s,a)

]∣∣∣
=
∣∣∣E [∇F log π(a | s)

(
Q̂π(s,a)−Qπ(s,a)

)]∣∣∣
Now because we assume π(a | s) > δ whenever π(a | s) > 0, the gradient of

the log is bounded above by a constant. Therefore,∣∣∣∇̂FR(π)−∇HR(π)
∣∣∣ = O(εm + επ).

Theorem 5.7. Let π
(i)
S for 1 ≤ i ≤ T be a sequence of safe policies learned by

Spice (i.e., π
(i)
S = λs.WpShield(M, s, π(a))) and let π∗S be the optimal safe

policy. Additionally Then setting the learning rate η =
√

1
σ2

(
1
T

+ ε
)
, we have

the expected regret bound:

R (π∗S)− E

[
1

T

T∑
i=1

R
(
π
(i)
S

)]
= O

(
σ

√
1

T
+ ε+ β + LRζ + εm + επ

)
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Proof. The total bias in gradient estimates is bounded by the sum of (i) the

bias incurred by sampling, (ii) the bias incurred by shield interference, and

(iii) the bias incurred by using an environment model rather than the true

environment. Part (i) is bounded by assumption, part (ii) is bounded by

Lemma 5.4, and part (iii) is bounded by Lemma 5.6. Combining these results,

we find that the total bias in the gradient estimate is O(β + LRζ + εm + επ).

Plugging this bound into Lemma 5.5, we reach the desired result.

This theorem provides a few intuitive results, based on the additive

terms in the regret bound. First, ζ is the frequency with which we intervene in

network actions and as ζ decreases, the regret bound becomes tighter. This fits

our intuition that, as the shield intervenes less and less, we approach standard

reinforcement learning. The two terms εm and επ are related to how accurately

the model captures the true environment dynamics. As the model becomes

more accurate, the policy converges to better returns. The other terms are

related to standard issues in reinforcement learning, namely the error incurred

by using sampling to approximate the gradient.

5.5 Experimental Evaluation

We now turn to a practical evaluation of Spice.

5.5.1 Implementation and Hyperparameters

Our implementation of Spice uses PyEarth [84] for model learning and

CVXOPT [9] for quadratic programming. Our learning algorithm is based on
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MBPO [49] using Soft Actor-Critic [43] as the underlying model-free learn-

ing algorithm. Our code is adapted from [97]. We gather real data for 10

episodes for each model update then collect data from 70 simulated episodes

before updating the environment model again. We look five time steps into

the future during safety analysis. Our SAC implementation uses automatic

entropy tuning as proposed in [44]. To compare with CPO we use the original

implementation from [3]. Each training process is cut off after 48 hours. We

train each benchmark starting from nine distinct seeds.

5.5.2 Benchmarks

We test Spice using the benchmarks considered in 4, consisting of 10

environments with continuous state and action spaces. The mountain-car and

pendulum benchmarks are continuous versions of the corresponding classi-

cal control environments. The acc benchmark represents an adaptive cruise

control environment. The remaining benchmarks represent various situations

arising from robotics. See 4.4.1 for a more complete description of each bench-

mark.

5.5.3 Baselines

We compare against two baseline approaches: Constrained Policy Op-

timization (CPO) [3], a model-free safe learning algorithm, and a version

of our approach which adopts the conservative safety critic shielding frame-

work from [15] (CSC-MBPO). We additionally tested MPC-RCE [64], another
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model-based safe-learning algorithm, but we find that it is too inefficient to

be run on our benchmarks. Specifically MPC-RCE was only able to finish on

average 162 episodes within a 2-day time period. Therefore, we do not include

MPC-RCE in the results presented in this section.

Note that, because the code for [15] is not available, we use a modified

version of our code for comparison which we label CSC-MBPO. Our imple-

mentation follows Algorithm 5.1 except that WpShield is replaced by an

alternative shielding framework. This framework learns a neural safety signal

using conservative Q-learning and then resamples actions from the policy until

a safe action is chosen, as described in [15]. We chose this implementation in

order to give the fairest possible comparison between Spice and the conser-

vative safety critic approach, as the only differences between the two tools in

our experiments is the shielding approach. The code for our tool includes our

implementation of CSC-MBPO.

5.5.4 Safety

First, we evaluate how well our approach ensures system safety during

training. In Table 5.1, we present the number of safety violations encountered

during training for our baselines. The last row of the table shows the average

increase in the number of safety violations compared to Spice (computed as

the geometric mean of the ratio of safety violations for each benchmark). This

table shows that Spice is safer than CPO in every benchmark and achieves,

on average, a 89% reduction in safety violations. CSC-MBPO is substantially
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(a) car-racing (b) noisy-road-2d (c) obstacle

(d) obstacle2 (e) pendulum (f) road-2d

(g) acc (h) mountain-car (i) noisy-road

(j) road

Figure 5.2: Cumulative safety violations over time.
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Benchmark CPO CSC-MBPO Spice

acc 684 137 286
car-racing 2047 1047 1169

mountain-car 2374 2389 6
noisy-road 0 0 0

noisy-road-2d 286 37 31
obstacle 708 124 2

obstacle2 5592 1773 1861
pendulum 1933 2610 1211

road 0 0 0
road-2d 103 64 41

Average 9.48 3.77 1

Table 5.1: Safety violations during training.

safer than CPO, but still not as safe as Spice. We achieve a 73% reduction in

safety violations on average compared to CSC-MBPO. To give a more detailed

breakdown, Figure 5.2 shows how the safety violations accumulate over time

for several of our benchmarks. The solid line represents the mean over all trials

while the shaded envelope shows the minimum and maximum values. As can

be seen from these figures, CPO starts to accumulate violations more quickly

and continues to violate the safety property more over time than Spice.

Note that there are a few benchmarks (acc, car-racing, and obstacle2)

where Spice incurs more violations than CSC-MBPO. There are two potential

reasons for this increase. First, Spice relies on choosing a model class through

which to compute weakest preconditions (i.e., we need to fix an Approximate

function in Algorithm 5.2). For these experiments, we use a linear approxi-

mation, but this can introduce a lot of approximation error. A more complex
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model class allowing a more precise weakest precondition computation may

help to reduce safety violations. Second, Spice uses a bounded-time analysis

to determine whether a safety violation can occur within the next few time

steps. By contrast, CSC-MBPO uses a neural model to predict the long-term

safety of an action. As a result, actions which result in safety violations far

into the future may be easier to intercept using the CSC-MBPO approach.

Given that Spice achieves much lower safety violations on average, we think

these trade-offs are desirable in many situations.

5.5.5 Performance

We also test the performance of the learned policies on each benchmark

in order to understand what impact our safety techniques have on model learn-

ing. Figure 5.3 show the average return over time for Spice and the baselines.

These curves show that in most cases Spice achieves a performance close to

that of CPO, and about the same as CSC-MBPO. We believe that the rela-

tively modest performance penalty incurred by Spice is an acceptable trade-off

in some safety-critical systems given the massive improvement in safety.

5.5.6 Qualitative Evaluation

In order to understand how Spice compares to prior work at a qual-

itative level, we will examine the trajectories of policies learned by Spice,

CPO, and CSC-MBPO partway through training. In the environment shown

in Figure 5.4, the agent controls a robot moving on a 2D plane which must
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(a) car-racing (b) noisy-road-d2d (c) obstacle

(d) obstacle2 (e) pendulum (f) road-2d

(g) acc (h) mountain-car (i) noisy-road

(j) road

Figure 5.3: Training curves for Spice and CPO.
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Figure 5.4: Trajectories early in training.

reach the green shaded area while avoiding the red cross-hatched area. For

each algorithm, we sampled 100 trajectories and plotted the worst one.

Figure 5.4 shows trajectories sampled from each tool at various stages

of training. Specifically, each 100 episodes during training, 100 trajectories

were sampled. The plotted trajectories represent the worst samples from this

set of 100. The environment represents a robot moving in a 2D plane which

must reach the green shaded region while avoiding the red crosshatched region.

(Notice that while the two regions appear to move in the figure, the are actually

static. The axes in each part of the figure change in order to represent the

entirety of the trajectories.) From this visualization, we can see that Spice

is able to quickly find a policy which safely reaches the goal every time. By

contrast, CSC-MBPO requires much more training data to find a good policy
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and encounters more safety violations along the way. CPO is also slower to

converge and more unsafe than Spice.

5.5.7 Exploring the Safety Horizon

Spice relies on choosing a good horizon over which to compute the

weakest precondition. We will now explore this tradeoff in more detail. Safety

curves for each benchmark under several different choices of horizon are pre-

sented in Figure 5.5. The performance curves for each benchmark are shown

in Figure 5.6.

There are a few notable phenomena shown in these curves. As expected,

in most cases using a safety horizon of one does not give particularly good

safety. This is expected because as the safety horizon becomes very small, it

is easy for the system to end up in a state where there are no safe actions.

The obstacle benchmark shows this trend very clearly: as the safety horizon

increases, the number of safety violations decreases.

On the other hand, several benchmarks (e.g., acc, mountain-car, and

noisy-road-2d) show a more interesting dynamic: very large safety horizons

also lead to an increase in safety violations. This is a little less intuitive because

as we look farther into the future, we should be able to avoid more unsafe

behaviors. However, in reality there is an explanation for this phenomenon.

The imprecision in the environment model (both due to model learning and

due to the call to Approximate) accumulates for each time step we need

to look ahead. As a result, large safety horizons lead to a fairly imprecise
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(a) acc (b) car-racing (c) mountain-car

(d) noisy-road (e) noisy-road-2d (f) obstacle

(g) obstacle2 (h) pendulum (i) road

(j) road-2d

Figure 5.5: Safety curves for Spice using different safety horizons
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analysis. Not only does this interfere with exploration, but it can also lead to

an infeasible constraint set in the shield. (That is, φ in Algorithm 5.2 becomes

unsatisfiable.) In this case, the projection in Algorithm 5.2 is ill-defined, so

Spice relies on a simplistic backup controller. This controller is not always

able to guarantee safety, leading to an increase in safety violations as the

horizon increases.

In practice, we find that a safety horizon of five provides a good amount

of safety in most benchmarks without interfering with training. Smaller or

larger values can lead to more safety violations while also reducing performance

a little in some benchmarks. In general, tuning the safety horizon for each

benchmark can yield better results, but for the purposes of this evaluation we

have chosen to use the same horizon throughout.
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(a) acc (b) car-racing (c) mountain-car

(d) noisy-road (e) noisy-road-2d (f) obstacle

(g) obstacle2 (h) pendulum (i) road

(j) road-2d

Figure 5.6: Training curves for Spice using different safety horizons
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Chapter 6

Scalable Shielding

The approaches described in Chapters 4 and 5 offer strong safety guar-

antees, but they both suffer from scalability challenges. In both cases, the

machine learning algorithms we are building on are able to handle much more

complex systems than the programming languages tools we use to ensure

safety. In this chapter, we turn our attention to these scalability challenges and

develop a new shielding approach which is able to handle complex systems.

The approach presented in this chapter, Mssc, retains the overall

shielding structure presented in previous chapters, but implements that shield-

ing framework entirely with neural networks. That is, rather than using ab-

stract interpretation (as in Chapter 4) or weakest preconditions (as in Chap-

ter 5) to develop a backup controller, Mssc uses a gradient-based learning

technique. This idea is related to the notion of safety critics proposed in [15],

but uses a different shielding structure in order to allow safer shield learning

without sacrificing performance. Specifically, while [15] trains a critic which

can predict unsafe behavior, the only given mechanism for avoiding unsafe

behavior is resampling. By contrast, our approach trains the critic along with

an explicit backup policy which can provide safe actions. This backup policy
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allows for more efficient shielding as well as a more general class of policies.

Because learning a safety critic and backup policy can involve making

unsafe decisions, we perform this learning process inside a model of the en-

vironment. This allows the agent to explore unsafe behavior in a simulated

environment without consequences. In principle, a backup policy trained in

an environment model may not enforce safety in the real environment, but we

show (empirically) that by using an appropriate model class we can avoid this

issue. Once a backup policy has been learned, it can be combined with any

other policy in order to enforce safety.

In summary, this chapter makes the following contributions

• We present a novel approach to safe exploration which is able to use

complex neural network models for both reward optimization and safety

analysis.

• We give preliminary results suggesting that this approach is able to en-

sure safety more effectively than existing statistcal techniques while scal-

ing to larger systems than existing formal methods-based approaches.

6.1 Background: Safety Critics

Our approach to safe exploration builds on the idea of safety critics

proposed by Bharadhwaj, et. al. [15]. For a given policy π, a safety critic QC

evaluates the safety of potential actions under π. That is, for a given state s

and action a, the value of the critic QC(s,a) gives the probability that after
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taking action a from state s, continuing to unroll a trajectory under π results

in unsafe behavior.

Safety critics serve two purposes: they act as a monitors to determine

whether specific actions may be unsafe and they are used to modify training

in order to converge to safe policies. The first use, as monitors, allow for safe

exploration by using the critic as a shield. In [15] the shield works by sampling

new actions from the same (stochastic) policy until one is deemed safe by the

safety critic. This strategy can be computationally inefficient when the policy

assigns low probability to safe actions, so in this chapter we will define an

improved shield by training an explicit backup policy. The second purpose of

safety critics as presented in [15] is to act as a training tool. Specifically, if the

safety critic is accurate then the optimal safe policy is the solution to

π∗ = arg max
π

R(π)

s.t. Es,a∼π [QC(s,a)] ≤ δ

Using the method of Lagrange multipliers, this optimization problem may be

represented as

π∗ = arg max
π

min
λ≥0

R(π)− λ (Es,a∼π [QC(s,a)]− δ)

and solved with alternating gradient descent-ascent.

6.2 Model-Based Shielding with Safety Critics

The key idea of Model-Based Shielding with Safety Critics (Mssc) is

to use the real environment to train a high-performance policy πN while using
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a model to train a safe backup policy πS. Intuitively, learning in the real

environment is expected to yield the highest-performing policy because there

is no error in the environment behavior. On the other hand, learning in a model

is safe because the model is purely virtual and there are no consequences for

entering unsafe parts of the state space. (An alternative view is that model-

based learning is sample efficient with respect to unsafe trajectories, leading

to a reduction in safety violations.) The goal of Mssc is to combine the

advantages of model-based and model-free learning. The model is used to

generate a safe backup policy πS which conforms to safety constraints but may

suffer from suboptimal performance. The backup policy is then used as a shield

during the training of a high-performance policy πN in the real environment.

This allows us to safely explore policies using the real environment.

In order to create safe combined policies, we adopt the idea of a safety

critic from Bharadhwaj, et. al. [15]. Intuitively, QC acts as an inductive in-

variant for πS, and as a result QC and πS can be used together to ensure the

safety of arbitrary policies as in Chapter 4. Specifically, for a given policy πN ,

we define a shielded policy π as

π(s) = if QC(s, πN(s)) > δ then πS(s) else πN(s),

(for a given safety level δ) which we denote as π = (πN , QC , πS). Intuitively,

QC is used to evaluate the safety of off-policy actions (with respect to πS) and

determine whether we may execute those actions, or whether we must use πS

instead.
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Algorithm 6.1 Model-Based Shielding with Safety Critics

Input: Environment E, initial critic QC , initial policy πS
Output: Optimal shielded policy
Randomly initialize πN
Initialize empty dataset D
for N epochs do

Train πN ← arg maxπ′N R((π′N , QC , πS)) in E

Augment D by rolling out (πN , QC , πS) in E
Train a model M ← arg minM ′ E(s,a,s′)∼D[‖M ′(s,a)− s′‖]
Jointly train QC and πS in the model M .

return (πN , QC , πS)

The main Mssc procedure is shown in Algorithm 6.1. It takes as

input an initial safety critic and backup policy which can be used to ensure

safety in the first iteration of the algorithm1. Notice that this initial safety

critic may be overly conservative because it will be updated over time to

allow better exploration. The backup policy and safety critic are then used

to enforce safety in the real environment E while the high-performance policy

πN is trained, as described in Chapter 4. This training can be done with any

existing RL algorithm. Once we have trained πN , we use it in combination with

the backup policy and critic to collect data about the environment dynamics

and add that data to the dataset D. This dataset is then used to train an

environment model.

The final step in the loop of Algorithm 6.1 is to train a new backup

policy and safety critic in the learned model M . Formally, the safety critic is

1This initial shield can be replaced by an initial dataset which is used to construct an
initial model, if obtaining a dataset is easier than constructing a shield.
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learned via Q-learning,

QC
k+1 = arg min

QC

E(s,a,s′,c)∼D

[(
QC(s,a)− B̂πSQC

k
)2]

(6.1)

where c is the immediate cost and B̂πS is the empirical Bellman operator defined

in [56]. The updates to QC are made in alternation with updates to the shield

policy πS, which solves

πk+1
S = arg min

πS

max
λ≥0

Es,a∼πS
[
D(πS(s,a), πk(s,a))

]
+λ (Es,a∼πS [QC(s,a)]− δ)

(6.2)

for an appropriate distance metric D. As discussed in Section 6.1, Equation 6.2

is a standard Lagrangian approach to constrained optimization. 2 The solution

to this saddle point problem is the policy πS which is as similar as possible to

the overall shielded policy π, but which is also safe according to QC .

Notice that the solution πk+1
S to Equation 6.2 satisfies the constraint

Es,a∼πS [QC(s,a)] ≤ δ.

Intuitively, this condition ensures that running πk+1
S is safe with probability

at least 1 − δ. Now in the next iteration of Algorithm 6.1, πk+1
S is combined

with πN to generate π = (πN , QC , π
k+1
S ). The safety of π relies on using QC

to define an inductive invariant of πk+1
S . Formally we define a set of states

φ = {s ∈ S | QC(s, πk+1
S (s)) ≤ δ}. Recall that an inductive invariant has to

satisfy three properties:

2Compared to Section 6.1, we have replaced the policy return with an imitation objective
and swapped minima and maxima accordingly
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1. the initial states of the system are included in the invariant;

2. the unsafe states are not included in the invariant; and

3. for any state s which is included in the invariant, taking one step under

π starting from s yields another state which is included in the invariant.

The first condition is trivially satisfied by φ as long as there exists a safe

policy in the environment. This is because the initial states of the system

are always included in the state-marginal distribution induced by any policy.

The second condition is also satisfied because if QC is accurate then unsafe

states will always be assigned a value of one, so they cannot be included in φ.

The third condition may be analyzed by looking at the structure of π(s) for

some state s ∈ φ. Because s is included in φ we have QC(s, πk+1
S (s)) ≤ δ. If

QC(s, πN(s)) ≤ δ, then because QC is trained on the undiscounted cost, we

have that for the next state s′, QC(s′, πk+1
S (s′)) ≤ δ so that s′ ∈ φ. Otherwise,

we directly apply the backup policy so we must still have that s′ ∈ φ.

At a theoretical level, Algorithm 6.1 may be viewed as an implemen-

tation of Revel in which the shield consists of a neural backup policy and

safety critic. As a result, the analysis presented in Section 4.3 is applicable to

Algorithm 6.1. Therefore, under reasonable assumptions, we may apply the

regret bound from Theorem 4.3 to Mssc directly.
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6.2.1 Shield Generalization

Underlying Algorithm 6.1 is the assumption that a backup policy and

safety critic which are trained in a model can be used in the real environment.

However it is not immediately clear that this assumption should hold. In prior

work on model-based RL, agents have been able to exploit inaccuracies in the

environment model to learn policies which have high performance in the model

but worse performance in the real environment [21]. There is no reason the

same kind of exploitation would not happen with respect to the safety signal

in addition to the reward.

Fortunately, because the cost signal is defined analogously to a reward,

we can use the same remedies which have been developed for normal model-

based RL. Specifically, we adopt the idea of a probabilistic ensemble model

from prior work [21, 49]. A probabilistic ensemble consists of B neural net-

works, each independently randomly initialized and independently trained.

For a given state and action, each network outputs the parameters of a prob-

ability distribution representing the next state. These parameters capture

aleatoric uncertainty, i.e., the inherent randomness of the environment. At

the same time, the difference between different networks captures epistemic

uncertainty, i.e., uncertainty in the network parameters arising from incom-

plete training. This can be understood intuitively by looking at two extreme

cases: first, suppose we have no training data. In this case, each network is

randomly initialized and there is no relationship between the outputs of each

network because nothing is known about the environment. On the other hand,
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imagine we have plenty of training data and allow each network to be trained

to convergence. Then every network accurately represents the environment,

and so for a given state and action, they all output the same parameters.

There may still be randomness in the model output, but this randomness is

now only due to inherent stochasticity in the environment.

Following [49], we use the probabilistic ensemble model by choosing one

network uniformly at random each time the model is called. This alleviates

the problem of policies exploiting error in the model because the individual

networks in the model have different biases due to their different initializations.

We show empirically in Section 6.3 that Mssc is able to apply shields learned

in the model to the real environment.

6.3 Evaluation

We now turn our attention to an empirical evaluation of Mssc, using

a subset of the benchmarks introduced in Chapter 4 (acc, pendulum, road-2d,

and noisy-road-2d). We compare against the same baselines used in Chapter 5.

6.3.1 Implementation and Training Details

We implement Mssc using soft actor-critic [43] as our main learning

algorithm for training πN , using the implementation from [97]. Our environ-

ment model is an ensemble of five networks each outputting a mean vector

and diagonal covariance matrix for a Gaussian distribution. The safety critic

is trained using standard deep Q-learning [71], while the shield is trained us-
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ing DAgger-style imitation learning [83] with the Lagrangian penalty from

Equation 6.2.

Note that, to allow for a fair comparison, we do not provide Mssc with

an initial shield or environment model. Instead, learning proceeds without

a shield for the first few episodes while an initial dataset is gathered. This

dataset is then used to learn an environment model and Mssc proceeds as

described in Algorithm 6.1. As a result, the first few episodes of training are

not expected to be safe, but any safety violations incurred in those episodes

are included in the safety results for the sake of fairness.

6.3.2 Scalability

In order to test the scalability of Mssc we attempt to use Spice on a

relatively high-dimensional benchmark taken from the Safety Gym suite [82].

However, Spice requires a symbolic model class for which we can compute

weakest preconditions. In this more complex benchmark, we find that our

symbolic model class is not able to accurately represent the environment dy-

namics. As a result, Spice is not able to compute safe actions from any

starting state. By contrast, Mssc uses neural networks both to model envi-

ronment dynamics and choose safe backup actions. Because of this increased

expressivity, Mssc is able to learn a precise environment model along with an

accurate safety critic and backup policy.
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Benchmark CPO CSC-MBPO SPICE MSSC

acc 176 14 18 33
noisy-road-2d 172 19 15 6

pendulum 1077 136 64 29
road-2d 78 25 24 0

Table 6.1: Total safety violations.

6.3.3 Safety

Somewhat surprisingly, in addition to scaling more effectively than

Spice, Mssc is also better able to maintain safety on three of the four bench-

marks. Table 6.1 shows the number of safety violations during training for the

different techniques. Note that Mssc is actually at a disadvantage compared

to CSC-MBPO and Spice because both of those techniques use primarily

simulated data for training, while Mssc uses simulated data only to generate

shields, and uses real data for all policy optimization. Even so, Mssc is safer

than Spice and CSC-MBPO on the majority of benchmarks and still much

safer than CPO on the last one.

One other interesting result not captured in Table 6.1 is the distribution

of unsafe behavior in the different benchmarks. Nearly all of the safety vio-

lations incurred by Mssc happen before the first model construction phase.

Recall that in this early part of the training process, Mssc cannot provide

safety guarantees. After model construction and shield training, only acc ex-

hibits any safety violations at all, with a total of four. This suggests that

Mssc would benefit more than other approaches from a predefined environ-

ment model or initial safe policy which could enforce safety in the first few
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episodes.

Intuitively, there are a few reasons Mssc might be safer than Spice.

First, Mssc uses a neural model of safety which considers the long-term im-

pact of potential action. By contrast, Spice uses a bounded-time weakest

precondition approach. As a result, Spice may end up in situations from

which there is no sequence of safe actions. Second, Mssc models the environ-

ment using an ensemble of neural networks, where as Spice uses a simplified

model class to allow for formal analysis. This allows Mssc to more precisely

model future states which may yield a better safety analysis. Notice that these

two explanations are similar to the comparison between Spice and CSC from

Section 5.5.4. This suggests that Mssc is combining the best aspects of Spice

with the best aspects of CSC.

6.3.4 Performance

Mssc is able to achieve similar reward to prior approaches on most

benchmarks. Table 6.2 shows the average final reward achieved by different

tools. Notiec that, except for noisy-road-2d, Mssc achieves higher reward

than Spice and CSC-MBPO, although not as high as CPO. This is likely

because Mssc uses more permissive neural models of safety and does not rely

on models for policy optimization.
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Benchmark CPO CSC-MBPO SPICE MSSC

acc 536 470 445 564
noisy-road-2d -55 -330 -326 -561

pendulum -0.005 -0.321 -0.371 -0.043
road-2d -50 -521 -527 -510

Table 6.2: Average final rewards.
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Chapter 7

Related Work

7.1 Robustness and Verification of Neural Networks

Adversarial Examples and Robustness. Szegedy et al. [95] first showed

that neural networks are vulnerable to small perturbations on inputs. It has

since been shown that such examples can be exploited to attack machine learn-

ing systems in safety-critical applications such as autonomous robotics [70] and

malware classification [41].

Bastani et al. [12] formalized the notion of local robustness in neural

networks and defined metrics to evaluate the robustness of a neural network.

Subsequent work has introduced other notions of robustness [40,51].

Many recent papers have studied the construction of adversarial coun-

terexamples [39,42,57,66,68,74,85,96]. These approaches are based on various

forms of gradient-based optimization, for example L-BFGS [95], FGSM [39]

and PGD [68]. While the tool described in Chapter 2 uses the PGD method, we

could in principle also use (and benefit from advances in) alternative gradient-

based optimization methods.
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Verification of Neural Networks. Scheibler et al. [87] used bounded model

checking to verify safety of neural networks. Katz et al. [51] developed the Re-

luplex decision procedure extending the Simplex algorithm to verify robust-

ness and safety properties of feedforward networks with ReLU units. Huang

et al. [47] showed a verification framework, based on an SMT solver, which

verified robustness with respect to a certain set of functions that can manip-

ulate the input. A few recent papers [25, 65, 98] use Mixed Integer Linear

Programming (MILP) solvers to verify local robustness properties of neural

networks. These methods do not use abstraction and do not scale very well,

but combining these techniques with abstraction is an interesting area of future

work.

The earliest effort on neural network verification to use abstraction was

by Pulina and Tacchella [80] — in fact, similar to Chapter 2, they considered

an abstraction-refinement approach to solve this problem. However, their ap-

proach represents abstractions using general linear arithmetic formulas and

uses a decision procedure to perform verification and counterexample search.

Their approach was shown to be successful for a network with only 6 neurons,

so it does not have good scalability properties. More recently, Gehr et al. [35]

presented the AI2 system for abstract interpretation of neural networks. Un-

like our work, AI2 is incomplete and cannot produce concrete counterexamples.

The most closely related approach from prior work is ReluVal [100], which

performs abstract interpretation using symbolic intervals. The two key dif-

ferences between ReluVal and our work are that Charon couples abstract
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interpretation with optimization-based counterexample search and learns ver-

ification policies from data. As demonstrated in Section 2.6, both of these

ideas have a significant impact on our empirical results.

Learning to Verify. The use of data-driven learning in neural network ver-

ification is, so far as we know, new. However, there are many papers [34,46,62,

88, 89] on the use of such learning in traditional software verification. While

most of these efforts learn proofs from execution data for specific programs,

there are a few efforts that seek to learn optimal instantiations of parameter-

ized abstract domains from a corpus of training problems [62, 75]. The most

relevant work in this space is by Oh et al. [75], who use Bayesian optimiza-

tion to adapt a parameterized abstract domain. The abstract domain in that

work is finite, and the Bayesian optimizer is only used to adjust the context-

sensitivity and flow-sensitivity of the analysis. In contrast, Chapter 2 handles

real-valued data and a possibly infinite space of strategies.

7.2 Shielding and Verified RL

There is a growing literature on safety in RL [33]. Approaches here

can be classified on basis of whether safety is guaranteed during learning or

deployment. Revel, and, for example, CPO [3], were designed to enforce

safety during training. Another way to categorize approaches is by whether

their guarantees are probabilistic (or in expectation) or worst-case. Most ap-

proaches [3, 20, 73] are in the former category; however, Revel and prior
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approaches based on verified monitors [5, 30, 31] are in the latter camp. Now

we discuss in more detail three especially related threads of work.

Safety via Shielding These approaches rely on a definition of error states

or fatal transitions to guarantee safety and have been used extensively in both

RL and control theory [4,5,20,30,31,37,79,109]. The approach from Chapters 4

and 5 follows this general framework, but crucially introduces a mechanism

to improve the shielded-policy during training. This is achieved by projecting

the neural policy onto the shielded policy space. The idea of synthesizing a

shield to imitate a neural policy has been explored in recent work [13, 109].

However, these approaches only generated the shield after training, so there

are no guarantees about safety during training.

Formal Verification of Reinforcement Learning There is a growing

literature on the verification of worst-case properties of neural networks [7,35,

51,52,100]. In particular, a few recent papers [48,91] target the verification of

neural policies for autonomous agents. However, performing such verification

inside a learning loop is computationally infeasible — in fact, state-of-the-art

techniques failed to verify a single network from the benchmarks described

in Chapter 4 within half an hour. An alternative class of approaches uses

either a nominal environment model [28, 53] or a user-provided safe policy

as a starting point for safe learning [19, 20]. In both cases, these techniques

require a predefined model of the dynamics of the environment. In contrast,
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Chapter 5 does not require the user to specify any model of the environment,

so it can be applied to a much broader set of problems.

7.3 Statistical Safe Learning

A variety of recent work has focused on applying statistical approaches

to safe exploration and safe learning [3,14,15,23,58,60,64]. These approaches

maintain an environment model and then use a variety of different statisti-

cal approaches to attempt to generate safe policies. Some work with cost

constraints, in which there is a continuous cost function which must be kept

below a certain threshold, and others are based on boolean safety signals. In

both cases, these techniques suffer from two sources of unsafe behavior: (1)

the model they maintain can be inaccurate and (2) the statistical approaches

they use to generate policies may fail. Compared to these approaches, shield-

ing eliminates the second source of error, leading to much safer behavior in

practice. Moreover, in the presence of a known environment model (as in

Chapter 4), shielding can fully eliminate both sources of error in order to

generate provably safe policies.

Many approaches to the safe reinforcement learning problem provide

statistical bounds on the system safety [3,64,67,86,103,108]. These approaches

maintain an environment model and then use a variety of statistical techniques

to generate a policy which is likely to be safe with respect to the environment

model. This leads to two potential sources of unsafe behavior: the policy may

be unsafe with respect to the model, or the model may be an inaccurate rep-
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resentation of the environment. Compared to these approaches, we eliminate

the first source of error by always generating policies that are guaranteed to be

safe with respect to an environment model. We show in our experiments that

this drastically reduces the number of safety violations encountered in practice.

Some techniques use a learned model together with a linearized cost model to

provide bounds, similar to Chapter 5 [23, 61]. However, in these works, the

system only looks ahead one time step and relies on the assumption that the

cost signal cannot have too much inertia. Chapter 5 alleviates this problem

by providing a way to look ahead several time steps to achieve a more precise

safety analysis.

A subset of the statistical approaches are tools that maintain neural

models of the cost function in order to intervene in unsafe behavior [15, 102,

104]. These approaches maintain a critic network which represents the long-

term cost of taking a particular action in a particular state. However, because

of the amount of data needed to train neural networks accurately, these ap-

proaches suffer from a need to collect data in several unsafe trajectories in

order to build the cost model. The symbolic approach of Chapter 5 is more

data-efficient, allowing the system to avoid safety violations more often in

practice. This is borne out by the experiments in Section 5.5.
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Chapter 8

Conclusion

As machine learning has shown its power in a wide variety of appli-

cations, it has also shown its fragility and opacity. New techniques and new

algorithms are needed to ensure that as we deploy neural networks in real-

world systems, we can understand and constrain how these networks will be-

have. This dissertation shows how ideas from classical program analysis can

be extended and adapted to handle systems with machine learning compo-

nents. Moreover, we tightly weaves traditional program analysis together with

machine learning, allowing the two fields to support each other. This leads to

systems which achieve the performance of machine learning while also main-

taining the safety of traditional programs.

In the context of robustness, this takes the form of a program analysis

framework which is both supported by and applied to machine learning sys-

tems. Specifically, we use ideas from program analysis to determine whether

neural networks satisfy certain properties. At the same time, we use more

traditional “shallow” machine learning approaches to develop heuristics for

that analysis engine. In this work, the machine learning and program anlysis

support each other, and we show experimentally that this support results in
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a better tool than existing work that focused on using machine learning or

program anlysis in isolation.

In the context of reinforcement learning, this dissertation focuses on

training neural networks and programmatic controllers together, allowing them

to work together as a single policy. We have developed (or are currently de-

veloping) several variations on this idea, focusing on different forms of pro-

grammatic controllers and different modes of interaction between the neural

and programmatic components. We have looked at straightforward versions

of this, where the neural and symbolic policies are completely separate, as

well as more tightly integrated systems where the neural and programmatic

policies are closely related. In this context, we have seen how combining tra-

ditional program synthesis with neural network training leads to controllers

which achieve both high performance and safety.

The combination of programming languages with machine learning of-

fers an approach to learning which combines the safety, sample efficiency,

and interpretability of programs with the power of neural networks. In this

work, we have demonstrated this synergy in a few contexts — namely ro-

bustness analysis and reinforcement learning. In both cases, machine learning

approaches alone do not achieve the desirable safety properties of program

languages approaches. At the same time, programming languages techniques

simply do not scale to the level which is required for machine learning systems.

However, in the combination of both these fields, we find the power we need

to analyze or constrain machine-learning-scale systems, along with the safety
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and analyzability we have come to expect from traditional programs.
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[31] Nathan Fulton and André Platzer. Verifiably safe off-model reinforce-

ment learning. In International Conference on Tools and Algorithms

for the Construction and Analysis of Systems, pages 413–430. Springer,

2019.

[32] Sicun Gao, Jeremy Avigad, and Edmund M. Clarke. δ-complete de-

cision procedures for satisfiability over the reals. In Proceedings of the

6th International Joint Conference on Automated Reasoning, IJCAR’12,

pages 286–300, Berlin, Heidelberg, 2012. Springer-Verlag.

[33] Javier Garcıa and Fernando Fernández. A comprehensive survey on

safe reinforcement learning. Journal of Machine Learning Research,

154



16(1):1437–1480, 2015.
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